
CIS519: Applied Machine Learning Spring 2018

Problem Set 1

Handed Out: January 25, 2018 Due: February 9, 2018

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include at the top of your
document the list of people you consulted with in the course of working on the homework.

• While we encourage discussion within and outside the class, cheating and copying code is strictly
discouraged. Copied code will result in the entire assignment being discarded at the very least.

• Please use Piazza if you have questions about the homework. Also please come to the TAs recitations
and to the office hours.

• Please try to keep the solution brief and clear.

• Please, no handwritten solutions. Consult the class’ website if you need guidance on using Latex. You
will submit your solution manuscript as a single pdf file (in addition to the package with your code;
see instructions in the body of the assignment).

• The homework is due at 11:59 PM on the due date. We will be using Canvas for collecting the
homework assignments. Please submit your solution manuscript as a pdf file via Canvas. Please do
NOT hand in a hard copy of your write-up. Post on Piazza and Contact the TAs if you are having
technical difficulties in submitting the assignment.

1. Understanding Decision Tree Learning – 20 points

(a) [7 points] In this problem you are asked to determine the attribute that will
be the root of the decision tree if you apply the ID3 algorithm on the data set
summarized in Table 1. Table 1 provides the information pieces that are required
to determine the root attribute, by using the concept of information gain.

Attribute Value Play outside = yes Play outside = no

Sunny yes 20 1
Sunny no 15 14
Snow no 10 5
Snow yes 25 10

Table 1: The Study Pattern data set

The data set consists of two binary attributes (Sunny, Snow) and a binary label
(Play outside). Notice that, even though you are not given the examples in the
data set, you are given enough information to compute the information gain.

For example, you can see that there are 50 instances in the data set, 35 of which
are positive (Play outside = yes) and the remaining 15 are negative (Play
outside= no). From Table 1, we can see that there are 20 such instances when
people play outside when it is sunny (i.e., 20 instances with Sunny = yes and Play

outside= yes), 1 such instance with Sunny = yes and Play outside = no), etc.
Use this information to determine the root attribute.

1



(b) [7 points] For this question, you will manually induce a decision tree from a small
data set. Table 2 shows the Balloons data set from the UCI Machine Learning
repository that was first used for an experiment in cognitive psychology1. The
data consists of four attributes (Color, Size, Act, and Age) and a binary label
(Inflated). You will represent this data as a decision tree using a new splitting
heuristics. This new heuristic uses the decrease in misclassification rate to choose
an attribute to split. If, at some node, we stop growing the tree further and assign
the majority label of the remaining examples to that node, then the empirical error
on the training set at that node will be

MajorityError = min(p, 1− p)

where p is the fraction of examples with label T and, hence, 1− p is the fraction
of examples with label F . Note that this error can be thought of as a measure of
impurity of a node, just like entropy.
Redefine information gain using MajorityError as the measure of impurity and
use this to represent the data as a decision tree.

Color Size Act Age Inflated

Blue Small Stretch Adult F
Blue Small Stretch Child F
Blue Small Dip Adult F
Blue Small Dip Child F
Blue Large Stretch Adult F
Blue Large Stretch Child T
Blue Large Dip Adult T
Blue Large Dip Child T
Red Small Stretch Adult F
Red Small Stretch Child T
Red Small Dip Adult T
Red Small Dip Child T
Red Large Stretch Adult F
Red Large Stretch Child T
Red Large Dip Adult T
Red Large Dip Child T

Table 2: The Balloons data set

You can report the decision tree as a series of if-then statements as the following
example shows:

if feature_0 = x :

if feature_1 = y :

if feature_2 = z :

class = T

1You can learn more about this data set at http://archive.ics.uci.edu/ml/datasets/Balloons

2



if feature_2 != z :

class = F

if feature_1 != y :

class = T

if feature_0 != x :

if feature_1 = y :

class = T

if feature_1 != y :

class = F

(c) [6 points] Does ID3 guarantee a globally optimal decision tree? By optimality,
we mean a decision tree that perfectly fits the training data and also has a minimal
depth. Justify your answer shortly.

2. Experimenting with Decisions Trees and SGD – 80 points

2.1. Getting Started with Scikit-learn

Before starting these programming exercises, you will need to make certain that you
are working on a computer with the following particular software:

• python 3.6

• numpy (http://www.numpy.org/)

• scikit-learn (http://scikit-learn.org/stable/)

If you are using Pycharm to run your python projects, these libraries should already
be installed. To make sure that you have the libraries, run the following code in the
python interpreter (you should just be able to cut & paste the code):

from sklearn import tree

X = [[0, 0], [1, 1]]

y = [0, 1]

clf = tree.DecisionTreeClassifier()

clf = clf.fit(X,y)

clf.predict([[2.,2.]])

If this code runs without error and gives you the following output:

array([1])

then everything should be configured correctly for this homework.

You can substitute the 4th line with linear model.SGDClassifier(...) for training
an SGD model.

Also, try to explore the method tree.export graphviz(...) to print the decision
tree graphically.

3



2.2. Decision Trees as Features

The goal of this problem is to use the decision tree algorithm to generate features for
learning a linear separator. In the course of doing it you will first run several versions
of the scikit-learn, Decision Tree Algorithm, the scikit-learn SGD algorithm finally, use
learned Decision Trees as features for the SGD algorithm.

You will use a data set that is similar to the one from the Badges Game introduced
in class. This data has been cleaned so that each name now consists of two lower
cased strings - both the first and last names. The labels (+ or -) are generated ac-
cording to a new function. The new data set is available from the homework page in a
file called badges.zip. The archive contains a file called badges.modified.data.train
which has all the examples. Additionally, this archive contains five files named
badges.modified.data.fold1-5 with roughly equal splits of the data. You will use these
to perform five-fold cross validation. Furthermore, the directory also has a file named
badges.modified.data.test. You have to label these names using your best performing
model and submit that in the same format as the training file, i.e. each line should
start with the label, followed by a space and followed by the actual name.

In the following few sections we explain the processes you will go through in the course
of this problem set.

(a) Feature Extraction and Instance Generation: First, you need to extract
features from the data. You need to generate ten feature types for each example.
These feature types are Boolean in nature, and are indicators for the first five
characters from the first and last names.

For example, consider the name “naoki abe” from the data set. Suppose you
want to extract features corresponding to the first letter “n” in the first name,
you will have 26 Boolean features, one for each letter in the alphabet. Only
the one corresponding to n will be 1 and the rest will be 0. This will give us
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, where the 14th element
corresponds to the feature String=First,Position=1,Character=n. Note that
the features defined earlier are actually feature types. In fact, you will have
260 features of the form String=i,Position=j,Character=k, where i can be
FirstName or LastName, j can be 1, . . . , 5 and k can be a,b,c, ..., z.

In addition to the feature types described above, feel free to include additional
features. For example, you can invent new feature types, such as features to
indicate if a letter in the alphabet appears in the name or not, or features based
on conjunction of two feature types given above, features that indicate whether
the letter in the i-th place is one of {a, b, c}, length of the name and so on.

(b) Decision Trees and SGD are the two learning algorithms you will use in this data
set. You will use them in multiple ways, and we now explains the ways they will
be used.

i. Stochastic Gradient Descent (SGD): As a baseline, you
should use the stochastic gradient descent algorithm (see

4



sklearn.linear model.SGDClassifier) with log loss. We recom-
mend that you use five-fold cross validation (CV) to tune the parameters
(learning rate, error threshold) of the SGD algorithm, i.e., to select the
parameter that yields the best averaged accuracy in CV.

ii. Grow decision tree: Use the decision tree package to train a decision tree
with the CART algorithm available in scikit-learn, using the same feature set.

iii. Grow decision trees of depth 42: Repeat step (ii), limiting the maximum
depth of the decision tree to four.

iv. Grow decision trees of depth 8: Repeat step (ii), limiting the maximum
depth of the decision tree to eight.

v. Decision stumps as features: In this part, you will use decision stumps
to generate a feature set.
Using the feature set defined in step (a), train hundred different decision
stumps of maximum depth eight on the entire training set. Note: To get
a hundred different decision stumps, you need to repeatedly sample 50% of
the training set and train a decision tree on the sub-sample. The labels for
the training data using these 100 different decision stumps will be your new
feature set. Now you have to run an SGD classifier on top of these features.
Make sure that you only sample from the training set to generate the
decision stumps, otherwise you might contaminate the training set with ex-
amples from the test set and this will skew your results.

2.3. Evaluation

You should compare the five different algorithms – (a) simple SGD, (b) full decision
tree, (c) decision stump of depth four, (d) decision stump of depth eight, and (e) SGD
over features derived from 100 decision stumps. Remember that this is the minimum.
Feel free to experiment with more parameter combinations (e.g., decision stump depth,
learning rate for the SGD, and fraction of the data used to train the decision stumps),
or additional feature classes you came up with.

For each algorithm you experiment with, (i) run five-fold cross validation on the given
data set. This will determine an estimate for the algorithm’s performance, pA, on
unseen examples. Note that pA is the average accuracy over the five folds. In addition
to pA, record also the performance of your algorithm on the training data, trA. This
will also be the average you get over the five training folds. (ii) Calculate the 99%
confidence interval of this estimate using Student’s t-test. You will need a table of tn,α
values to do this computation (see t-table.pdf).3

Rank your algorithms in decreasing order of the performance estimate pA. For each
pair of consecutive algorithms in the ranking, show if the difference between the two
algorithms’ performances is or is not statistically significant.

2Decision trees with limited depth are also called decision stumps.
3http://en.wikipedia.org/wiki/Student’s_t-distribution also has a Student’s t-distribution ta-

ble.

5



2.4. What to hand in

• A report
Create a report named hw1.pdf listing down different observations from your
experiments. In particular, provide the following observations in an organized
fashion:

– For each algorithm in order of the ranking you created, describe the feature
set and indicate the tree depth and other parameters (specially for SGD,
report the learning rate and error threshold).

– Give the value of pA for each algorithm.

– Provide the 99% confidence interval for this value using Student’s-t distribu-
tion.

You may provide these numbers in a table or in a graph with error bars.

In the end, your conclusion will be that a particular algorithm (or set of algo-
rithms) performed the best. Briefly state the assumptions that this conclusion is
based on.

In addition, briefly comment on the results you see and on whether they match
your expectations. In particular, address (i) trA vs. pa, and (ii) the results you
see for the different decision tree versions you used.

• Your code and tree displays
Hand in all the code you wrote in a file named hw1.py. Also, for each algorithm
you experimented with (except the last one on decision stumps as features), in-
clude the tree created during cross validation that had the best performance.
Mention the number of correct and incorrect predictions made by the tree on the
corresponding test set. The tree displays can be similar to the one shown in 1(b).
You may add the tree displays to the report in a neat fashion.

Create a README file that contains your name and email address, a description
of which algorithms correspond to which tree files, and enough information for
someone to compile your code and run it.

Place all files including the python files, test labels and README in a directory
called userID-hw1. Remember to exclude executables and object files. Pack the
files together so that when they unpack, the userID-hw1 directory is created with
all your files in it. The name of the packed file should be userID-hw1.zip or
userID-hw1.tar.gz.

• Test labels
Submit the test labels in the format aforementioned in a file named test labels.txt

• The homework is due at 11:59 PM on the due date. To submit homework 1,
transfer all of your files into your SEAS account on eniac. Then, from a command
prompt on eniac, use the turnin command to submit all files:

turnin -c cis519 -p hw1 hw1.pdf test labels.txt README hw1.py

6



Note that even students in CIS 419 should submit to the CIS 519 course, as
shown in the command above (we have only one course account, CIS 519, for
both sections of the course). Make certain that your submitted files are named
correctly, and do not submit additional files, or place the files in a folder. You
can check that your submission was received by running:

turnin -c cis519 -p hw1 -v

to list the files submitted. You should see one listing for each file submitted. The
turnin command will also send you an email with a subject ”cis519: submission
received” to verify receipt. Subsequent submissions will overwrite earlier submis-
sions; if you re-submit files after the due date, your submission will be counted as
late regardless of whether or not the file contents changed. The official timestamp
of your submission will be the most recent (i.e., latest) timestamp of ANY file
you submit. Therefore, if you submit even one file late, your entire submission
will be considered late.

In addition, you also have to submit the zip/tar solution file created above on
Canvas.

• Automatic Testing: Once you submit your assignment, it will be picked up by the
auto-feedback engine and queued for a set of automatic tests. The auto-feedback
system will run these tests and then send you a second e-mail with the results once
they complete. Please be aware that this is only a limited set of tests and that
we cannot provide any further detail than what is given in the report. For final
grading, we will run your code on entirely new data sets with a more extensive
battery of tests. We will not be releasing grading information (i.e., 10 out of 10
points) until after the homework deadline. If the e-mailed report shows that your
code failed the tests or that you were missing any files, you may modify your
implementation or writeup and resubmit it. You may re-submit all files as many
times as you would like; each time the auto-feedback system will run the tests and
e-mail you the results. You can continue to use these comments about possible
failures, crashes, or incorrect results to improve your code up until the homework
deadline. The auto-feedback system has been tested over several semesters, so we
are nearly certain that it is bug-free. Any errors it finds are most likely a result of
something being incorrect in your implementation. However, in the unlikely case
that the e-mailed reports indicates a bug in the testing script (e.g., your code
fails a test that youre absolutely 100% certain it should pass and have double
checked), please let us know via a private message on Piazza to the instructors
only.

2.5. Grading

• Experimenting with the SGD algorithm [10 points]

• Experimenting with the decision tree and decision stumps. [10 points]

• Implementation of decision stumps as features [20 points]

7



• Evaluation report [30 points]

• Other report elements (additional experiments, explanation of implementation
and experiments, conclusions, etc.) [10 points]

8


