
CIS519: Applied Machine Learning Spring 2018

Homework 5

Handed Out: April 18th, 2018 Due: April 26th, 2018, 11:59 PM

1 Image Clustering [60 points]

In this problem, you will implement several clustering models using EM based algorithms
to perform image classification in an unsupervised setting. You will evaluate your clustering
performance using two different approaches and identify the significance of each performance
measure. You will also perform clustering on a reduced feature representation using Principal
Component analysis and compare the significance of the reduced representation.

Please note that we are leaving some of the implementation details to you. In particular,
you can decide how to representation the data internally, so that your implementation of
the algorithm is as efficient as possible. Note, however, that you are required to
implement the algorithm yourself, and not use existing implementations, unless
we specify it explicitly.

1.1 Dataset

For the experiments, you will use a subset of the Pascal VOC dataset1 . The dataset is
provided to you. The provided VOC dataset consists of ∼1250 images spread across 10
categories of objects. There are roughly 75 images per class for training and roughly 50
images per class for evaluating. Each datapoint actually consists of a 4096x1 dimensional
vector representation of an image obtained using the Overfeat2 network that was pre-trained
on the ImageNet dataset, the largest collection of annotated images to date. The dataset
is also provided with the labels. (Note: Use these labels to make meaningful conclusions
of your experimental results). Please see the provided code for more details on the exact
format of the dataset.

For the VOC dataset, you are provided 2 splits - one containing the training data and
the other containing the test data. You will train your clustering model using the training
data without using the labels, assign each cluster a label using the provided training labels,
and then predict for the test data using the model. You will evaluate the performance on
the training data and test data to see how the clustering model helps for the purpose of
classification.

1.2 Evaluation

To evaluate each of the clustering methods below, please use the following two metrics:

1http://host.robots.ox.ac.uk/pascal/VOC/
2https://github.com/sermanet/OverFeat
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1. Purity: To compute the purity of a set of clusters, assign every cluster the most
frequent label in the cluster. For example, if a cluster has 3 goldfinches, 2 robins, and
1 ostrich, we would assign the cluster the label of goldfinch. Then, the purity score
is simply the proportion of correctly labelled datapoints. Note that higher purity is
better, but also that high training purity is extremely easy to achieve when the number
of clusters is large.

2. Rand Index3: Given the true labels and our clustering, we can compute the Rand
index by first computing the following two values:

• TP (true positives), the number of pairs of datapoints that share the same true
label and are assigned to the same cluster.

• TN (true negatives), the number of pairs of datapoints that don’t share the same
label and are not assigned to the same cluster.

For a dataset with N datapoints, the Rand index is simply the ratio

TP + TN(
N
2

) ,

that is, fraction of number of pairs “correctly labelled” in the sense above. As before,
note that higher Rand index is better. This metric does not necessarily go up (even in
training) when the number of clusters increases.

1.3 Experiment 1 [10 points]

In this experiment, you will run a simple clustering algorithm called KMeans clustering on
the VOC dataset. That is, you will use the training data to cluster the datapoints into
a pre-specified number of clusters, calculate a label among the 10 labels for each clus-
ter that maximizes the correct predictions on the training data itself and then predict
the class for the test dataset by identifying the cluster each data corresponds to. . Use
sklearn.cluster.KMeans to cluster the training images.

The procedure is to take all the training data (irrespective of the labels) and cluster
them using the KMeans clustering algorithm. For each cluster, identify a label such that
the number of correct predictions (on the training data) is maximum. Evaluate the purity
and Rand Index for both the training data and test data by predicting the cluster the data
corresponds to and using its label as estimated in the previous step.

For this experiment, you will cluster with K=10, K=20, K=100 and K=500 clusters for
the VOC dataset. Compute the two performance measures, purity and Rand Index for the 4
different cases. Compare the results and report the values of the performance measures.

1.4 Experiment 2 [10 points]

In this experiment, you will use a Gaussian Mixture Model instead of KMeans. Gaussian
mixture models is an EM based algorithm similar to KMeans but instead of fitting only the
cluster centers, it fits multiple gaussian models which are identified by mean and covariance.

3https://en.wikipedia.org/wiki/Rand_index
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Use sklearn.mixture.GaussianMixture to cluster the training images. Please set
the covariance type parameter to ‘diagonal’. Perform the experiments following the
exact procedure as KMeans. Compare the results and report the values of the performance
measures for the 4 different number of clusters.

1.5 Experiment 3 [20 points]

In this experiment, you will first perform dimensionality reduction before performing clus-
tering on the reduced feature representation. For this, you will use Principal Component
Analysis. (You may use sklearn.decomposition.PCA.) The idea is to apply PCA and
reduce from 4096 dimensions to extremely small dimensions that capture most of the in-
formation contained in the data. You can think of the retained dimensions as some linear
combination of the original 4096 dimensions along which most of the data lies. For reducing
the dimensionality of the test data, transform the test data using the PCA model constructed
using the training data.

In this experiment, you will apply PCA to extract top 40 dimensions, reconstruct the
data along this new 40 dimensional space and perform both KMeans and GMM clustering
on the dimensionally reduced dataset. In this experiment, you should try K=10 and K=20.
Compare the results and report the values of the performance measures for the 2 different
cases. Report the influence on the classification performance after clustering on PCA
reduced dataset. Additionally, report the variance captured (Check the documentation for
sklearn.decomposition.PCA) and % data compression achieved by applying PCA.

Visualizing the dataset is really useful to help understand the data and identify appro-
priate algorithm. PCA allows us to visualize high dimensional dataset to a certain extent.
Here, we will construct a scatter plot using the first 3 PCA components for each datapoint.
In other words, the first component is treated as x coordinate, the second as y coordinate
and the third as z coordinate of the plot. To obtain these coordinates, first perform PCA
with n components = 3 on each datapoint. Take the reconstructed data point in the 3 di-
mensional space and plot it using a 3D scatter plot tool (use mpl toolkits.mplot3d).
Use different colors for each label to identify which datapoint corresponds to which label.
Based on your observation of the data, suggest which clustering model would be more suitable
for modeling this data.

1.6 (Optional: Extra Credit) Experiment 3.5 [5 points]

You are encouraged to implement the Principal Component Analysis for dimensionality re-
duction yourself for extra credit. You can perform the same set of experiments as in Exper-
iment 3 with your implementation but projecting the data to fewest number of dimensions
such that it captures 95% of the variance instead of hard-coding to 40 dimensions. Report
your results with your new PCA implementation.

1.7 (Optional: Extra Credit) Experiment 4 [5 Points]

We will now try to compare the performance of clustering with the performance of the
linear classifier methods. The procedure is to apply PCA on the training data to get a 40
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dimensional representation for each data point, fit a (multi-class) linear classifier model using
the SVM algorithm on the training data and evaluate the performance on the test data. You
should compare the training and test performance of SVM to the best performing clustering
model. In the report, include the accuracy measure for the 2 models. Use purity as the
evaluation method for the clustering model.

1.8 What to Report: [20 points]

The purity and rand index for all four clustering models (KMeans and Gaussian Mixture
models on the original 4096 dimensional data as well as PCA-reduced data) for the specified
number of clusters in each experiment . In addition, for experiment 3, please include your
observations about the performance of the PCA algorithm. Please explain any trends you
see, and attempt to explain why they occur. Feel free to use thumbnail images in your report
to justify your observations but do not clutter the report with a lot of images. Finally, please
also note any issues you ran into during the course of this assignment.

2 Tree Dependent Distributions [40 points]

A tree dependent distribution is a probability distribution over n variables, {x1, . . . , xn}
that can be represented as a tree built over n nodes corresponding to the variables. If
there is a directed edge from variable xi to variable xj, then xi is said to be the parent
of xj. Each directed edge 〈xi, xj〉 has a weight that indicates the conditional probability
Pr(xj | xi). In addition, we also have probability Pr(xr) associated with the root node
xr. While computing joint probabilities over tree-dependent distributions, we assume that a
node is independent of all its non-descendants given its parent. For instance, in our example
above, xj is independent of all its non-descendants given xi.

To learn a tree-dependent distribution, we need to learn three things: the structure of
the tree, the conditional probabilities on the edges of the tree, and the probabilities on the
nodes. Assume that you have an algorithm to learn an undirected tree T with all required
probabilities. To clarify, for all undirected edges 〈xi, xj〉, we have learned both probabilities,
Pr(xi | xj) and Pr(xj | xi). (We discussed this algorithm in class.) The only aspect missing
to convert this undirected tree to a directed one is determining the directionality of edges .

However, it is okay to not learn the directionality of the edges explicitly. In this problem,
you will show that choosing any arbitrary node as the root and directing all edges away
from it is sufficient, and that two directed trees obtained this way from the same underlying
undirected tree T are equivalent.

1. [14 points] State exactly what is meant by the statement: “The two directed trees
obtained from T are equivalent.”

2. [26 points] Show that no matter which node in T is chosen as the root for the “di-
rection” stage, the resulting directed trees are all equivalent (based on your definition
above).

4



Submission Instructions

Please submit your report and code for problem 1, as well as your answer to problem 2, on
Canvas.
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