(!) Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.

											Poin	ts 6	•	Publi	shed	
D	etails	Questions														
		Show Ques	tion Deta	ails												
	₿ Qu	lestion													1 pts	5
	Aran	dom forest is ar	າ ensemb	le learnin	g method	that att	empts t	o lower	the trair	ninge	error o	f deci	sion	trees.		
	(True														
iswer	(False														
	∰ Qı	uestion													1 pts	5
		h round of Ada: round t to roun					for a pa	rticular	training	obse	ervatio	n is in	crea	ased go	ing	
swer	(classified inc	orrectly	by the we	ak learner	trained	l in roun	d t								_
	(classified inc	orrectly	by the full	ensemble	e trainec	d up to r	ound t								_
	(classified inc	orrectly	oy a major	rity of the	weak le	earners t	rained u	ıp to rou	und t						

1 pts

In the multi-class SVM the objective function is

There are some missing definitions of the symbols. Which of the following is true about them?

k represents different class labels and k_i is the one that does not equal to y_i but the distance between its corresponding w_k and w_{y_i} is the largest.

\bigcirc

k represents different class labels and k_i is the one that does not equal to y_i but the distance between its corresponding w_k and w_{y_i} is the smallest.

swer

igodot k represents different class labels and the k_i s are all the k that do not equal to y_i

igodot igodot represents different class labels and the k_i s range over all $\,k$ s

Question

During the lectures, it was mentioned that the 1 vs. All multi-class learning scheme is doing "local learning" and "global prediction". What is the most accurate interpretation of this among the following statements?

This process is a boosting process, where the training process gets weak binary classifiers for each class and the predicting process assigns different weights to the weak classifiers and makes better decisions.

Iswer

The training process only optimizes one label/classifier at each example without the consideration of other labels. The predicting process looks at all labels and makes the best decision.

\bigcirc

The training process can only converge to local optimums for each binary classifier. The predicting process looks at all labels and makes a prediction that is the global optimum of the optimization objective.

Neither the training nor the prediction process considers all classes for each training example, but the prediction process is guaranteed to converge to a global optimum with respect to the learning objective.

1 pts

	The AdaBoost algorithm is guaranteed to assign the highest weight in the final hypothesis to the weak learner that performs the best on the test set.						
	◯ True						
swer	○ False						
-							
	ii Question 1	. pts					

Which of the following is the correct math representation of the SVM margin (between the separator and the closest examples)?

	$^{\bigcirc} w^T w$
	$igcomeq rac{1}{2} w^T w$
swer	$\bigcirc \frac{1}{\ w\ }$
	$\bigcirc \frac{2}{\ w\ }$

	+ <u>New Question</u>	+ <u>New Question Group</u>	Q Find Questions	
Notify users t	his quiz has changed		Car	ncel Save