(!) Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.

			Poir	nts 6 🕑 Publis	shed	•
	Details	Questions				
		Show Ques	tion Details			
	ii Question					
	In prae used i	ctice, what is th n neural netwo	ne most accurate description for activation functions (such as Sigmoic rks?	l, Sum, Tanh, ReLU))	
		They must be	e differentiable.			
Iswer		They can be i	non-differentiable, but only for a small amount of points.			
		They can be a	any continuous functions.			
) They must be	non-linear to be learnable.			

•••	Question 1pt:
G a b	iven a neural network with N input nodes, no hidden layers, one output node, with entropy loss and sigmoid ctivation functions, which of the following algorithms (with the proper hyper-parameters and initialization) can e used to find the global optimum?
	O Stochastic Gradient Descent
	O Batch Gradient Descent
	O Mini-Batch Gradient Descent

ISW

Question

Assume that for a group of people, the probability for individuals to get Covid is 1%. Comparatively, a fever is fairly common, and the probability for individuals to get a fever is 10%.

If 90% of the covid patients develop fevers, what is the probability for an individual to be a covid patient if this individual has a fever?

Enter your answer as an integer that represents the percentage of this probability.

swers 9 (with margin: 0)

Question 1 pts An old factory that has a defect rate of 50% (50% of the products have some defects) uses a quality assurance check to filter out products with defects. The check has a 90% chance to identify defects in a product if the product is defective. For the well-manufactured products, the check has a 10% chance to falsely identify a defect in a product and filter it out. If the check filters a product out, what is the probability that it has defects? Enter your answer as an integer that represents the percentage of this probability. 90 (with margin: 0) iswers

	ii Question	
	What is the best description of the back-propagation process on the max-pooling operation?	
	O It uses a max() operation which is differentiable, so the back-propagation process is the same as other functions.	
	\bigcirc It uses a softmax() operation which produces a differentiable estimation of the max value.	
er	O Despite being non-differentiable, it can be propagated since it can remember the index that has the max value and only update the weights related to the selected value during back propagation.	

1 pts

It remembers the index that has the max value and update the other indices in the pooling layer with
negative gradients.

Y	ou want to train a neural network to predict the next 30 daily prices using the previous 30 daily prices as	
ir	nputs. Which model selection and explanation make the most sense?	
	0	
	A fully connected deep feed-forward network because it considers all input prices in the hidden layers to make the best decision.	
	A single one-directional RNN because it considers the order of the prices, and the output length is the	
	same as the input length.	
	○ A bidirectional RNN because the prediction benefits from future labels.	
	\bigcirc	
	A one-directional encoder-decoder architecture because it can generate a sequence of future prices based on all input historical prices.	

	+ <u>New Question</u>	+ <u>New Question Group</u>	Q Find Questions				
Notify users this quiz has changed							
			Cane	<u>cel</u> Save			