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Administration
 Exam:

 The exam will take place on the originally assigned date, 4/30. 
 Similar to the previous midterm.
 75 minutes; closed books.

 What is covered:
 The focus is on the material covered after the previous mid-term.
 However, notice that the ideas in this class are cumulative!!
 Everything that we present in class and in the homework assignments
 Material that is in the slides but is not discussed in class is not part of the 

material required for the exam.
• Example 1: We talked about Boosting. But not about boosting the confidence.
• Example 2: We talked about multiclass classification: OvA, AvA, but not Error 

Correcting codes,  and additional material in the slides.

 We will give a few practice exams.

 Homework: missing and regrades

2



CIS419/519 Spring ’18

Administration
 Projects

 We will have a poster session 6-8pm on May 7
 in the active learning room, 3401 Walnut.

 The hope is that this will be a fun event where all of you have an 
opportunity to see and discuss the projects people have done. 

 All are invited!
 Mandatory for CIS519 students

 The final project report will be due on 5/8
 Logistics: you will send us you posters the a day earlier; we will print it 

and hang it; you will present it.
 If you haven’t done so already:

 Come to my office hours at least once this or next week to discuss the 
project!!
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Summary: Basic Probability
 Product Rule:   P(A,B) = P(A|B)P(B) = P(B|A)P(A)
 If A and B are independent:   

 P(A,B) = P(A)P(B);   P(A|B)= P(A), P(A|B,C)=P(A|C)

 Sum Rule: P(A∨B) = P(A)+P(B)-P(A,B)
 Bayes Rule: P(A|B)  = P(B|A) P(A)/P(B)
 Total Probability: 

 If events A1, A2,…An are mutually exclusive: Ai ∧ Aj = , ∑i P(Ai)= 1
 P(B) = ∑ P(B , Ai) = ∑i P(B|Ai) P(Ai)

 Total Conditional Probability: 
 If events A1, A2,…An are mutually exclusive: Ai ∧ Aj = , ∑ i P(Ai)= 1
 P(B|C) = ∑ P(B , Ai|C) = ∑i P(B|Ai,C) P(Ai|C)                   
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So far…
 Bayesian Learning

 What does it mean to be Bayesian?

 Naïve Bayes
 Independence assumptions

 EM Algorithm
 Learning with hidden variables

 Today:
 Representing arbitrary probability distributions
 Inference

 Exact inference; Approximate inference
 Learning Representations of Probability Distributions
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Unsupervised Learning
 We get as input (n+1) tuples: (X1, X2, … Xn, Xn+1) 
 There is no notion of a class variable or a label.
 After seeing a few examples, we would like to know 

something about the domain: 
 correlations between variables,  probability of certain events, etc.

 We want to learn the most likely model that generated the 
data 

 Sometimes called density estimation.

6



CIS419/519 Spring ’18

Simple Distributions 
 In general, the problem is very hard. But, under some 

assumptions on the distribution we have shown that we 
can do it. (exercise: show it’s the most likely distribution) 

 Assumptions:  (conditional independence given y)
 P(xi | xj,y) = P(xi|y) ∀ i,j

 Can these (strong) assumptions be relaxed ? 
 Can we learn more general probability distributions ?

 (These are essential in many applications: language, vision.)
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Simple Distributions 

 Under the assumption P(xi | xj,y) = P(xi|y) ∀ i,j we can compute the 
joint probability distribution on the n+1 variables

P(y, x1, x2, … xn ) = p(y)∏1
𝑛𝑛 P(xi | y)

 Therefore, we can compute the probability of any event:
 P(x1 = 0, x2 = 0, y = 1) = ∑{bi Є {0,1}} P(y=1, x1=0, x2=0, x3=b3, x4=b4,…,xn=bn) 
 More efficiently (directly from the independence assumption): 

P(x1 = 0, x2 = 0, y = 1) = P(x1=0, x2=0|y=1) p(y=1) = 
= P(x1=0|y=1) P(x2=0|y=1) p(y=1)  

 We can compute the probability of any event  or conditional event 
over  the n+1 variables. 
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Representing Probability 
Distribution

 Goal: To represent all joint probability distributions over a set of 
random variables X1, X2,…., Xn

 There are many ways to represent distributions. 
 A table, listing the probability of each instance in {0,1}n

 We will need 2n-1 numbers 
 What can we do? Make Independence Assumptions

 Multi-linear polynomials
 Multinomials over variables

 Bayesian Networks
 Directed acyclic graphs

 Markov Networks
 Undirected graphs
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This is a theorem.  To prove 
it, order the nodes from 
leaves up, and use the 
product rule.
The terms are called CPTs 
(Conditional Probability 
tables) and they completely 
define the probability 
distribution.

Graphical Models of Probability Distributions

 Bayesian Networks represent the joint probability 
distribution over a set of variables. 

 Independence Assumption: ∀ x, x  is independent of its 
non-descendants given its parents

 With these conventions, the joint probability distribution 
is given by:
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Bayesian Network
 Semantics of the DAG

 Nodes are random variables
 Edges represent causal influences
 Each node is associated with a conditional probability 

distribution
 Two equivalent viewpoints

 A data structure that represents the joint distribution 
compactly

 A representation for a set of conditional independence 
assumptions about a distribution
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Bayesian Network: Example

The burglar alarm in your house rings when there is 
a burglary or an earthquake. An earthquake will be 
reported on the radio. If an alarm rings and your 
neighbors hear it, they will call you.

What are the random variables?
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Bayesian Network: Example

13

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

An alarm can ring  
because of a burglary 
or an earthquake.

If there’s an 
earthquake, you’ll 
probably hear about 
it on the radio.

If your neighbors hear an 
alarm, they will call you.

How many parameters do we 
have? 

How many would we have if 
we had to store the entire 
joint?
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Bayesian Network: Example

 P(E, B, A, R, M, J) = P(E) P(B, A, R, M, J |E) = 
= P(E) P(B) P(A, R, M, J |E, B) = 
= P(E) P(B) P(R | E, B ) P(M, J, A | E, B) 
= P(E) P(B) P(R | E) P(M, J| A, E, B) P(A|, E, B) 
= P(E) P(B) ) P(R | E) P(M |A) P(J | A) P(A |E, B)
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Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

P(E)

P(R | E)

P(B)

P(A | E, B)

P(M | A) P(J | A)

With these 
probabilities, 
(and 
assumptions, 
encoded in 
the graph) we 
can compute 
the probability 
of any event 
over these 
variables.
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Computational Problems
 Learning the structure of the Bayes net

 (What would be the guiding principle?)

 Learning the parameters
 Supervised? Unsupervised? 

 Inference: 
 Computing the probability of an event: [#P Complete, Roth’93, ’96]

 Given structure and parameters
 Given an observation E, what is the probability of Y? P(Y=y | E=e) 
 (E, Y are sets of instantiated variables) 

 Most likely explanation (Maximum A Posteriori assignment, MAP, MPE) 
[NP-Hard; Shimony’94]

 Given structure and parameters
 Given an observation E, what is the most likely assignment to Y?
 Argmaxy P(Y=y | E=e) 
 (E, Y are sets of instantiated variables) 
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Inference
 Inference in Bayesian Networks is generally intractable in 

the worst case

 Two broad approaches for inference
 Exact inference

 Eg. Variable Elimination
 Approximate inference

 Eg. Gibbs sampling
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Tree Dependent Distributions
 Directed Acyclic  graph

 Each node has at most one 
parent

 Independence Assumption:
 x is independent of its non-

descendants given its parents

 (x is independent of other 
nodes give z; v is 
independent of w given u;)  

 Need to know two numbers 
for each link: p(x|z), and a 
prior for the root p(y) 
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Tree Dependent Distributions
 This is a generalization of 

naïve Bayes.
 Inference Problem:

 Given the Tree with all the     
associated probabilities,     
evaluate the probability of 
an event p(x) ?
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P(x=1) =                 
= P(x=1|z=1)P(z=1) + P(x=1|z=0)P(z=0)

Recursively, go up the tree: 
P(z=1) = P(z=1|y=1)P(y=1) + P(z=1|y=0)P(y=0)
P(z=0) = P(z=0|y=1)P(y=1) + P(z=0|y=0)P(y=0)
Linear Time Algorithm

Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 
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Tree Dependent Distributions
 This is a generalization of 

naïve Bayes.
 Inference Problem:

 Given the Tree with all the     
associated probabilities,     
evaluate the probability of 
an event p(x,y) ?
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P(x=1,y=0) =                 
= P(x=1|y=0)P(y=0) 

Recursively, go up the tree along the path from x to y: 
P(x=1|y=0) = ∑z=0,1 P(x=1|y=0, z)P(z|y=0) = 

= ∑z=0,1 P(x=1|z)P(z|y=0)       
Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 
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Tree Dependent Distributions
 This is a generalization of 

naïve Bayes.
 Inference Problem:

 Given the Tree with all the     
associated probabilities,     
evaluate the probability of 
an event p(x,u) ?

 (No direct path from x to u)
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P(x=1,u=0) = P(x=1|u=0)P(u=0) 
Let y be a parent of x and u (we always have one)  
P(x=1|u=0) = ∑y=0,1 P(x=1|u=0, y)P(y|u=0) = 

= ∑y=0,1 P(x=1|y)P(y|u=0) =       
Now we have reduced 
it to cases we have 
seen  
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Tree Dependent Distributions
 Inference Problem:

 Given the Tree with all the 
associated CPTs, we 
“showed” that we can  
evaluate the probability of   
all events efficiently.

 There are more efficient 
algorithms 

 The idea was to show 
that the inference is this 
case is a simple 
application of Bayes rule 
and probability theory.
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Things are not so simple in the general case, 
due to cycles; there are multiple ways to “get” 
from node A to B, and this has to be accounted 
for in Inference.
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Graphical Models of Probability Distributions

 For general Bayesian Networks 
 The learning problem is hard 
 The inference problem (given the network, evaluate the 

probability of a given event) is hard (#P Complete)     
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Variable Elimination

 Suppose the query is P(X1)

 Key Intuition: Move irrelevant terms outside summation 
and cache intermediate results
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Variable Elimination: Example 1

 We want to compute P(C)

 What have we saved with this procedure? How many 
multiplications and additions did we perform?

25

Let’s call this fA(B)

A

A B C

A has been (instantiated and) 
eliminated
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Variable Elimination
 VE is a sequential procedure.

 Given an ordering of variables to eliminate
 For each variable v that is not in the query

 Replace it with a new function fv

• That is, marginalize v out

 The actual computation depends on the order
 What is the domain and range of fv? 

 It need not be a probability distribution

26
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Variable Elimination: Example 2

27

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

P(E)

P(R | E)

P(B)

P(A | E, B)

P(M | A) P(J | A)

What is P(M, J | B)?
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Assumptions (graph; joint 
representation) 

Variable Elimination: Example 2

28

It is sufficient to compute the 
numerator and normalize

Elimination order R, A, E

To eliminate R
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Variable Elimination: Example 2

29

It is sufficient to compute the 
numerator and normalize

Elimination order A, E

To eliminate A
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Variable Elimination: Example 2

30

It is sufficient to compute the 
numerator and normalize

Finally eliminate E

Factors
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Variable Elimination
 The order in which variables are eliminated matters

 In the previous example, what would happen if we eliminate E 
first?
 The size of the factors would be larger

 Complexity of Variable Elimination
 Exponential in the size of the factors
 What about worst case?

 The worst case is intractable 

31
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Inference
 Exact Inference in Bayesian Networks is #P-hard

 We can count the number of satisfying assignments for 3-SAT with 
a Bayesian Network

 Approximate inference
 Eg. Gibbs sampling

 Skip

32
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Approximate Inference
 Basic idea

 If we had access to a set of examples from the joint 
distribution, we could just count.

 For inference, we generate instances from the joint and count

 How do we generate instances?

33

X

P(x)?
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Generating instances
 Sampling from the Bayesian Network

 Conditional probabilities, that is, P(X|E)
 Only generate instances that are consistent with E

 Problems?
 How many samples? [Law of large numbers]

 What if the evidence E is a very low probability event?

 Skip

34
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Pij : Time independent  
transition probability 

matrix

Detour: Markov Chain Review

35

A B

C
0.1

0.1 0.1
0.3

0.60.3
0.40.5

0.6

Generates a sequence of A,B,C

Defined by initial and transition 
probabilities

P(X0) and P(Xt+1=i | Xt=j)

Stationary Distributions: A vector q is called a stationary distribution if 

If we sample from the Markov Chain repeatedly, the distribution over the 
states converges to the stationary distribution

qi : The probability of 
being in state i
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Markov Chain Monte Carlo
 Our goal: To sample from P(X| e)

 Overall idea: 
 The next sample is a function of the current sample
 The samples can be thought of as coming from a Markov Chain 

whose stationary distribution is the distribution we want

 Can approximate any distribution

36
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Gibbs Sampling
 The simplest MCMC method to sample from P(X=x1x2…xn | 

e)

 Creates a Markov Chain of samples as follows: 
 Initialize X randomly
 At each time step, fix all random variables except one.
 Sample that random variable from the corresponding conditional 

distribution

37
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Gibbs Sampling
 Algorithm:

 Initialize X randomly
 Iterate:

 Pick a variable Xi uniformly at random
 Sample xi

(t+1) from P(xi| x1
(t),…,xi-1

(t), xi+1
(t),…, xn

(t),e)
 Xk

(t+1)=xk
(t+1) for all other k

 This is the next sample 

 X(1),X(2),…X(t) forms a Markov Chain
 Why is Gibbs Sampling easy for Bayes Nets?

 P(xi| x-i
(t),e) is “local”

38
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Gibbs Sampling: Big picture
 Given some conditional distribution we wish to compute, 

collect samples from the Markov Chain
 Typically, the chain is allowed to run for some time before 

collecting samples (burn in period)
 So that the chain settles into the stationary distribution

 Using the samples, we approximate the posterior by 
counting

39
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Gibbs Sampling Example 1

40

A B C

We want to compute P(C):

Suppose, after burn in, the Markov Chain is at A=true, B=false, C= 
false

1. Pick a variable  B
2. Draw the new value of B from 

• P(B | A=true, C= false) = P(B | A=true)
• Suppose Bnew = true

3. Our new sample is A=true, B = true, C = false
4. Repeat
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Gibbs Sampling Example 2

 Exercise: P(M,J|B)?

41

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

P(E)

P(R | E)

P(B)

P(A | E, B)

P(M | A) P(J | A)



CIS419/519 Spring ’18

Example: Hidden Markov Model

42

Y1

X1

Y2

X2

Y3

X3

Y4

X4

Y5

X5

Y6

X6

A Bayesian Network with a specific structure.
Xs are called the observations and Ys are the hidden states

Useful for sequence tagging tasks – part of speech, 
modeling temporal structure, speech recognition, etc

Transition probabilities Emission probabilities
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HMM: Computational Problems
 Probability of an observation given an HMM

 P(X| parameters): Dynamic Programming

 Finding the best hidden states for a given sequence 
 P(Y | X, parameters): Dynamic Programming

 Learning the parameters from observations
 EM

43
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Gibbs Sampling for HMM
 Goal:Computing P(y|x)

 Initialize the Ys randomly
 Iterate:

 Pick a random Yi

 Draw Yi
t from P(Yi| Yi-1,Yi+1,Xi)

 Compute the probability using counts after the burn in 
period

44

Only these variables are 
needed because they 
form the Markov 
blanket of Yi.

Gibbs sampling allows us to introduce priors on the emission 
and transition probabilities.
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Bayesian Networks
 Bayesian Networks

 Compact representation probability distributions
 Universal: Can represent all distributions

 In the worst case, every random variable will be connected to all 
others

 Inference
 Inference is hard in the worst case

 Exact inference is #P-hard, approximate inference is NP-hard 
[Roth93,96]

 Inference for Trees is efficient
 General exact Inference: Variable Elimination

 Learning?

45
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Tree Dependent Distributions
 Learning Problem:

 Given data (n tuples) 
assumed to be sampled 
from a tree-dependent 
distribution
 What does that mean?  
 Generative model

 Find the tree representation 
of the distribution.
 What does that mean?

46
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 Among all trees, find the most likely one, given the data:
P(T|D) = P(D|T) P(T)/P(D)
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Tree Dependent Distributions
 Learning Problem:
 Given data (n tuples) assumed 

to be sampled from a tree-
dependent distribution

 Find the tree representation of 
the distribution. 

47

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

Assuming uniform prior on trees, the Maximum Likelihood
approach is to maximize  P(D|T),  

TML = argmaxT P(D|T) = argmaxT ∏{x}
PT (x1, x2, … xn)

Now we can see why we had to solve the inference problem 
first; it is required for learning.
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Tree Dependent Distributions
 Learning Problem:
 Given data (n tuples) assumed 

to be sampled from a tree-
dependent distribution

 Find the tree representation of 
the distribution. 

48
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TXV
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P(y)
P(s|y)

P(x|z)

Assuming uniform prior on trees, the Maximum Likelihood
approach is to maximize  P(D|T),  

TML = argmaxT P(D|T) = argmaxT ∏{x}
PT (x1, x2, … xn) =    

= argmaxT ∏{x}
PT (xi|Parents(xi))

Try this for naïve Bayes
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Example: Learning Distributions
 Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1
0100  0.1 0101 0.1 0110   0.1 0111  0.1
1000  0 1001  0 1010   0 1011  0
1100  0.05 1101  0.05 1110   0.05 1111  0.05

 Probability Distribution 2:

 Probability Distribution 3

49

X3

X4

X2X1

X3

X4

X2

X1

P(x4)

P(x4)

P(x1|x4)

P(x1|x4) P(x2|x4)

P(x2|x4)

P(x3|x4)

P(x3|x2)

Are these representations 
of the same distribution?
Given a sample, which of 
these generated it?
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Example: Learning Distributions
 Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1
0100  0.1 0101 0.1 0110   0.1 0111  0.1
1000  0   1001  0 1010   0 1011  0
1100  0.05 1101  0.05 1110   0.05 1111  0.05

 Probability Distribution 2:

 Probability Distribution 3

50

X3

X4

X2X1

X3

X4

X2

X1

P(x4)

P(x4)

P(x1|x4)

P(x1|x4) P(x2|x4)

P(x2|x4)

P(x3|x4)

P(x3|x2)

We are given 3 data 
points: 1011; 1001; 0100
Which one is the target 
distribution?
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Example: Learning Distributions
 Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1
0100  0.1 0101 0.1 0110   0.1 0111  0.1
1000  0   1001  0 1010   0 1011  0
1100  0.05 1101  0.05 1110   0.05 1111  0.05

 What is the likelihood that this table generated the data?
P(T|D) = P(D|T) P(T)/P(D)

 Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)
 P(1011|T)=  0
 P(1001|T)=  0.1
 P(0100|T)=  0.1

 P(Data|Table)=0
51

We are given 3 data 
points: 1011; 1001; 0100
Which one is the target 
distribution?
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Example: Learning Distributions
 Probability Distribution 2:
 What is the likelihood that the data was 

sampled from Distribution 2? 
 Need to define it: 

 P(x4=1)=1/2
 p(x1=1|x4=0)=1/2           p(x1=1|x4=1)=1/2
 p(x2=1|x4=0)=1/3           p(x2=1|x4=1)=1/3
 p(x3=1|x4=0)=1/6           p(x3=1|x4=1)=5/6

 Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)
 P(1011|T)=  p(x4=1)p(x1=1|x4=1)p(x2=0|x4=1)p(x3=1|x4=1)=1/2 1/2 2/3 5/6= 10/72
 P(1001|T)=                                       = 1/2 1/2 2/3 5/6=10/72
 P(0100|T)=                                        =1/2 1/2 2/3 5/6=10/72
 P(Data|Tree)=125/4*36
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Example: Learning Distributions
 Probability Distribution 3:
 What is the likelihood that the data was 

sampled from Distribution 2? 
 Need to define it: 

 P(x4=1)=2/3
 p(x1=1|x4=0)=1/3          p(x1=1|x4=1)=1
 p(x2=1|x4=0)=1 p(x2=1|x4=1)=1/2
 p(x3=1|x2=0)=2/3          p(x3=1|x2=1)=1/6

 Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)
 P(1011|T)=  p(x4=1)p(x1=1|x4=1)p(x2=0|x4=1)p(x3=1|x2=1)=2/3 1 1/2 2/3= 2/9
 P(1001|T)=                                                                    = 1/2 1/2 2/3 1/6=1/36
 P(0100|T)=                                                                    =1/2 1/2 1/3 5/6=5/72
 P(Data|Tree)=10/ 3626
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Distribution 2 is the most likely 
distribution to have produced the data. 
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Example: Summary
 We are now in the same situation we were when we 

decided which of two coins, fair (0.5,0.5) or biased (0.7,0.3) 
generated the data. 

 But, this isn’t the most interesting case. 
 In general, we will not have a small number of possible 

distributions to choose from, but rather a parameterized 
family of distributions.  (analogous to a coin with p Є [0,1] )

 We need a systematic way to search this family of 
distributions.
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Example: Summary
 First, let’s make sure we understand what we are after. 

 We have 3 data points that have been generated 
according to our target distribution:  1011; 1001; 0100

 What is the target distribution ?
 We cannot find THE target distribution.

 What is our goal?  
 As before – we are interested in generalization –
 Given Data (e.g., the above 3 data points), we would like to know 

P(1111) or P(11**), P(***0) etc.

 We could compute it directly from the data, but….
 Assumptions about the distribution are crucial here
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Learning Tree Dependent 
Distributions

 Learning Problem:
 1.  Given data (n tuples) 

assumed to be sampled from   
a tree-dependent distribution

 find the most probable tree 
representation of the 
distribution. 

 2. Given data (n tuples) 
 find the tree representation 

that best approximates the 
distribution (without assuming 
that the data is sampled from 
a tree-dependent 
distribution.)
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Learning Tree Dependent 
Distributions

 Learning Problem:
 1.  Given data (n tuples) 

assumed to be sampled from   
a tree-dependent distribution

 find the most probable tree 
representation of the 
distribution. 

 2. Given data (n tuples) 
 find the tree representation 

that best approximates the 
distribution (without assuming 
that the data is sampled from a 
tree-dependent distribution.)
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The simple minded algorithm for learning a 
tree dependent distribution requires 
(1) for each tree, compute its likelihood

L(T) = P(D|T) = 
=argmaxT ∏{x}

PT (x1, x2, … xn) = 
=argmaxT ∏{x}

PT (xi|Parents(xi))
(2) Find the maximal one
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1. Distance Measure
 To measure how well a probability distribution P is 

approximated by probability distribution T we use here 
the Kullback-Leibler cross entropy measure (KL-
divergence):

 Non negative.
 D(P,T)=0 iff P and T are identical
 Non symmetric. Measures how much P differs from T.
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2. Ranking Dependencies
 Intuitively, the important edges to keep in the tree are 

edges (x---y) for x, y which depend on each other. 
 Given that the distance between the distribution is 

measured using the KL divergence, the corresponding 
measure of dependence is the mutual information 
between x and y, (measuring the information x gives 
about y) 

 which we can estimate with respect to the empirical 
distribution (that is, the given data).
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Learning Tree Dependent 
Distributions

 The algorithm is given m independent measurements from P.
 For each variable x, estimate P(x) (Binary variables – n 

numbers)
 For each pair of variables x, y, estimate P(x,y) (O(n2) numbers)
 For each pair of variables compute  the mutual information
 Build a complete undirected graph with all the variables as 

vertices. 
 Let I(x,y) be the weights of the edge (x,y)
 Build a maximum weighted spanning tree
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Spanning Tree
 Goal: Find a subset of the edges that forms a tree that includes every 

vertex, where the total weight of all the edges in the tree is maximized

 Sort the weights
 Start greedily with the largest one.
 Add the next largest as long as it does not create a loop.
 In case of a loop, discard this weight and move on to the 

next weight.
 This algorithm will create a tree; 
 It is a spanning tree: it touches all the vertices.
 It is not hard to see that this is the maximum weighted 

spanning tree
 The complexity is O(n2 log(n))
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Learning Tree Dependent 
Distributions

 The algorithm is given m independent measurements from P.
 For each variable x, estimate P(x) (Binary variables – n 

numbers)
 For each pair of variables x, y, estimate P(x,y) (O(n2) numbers)
 For each pair of variables compute  the mutual information
 Build a complete undirected graph with all the variables as 

vertices. 
 Let I(x,y) be the weights of the edge (x,y)
 Build a maximum weighted spanning tree
 Transform the resulting undirected tree to a directed tree. 

 Choose a root variable and set the direction of all the edges away from it.

 Place the corresponding conditional probabilities on the edges. 
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Correctness (1)
 Place the corresponding conditional probabilities on the edges. 
 Given a tree t, defining probability distribution T by forcing the 

conditional probabilities along the edges to coincide with those 
computed from a sample taken from P,  gives the best tree 
dependent approximation to P

 Let  T be the tree-dependent distribution according to the fixed 
tree t. 

T(x) = Π T(xi|Parent(xi)) = Π P(xi|π (xi))
 Recall:
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Correctness (1)
 Place the corresponding conditional probabilities on the edges. 
 Given a tree t, defining T by forcing the conditional 

probabilities along the edges to coincide with those computed 
from a sample taken from P, gives the best t-dependent 
approximation to P 

 When is this maximized? 
 That is, how to define T(xi|π(xi))? 
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Correctness (1)
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Correctness (2)
 Let I(x,y) be the weights of the edge (x,y). Maximizing the sum 

of the information gains minimizes the distributional distance.
 We showed that:

 However: 

 This gives:
D(P,T) = -H(x) - ∑1,n I(xi,(xi)) - ∑1,n∑x P(xi) log P(xi)  

 1st and 3rd term do not depend on the tree structure. Since 
the distance is non negative, minimizing it is equivalent to 
maximizing the sum of the edges weights I(x,y) .
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Correctness (2)
 Let I(x,y) be the weights of the edge (x,y). Maximizing the sum 

of the information gains minimizes the distributional distance.
 We showed that the T is the best tree approximation of P if it 

is chosen to maximize the sum of the edges weights.

D(P,T) = -H(x) - ∑1,n I(xi,(xi)) - ∑1,n∑x P(xi) log P(xi)

 The minimization problem is solved without the need to 
exhaustively consider all possible trees. 

 This was achieved since we transformed the problem of 
finding the best tree to that of finding the heaviest one, with 
mutual information on the edges. 
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Correctness (3)
 Transform the resulting undirected tree to a directed tree.

(Choose a root variable and direct of all the edges away from 
it.)
 What does it mean that you get the same distribution regardless of the 

chosen root? (Exercise) 

 This algorithm learns the best tree-dependent approximation of 
a distribution D.

L(T) = P(D|T) = {x} i PT (xi|Parent(xi))  
 Given data, this algorithm finds the tree that maximizes the 

likelihood of the data.
 The algorithm is called the Chow-Liu Algorithm. Suggested in 

1968 in the context of data compression, and adapted by Pearl 
to Bayesian Networks. Invented a couple more times, and 
generalized since then.
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Example: Learning tree Dependent 
Distributions

 We have 3 data points that have been generated according to 
the target distribution:  1011; 1001; 0100

 We need to estimate some parameters:
 P(A=1) = 2/3,   P(B=1)=1/3,    P(C=1)=1/3),      P(D=1)=2/3
 For the values 00, 01, 10, 11 respectively, we have that:
 P(A,B)=0; 1/3; 2/3; 0       P(A,B)/P(A)P(B)=0; 3; 3/2; 0           I(A,B) ~ 9/2
 P(A,C)=1/3; 0; 1/3; 1/3   P(A,C)/P(A)P(C)=3/2; 0; 3/4; 3/2   I(A,C) ~ 15/4
 P(A,D)=1/3; 0; 0; 2/3      P(A,D)/P(A)P(D)=3; 0; 0; 3/2          I(A,D) ~ 9/2 
 P(B,C)=1/3; 1/3; 1/3;0     P(B,C)/P(B)P(C)=3/4; 3/2; 3/2; 0   I(B,C) ~ 15/4
 P(B,D)=0; 2/3; 1/3;0        P(B,D)/P(B)P(D)=0; 3; 3/2; 0           I(B,D) ~ 9/2
 P(C,D)=1/3; 1/3; 0; 1/3    P(C,D)/P(C)P(D)=3/2; 3/4; 0; 3/2  I(C,D) ~ 15/4

 Generate the tree; place probabilities. 
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Learning tree Dependent 
Distributions

 Chow-Liu algorithm finds the tree that  maximizes the likelihood.  
 In particular, if D is a tree dependent distribution, this algorithm 

learns D.  (what does it mean ?)
 Less is known on how many examples are needed in order for it 

to converge.  (what does that mean?)
 Notice that we are taking statistics to estimate the probabilities  

of some event in order to generate the tree. Then, we intend to  
use it to evaluate the probability of other events.

 One may ask the question: why do we need this structure ? Why 
can’t  answer the query directly from the data ? 

 (Almost like making prediction directly from the data in the 
badges problem) 
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