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Administration
 Exam:

 The exam will take place on the originally assigned date, 4/30. 
 Similar to the previous midterm.
 75 minutes; closed books.

 What is covered:
 The focus is on the material covered after the previous mid-term.
 However, notice that the ideas in this class are cumulative!!
 Everything that we present in class and in the homework assignments
 Material that is in the slides but is not discussed in class is not part of 

the material required for the exam.
• Example 1: We talked about Boosting. But not about boosting the 

confidence.
• Example 2: We talked about multiclass classification: OvA, AvA, but not 

Error Correcting codes,  and additional material in the slides.

 We will give a few practice exams.

 Homework: missing and regrades
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Administration
 Projects

 We will have a poster session 4-6pm on May 7
 in the active learning room, 3401 Walnut.

 The hope is that this will be a fun event where all of you have an 
opportunity to see and discuss the projects people have done. 

 All are invited!
 Mandatory for CIS519 students

 The final project report will be due on 5/8
 Logistics: you will send us you posters the a day earlier; we will 

print it and hang it; you will present it.
 If you haven’t done so already:

 Come to my office hours at least once this or next week to discuss 
the project!!
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How many are there ?
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Clustering
 Clustering is a mode of unsupervised learning.
 Given a collection of data points, the goal is to find structure in 

the data:  organize that data into sensible groups.
 We are after a convenient and valid organization of the data, 

not after a rule for separating future data into categories.
 Cluster analysis is the formal study  of algorithms and methods 

for doing that.
 How many are there ?

4
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Clustering
 Clustering is a mode on unsupervised learning.
 Given a collection of data points, the goal is to find structure in 

the data:  organize that data into sensible groups.
 We are after a convenient and valid organization of the data, 

not after a rule for separating future data into categories.
 Cluster analysis is the formal study  of algorithms and methods 

for doing that.
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Clustering
 A cluster is a set of entities which are alike, and entities in different 

clusters are not alike.
 A cluster is an aggregation of points in the test space such that the 

distance between any two points  in the cluster is less than the 
distance between any point in the cluster and any point not in it.

 Clusters may be described as connected regions of a multi-
dimensional space containing a relatively high density of points,     
separated from other  regions by regions containing a low  density 
of points.
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Clustering
 The last definitions assume that the objects to be clustered are 

represented as points in some measurements space.

 “We recognize a cluster when we see it”.

 It is easy to give a functional definition for a cluster, but a lot     
harder to give an operational definition. 

 One reason may be that objects can be clustered into groups with 
a purpose in mind (shape, size, time, resolution,….)

7



CIS419/519 Spring’18            8

Clustering
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Clustering
 Clustering is not a Learning Problem.  It’s an Optimization Problem.   

Given a set of points and a pairwise distance, devise an algorithm f 
that splits the data so that it optimizes some natural conditions. 

 Scale-Invariance. 
 For any distance function d; for any α > 0, we have f(d) = f(α · d).

 Richness. 
 Range(f) is equal to the set of all partitions of S.
 In other words, suppose we are given the names of the points only (i.e. the 

indices in S) but not the distances between them. Richness requires that for 
any desired partition Γ, it should be possible to construct a distance function d 
on S for which f(d) = Γ 

 Consistency. 
 Let d and d’ be two distance functions. If f(d) = Γ, and d’ is a Γ-transformation of d, then 

f(d’) = Γ. In other words, suppose that the clustering Γ arises from the distance 
function d. If we now produce d’ by reducing distances within the clusters and 
enlarging distances between clusters then the same clustering Γ should arise 
from d’.
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Theorem: That is no clustering function 
that maps a set of points into a partition 
of it, that satisfies all three conditions. 
[Klienberg, NIPS 2002] (refinements exist)
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Clustering
 Clustering is not a Learning Problem.  It’s an Optimization Problem.   

Given a set of points and a pairwise distance, devise an algorithm f 
that splits the data so that it optimizes some natural conditions. 

 So, what do we do? 
 Different optimization heuristics that make sense. 

 Clustering can be done under generative model assumptions, or 
without any statistical assumptions

 A key component in clustering is the measurement  space: 
 What is a reasonable distance/similarity measure  ?
 What are the important dimensions of the data ?

 We will discuss:
 Clustering methods Metric Learning methods
 Dimensionality reduction methods

10
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Evaluating Clustering
 How can we evaluate how 

good our clustering is?
 Evaluation by our own criterion
 Comparing to labels 

 Sometimes possible

 Evaluation by an expert
 Evaluation by using clustering 

result for another task (extrinsic 
evaluation)

 Comparing different clustering 
results
 Eg. Likelihood, if we have a 

generative model

11
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The Clustering Problem

 We are given a set of data points x1, x2, … xm in Rn

that we would like to cluster.

 Each data point is assumed to be an n-dimensional 
vector, that we will write as a column vector: 

x= (x1, x2, … xn )T

 We do not make any statistical assumptions on the 
given data, nor on the number of clusters.

12
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Distance Measures

 In studying Clustering techniques we will assume that 
we are  given a matrix of distances between all pairs 
of data points. 

 We can assume that the input to the problem is:
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Distance Measures

 In studying Clustering techniques we will assume that we are  
given a matrix of distances between all pairs of data points.  

 A distance measure (metric) is a function d:Rd x Rd R that 
satisfies:

 For the purpose of clustering, sometimes the distance 
(similarity) is not required to be a metric
 No Triangle Inequality
 No Symmetry
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Examples: 

• Euclidean Distance:

• Manhattan Distance:

• Infinity (Sup) Distance:

• Notice that if d(x,y) is the Euclidean metric, d2(x,y) is not a metric
but can be used as a measure (no triangle inequality)
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Examples: 
• Euclidean Distance:

• Manhattan Distance:

• Infinity (Sup) Distance:  
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Notice that:
• Infinity (Sup) Distance < Euclidean Distance <Manhattan Distance:

• But different distances do not induce same order on pairs of points
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• The clustering may be sensitive to the similarity measure.
• Sometimes this can be avoided by using a distance measure

that is invariant to some of the transformations that are natural to 
the problem.

• Mahalanobis Distance:
where Σ is a symmetric matrix.
Covariance Matrix: Translates all the axes so that they have 
Mean=0 and Variance=1 (Shift and Scale invariance)
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• The clustering may be sensitive to the similarity measure.
• Sometimes this can be avoided by using a distance measure

that is invariant to some of the transformations that are natural to 
the problem.

• Mahalanobis Distance:
where Σ is a symmetric matrix.
Covariance Matrix: Translates all the axes so that they have 
Mean=0 and Variance=1 (Shift and Scale invariance)

• It is possible to get rotation invariance by rotating the axes so 
that they coincide with the  eigenvectors of the covariance matrix.
This is a transformation to the principle components (later).

y)(xy)-(xy)d(x, T −Σ=

Distance Measures
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• Sometimes it is useful to define 
distance between a data point x and a set A of points:

• and distance between sets of points A, B:

• There are many other ways to do it; may depend on the application.
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• Given: a set  x1, x2,…xm of data points, 
a distance function d(x,y) and 
a threshold T 

• Ck will represent clusters, zk their representative
• i index into data points, j index into clusters

process data point i 
(where to place it?)

 Initialize

Do sequentially for all i:
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Basic (Greedy) Algorithms
Problems: Outcome depends on 
the order of the data points both 
in assigning points to a cluster and 
in determining distance of a point 
from a cluster
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• Given a collection of points, one way to define the goal of a 
clustering process is to use the following two measures:

• A measure of similarity within a group of points
• A measure of similarity between different groups

• Ideally, we would like to define these so that:

The within similarity can be maximized
The between similarity can be minimized

at the same time.

• This turns out to be a hard task.

Association-Dissociation 
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Quality Criteria
 Given a set of points 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ; a distance function 𝑑𝑑 𝑥𝑥, 𝑧𝑧
 Split the points into k clusters Cj each with a representative zj Є X. 

 Cluster Scatter: average distance to representative. (minimize) 

 𝐷𝐷𝑗𝑗 = 1
|𝐶𝐶𝑗𝑗|

∑𝑥𝑥𝑖𝑖∈𝐶𝐶𝑗𝑗 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑗𝑗)

 Global Clustering Scatter: 

 𝐷𝐷 = 1
|𝑚𝑚|

∑𝑖𝑖=1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1,𝑘𝑘𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑗𝑗)

 This is the quality of the clustering from the “within” perspective

 Across clusters measure (Spacing): (maximize)
 SC = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑗𝑗=1,𝑘𝑘𝑑𝑑(𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗)
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The distance from xi to its 
representative zr

25

• k: #(clusters); m = #(points) 
• Average distance to representative: 

• Global Clustering Scatter:

• Dj measures the scatter of the jth cluster; we want to minimize it.
• D measures the quality of the clustering; 
• For optimal clustering:
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zr is the closest representative 
for all the points in Cr

The distance from xi to its 
representative zr
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•Given: a set  X = {x1, x2, …xm} of points,  a distance function d(x,y)  
• X is split into k clusters Cj, each with a representative zj 2 X 
• Algorithm:
1. Initialize centers randomly                   round: r=1
2. Cluster x1, x2, …xm w.r.t centers using Nearest Neighbor 

3. Choose new centers: Choose zj to minimize Di .
Compute the global clustering scatter for this round: 

4. Stopping Criterion: Check if

If not, iterate: r = r+1,  go back to 2. 

k21 zzz ,...,

           
)z,d(xargminjCx jijji =⇔∈

T
1)-D(r
D(r)-1)-D(r
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D(r)

K-Means
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•Given: a set  X = {x1, x2, …xm} of points,  a distance function d(x,y)  
• X is split into k clusters Cj, each with a representative zj 2 X 

• Will it converge ? It can be shown that the scatter mean goes down. 
• Note that this is a Hard EM algorithm (see K-Means in the EM lecture)

• We do not know how fast it will converge -- bound # of iterations.

• Why should the center be an element in the set ?
Using the Euclidean Distance, minimizing is achieved by 
computing the average, which need not be a data element.

• What is k ? Can try with different values, and measure the quality of the   
clustering.

K-Means
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Improving K-Means
• The main problem with k-means is the initial conditions --

determining k and the centers. 

• Bad initial conditions may generate unimportant cells and may 
degrade overall performance.

• There are various ways to get around it. 
• Methods for splitting centers:

Start with k=1; for k=i use the centers of k=i-1, or a simple 
function of them.  

• ISODATA: k-means with provisions for 
deleting clusters  (if they are too small)
splitting clusters (if their mean scatter is too large)
Adapting k; stopping criterion
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Limitations
• k-means/ISODATA will work well in cases where all the clusters

behaves similarly statistically. 

• K-means can be shown to be optimal when the distance function
is derived from the probability distribution that generates the data.

• E.g., for a mixture of Normal distribution, the Euclidean metric
yields optimal performance. 

This is the EM algorithms studied earlier.

• These methods are not so effective when the data has some 
internal  structure, especially if different clusters have 
different structures.
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Limitations
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Model Based Methods

• One advantage of K-means is that it is a principled method –
it has a probabilistic interpretation.

This allows a principle investigation of the algorithm; a better 
understanding of what it does, and a way to modify it in a principled way.

Can this be done for other algorithms?
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Agglomerative Clustering

• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster. 
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 

Different definitions of D, for the same d, give rise to radically different 
partitions of the data.
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Examples (I)
• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster.
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 

Single Link Clustering:

DSL(C1,C2) = min{xi ∈Ci} d(x1,x2)

Complete Link Clustering:

DCL(C1,C2) = max{xi ∈Ci} d(x1,x2)
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Examples (II)
• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster.
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 
Ward’s Method: 

D(ward) = ESS(C1 U C2) – ESS(C1) – ESS(C2) 

Where:  ESS(C) = Σ(x-m)2

m – mean of data point in cluster C

Group Average Clustering: 
DGA(C1,C2) = mean{Ci ,Cj} d(x1,x2)
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Model Based Methods

Claim: Common heuristics for agglomerative clustering algorithms are 
Each equivalent to a hierarchical model-based (probabilistic) method.

This interpretation gives a theoretical explanation for the empirical 
behavior of these algorithms, as well as a principled approach to practical
issues: no. of clusters, choice of methods, etc. 

Model based clustering views clustering as the problem of computing the
(approximate) maximum for the classification likelihood of the data X.

The classification likelihood of the data X: 
L(θ1,….,θk ;l1,…,ln  |X) = Πp (xi| θi)

Where: li is the label (cluster id) of the point xi
θi are the model parameters. 

Notice that this is a model of hard clustering. It is also possible to 
model soft clustering, as a mixture model. 
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Model Based Agglomerative Methods

Model based clustering views clustering as the problem of computing the
(approximate) maximum for the classification likelihood of the data X.

Agglomerative approach:

- Start with a partition P of the data in which each sample is in its own 
singleton cluster.

- At each stage, two clusters are chosen from P and merged, forming 
a new partition P’.

- The pair which is merged is the one which gives the highest resulting 
likelihood. (merges typically reduce the likelihood)

- The process is greedy. The best choice at a certain stage need not 
develop into the best strategy. 
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Model Based Agglomerative Methods

Agglomerative approach:
- Start with a partition P of the data in which each sample is in its own 
singleton cluster.

- At each stage, two clusters are chosen from P and merged, forming 
a new partition P’.

- The pair which is merged is the one which gives the highest resulting 
likelihood. (merges typically reduce the likelihood)

- The process is greedy. The best choice at a certain stage need not 
develop into the best strategy. 

At each stage of the algorithm we are choosing new labels; we don’t 
explicitly choose new parameters. Implicitly, it is assumed we have the 
best parameters. The quality of the current labeling: 

J(l1,…,ln |X) = maxΘ L(Θ, l1,…,ln | X)
Relative cost of a merge:

∆J(P.P’) = J(P)/J(P’)
Rather than maximizing J(P’), can maximize the relative cost.
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Model Based Methods

The classification likelihood of the data X:

L(θ1,….,θk ;l1,…,ln  |X) = Πp (xi| θi)

Where: li is the label (cluster id) of the point xi
θi are the model parameters. 

Notice that this is a model of hard clustering. It is also possible to 
model soft clustering, as a mixture model. 
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Model Based Interpretation

Ward’s Method:

- If the probability model is multivariate normal with uniform spherical 
covariance matrix σI, then 

∆J ~  D(ward)

In this case we assume the component density is:
Rather than maximizing J(P’), can maximize the relative cost.

22)( 2/
2

1),|( σ
πσ

ησ ηiix
ii exp −−=
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Model Based Interpretation

Single-Link clustering:

- The corresponding probability model is a mixture of branching random 
walks (BRWs). A BRW is a stochastic process which generates a tree of
data points x as follows: 

- The process starts with a single root x0 in the placed according to some
distribution p0

- Each node in the frontier of the tree produces zero or more children. 
The position of a child is generated according to a multivariate normal
distribution, with variance σI centered around the parent’s location.

Claim: If the probability model is a mixture of BRWs, then:  
∆J ~  D(SL)
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Model Based Methods

• One advantage of K-means is that it is a principled method –
it has a probabilistic interpretation.

This allows a principle investigation of the algorithm; a better 
understanding of what it does, and a way to modified it in a principled way.

Several Heuristics can be given probabilistic interpretation. 
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Importance of a Metric for a Clustering 
Algorithm

d1(x,x’) = [(f1 - f1’) 2+(f2 - f2’) 2]1/2 d2(x,x’) = |f1 – f1’|+|f2-f2’|

(a) Single-Linkage 
with Euclidean

(b) K-Means with 
Euclidean

(c) K-Means with a 
Linear Metric

There is no ‘universal’ distance metric that is good for any 
clustering algorithms and for any problems.

42
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Input to Clustering
 We discussed clustering in the scenario where we are 

given a set of points, and a distance (similarity) metric.
 In this scenario, we can compute the distances among all pairs of 

points.

 Another realistic scenario is where you are given a set of 
distances (similarities).
 May not include all pairs of points

 It is also possible to assume that you have some 
constraints ((a,b) must be/cannot be in the same cluster) 

43
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Graph Theoretic Methods
• Points in an arbitrary feature space are represented as a 

weighted graph  G=(V,E)

• Nodes represent the points in the feature space.
• Edges are drawn between every pair of nodes. The weight of the 

edge w(i,j) is a function of the similarity between nodes i and j.

a    b     c    d    e
a 0    6    8    2    7
b 6    0    2    5    3
c 8    2    0  10    9
d 2    5  10    0    4
e 7    3    9    4    0

a

e

d c

b

w(c,d)

Proximity Matrix:
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Graph Theoretic Methods
• Points in an arbitrary feature space are represented as a 

weighted graph  G=(V,E)

• We seek a partition of the set of       vertices into disjoint sets
where:  some measure of the similarity 

among the vertices in each     is high , and 
across sets           is low. 

(Notice that we assume a similarity measure, but it need not be metric)

k21 V,...,V,V
iV

ji V,V

V

a    b     c    d    e
a 0    6    8    2    7
b 6    0    2    5    3
c 8    2    0  10    9
d 2    5  10    0    4
e 7    3    9    4    0

a

e

d c

b

w(c,d)
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Graph Theoretic Methods
• What is the precise criterion for a good partition ?

• How can such a partition be computed efficiently ?  

• General Method:  Decompose the graph into connected component
by identifying and deleting inconsistent (“bad”) edges.

Algorithm:
• Construct the Maximum Spanning Tree (recall: we work with similarity)
• Identify  inconsistent edges in the MST
• Remove the inconsistent edges to form connected components

and call them clusters.
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Graph Theoretic Methods
• Algorithm:
• Construct the Maximum Spanning Tree
• Identify  inconsistent edges in the MST
• Remove the inconsistent edges to form connected components

and call them clusters.

What are inconsistent edges ?
- Use a threshold  (delete the light edges)
- Delete an edge if its weight is significantly lower than that of

nearby edges. 

Notice: in any case -- methods are local and thus not very different from 
the distance-based methods used before.  
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Example: Hierarchical Clustering
• Hierarchical clustering is a nested sequence of partitions
• Agglomerative: 

Places each object in its own cluster and gradually merge the 
atomic clusters into larger and larger clusters.

• Divisive: Start with all objects in one cluster and subdivide 
into smaller clusters. 

{(a) ,(b),(c),(d),(e)}
{(a,b),(c),(d),(e)}
{(a,b),(c,d),(e)}
{(a,b,c,d),(e)}
{(a,b,c,d,e)}

a b c d e
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Example: Hierarchical Clustering

a    b     c    d    e
a 0    3    8    2    7
b 3    0    1    5    4
c 8    1    0  10    9
d 2    5  10    0    4
e 7    4    9    4    0

• Form a Threshold Graph G(k): (i,j) ∈G(k) iff k ≥ d(i,j)
• If less clusters then before: 

- Name each connected component of G(k) a cluster    or
- Name each clique of G(k) a cluster
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Example: Hierarchical Clustering

a    b     c    d    e
a 0    3    8    2    7
b 3    0    1    5    4
c 8    1    0  10    9
d 2    5  10    0    4
e 7    4    9    4    0

b c a d e

• Form a Threshold Graph G(k): (i,j) ∈G(k) iff k ≥ d(i,j)

b c

G(1)

cb

a d
G(2)

a d
G(3)

cb

a d

cb

G(4)

• If less clusters then before:      
- Name each connected component of G(k) a cluster or        
- Name each clique of G(k) a cluster



CIS419/519 Spring’18            51

Clustering
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Global Algorithms
• MST and neighborhood approaches are very efficient but are

based on local properties of the graph.
• In many applications (e.g., image segmentation) we need a 

partition criterion that depends on global properties.

• How  to partition the graph G(V,E) into the “natural” 
disjoint sets A,B? 

• Try to define a global degree of similarity 

between parts of the graph.
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Cut Algorithms
• MST and neighborhood approaches are very efficient but are

based on local properties of the graph.
• In many applications (e.g., image segmentation) we need a 

partition criterion that depends on global properties.

• A Graph G(V,E) can be partitioned into two disjoint sets A,B.
• The degree of similarity between the two parts:

• The optimal bi-partition of G is one that minimizes the cut value.

• There exist efficient algorithms for computing the minimal cut.

∑
∈∈

=
BvA,u

v)w(u, B)cut(A,
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• Cut algorithms can be extended to k-partitions by recursively
finding the minimal cuts that bisects the existing groups.

∑
∈∈

=
BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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∑
∈∈

=
BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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∑
∈∈

=
BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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∑
∈∈

=
BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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• Minimal cut favors cutting small sets of isolated nodes in the
graph G(V,E)

The cut value increases with the number of edges going across
the partitions. (The drawn partition assumes that distances are
inversely proportional to the similarity).

Improvement:  Normalization -

measures the total connection from the nodes in A to the graph V.

∑
∈∈

=
BvA,u

v)w(u, B)cut(A,

Cut Algorithms

∑
∈∈

=
VvA,u

v)w(u, V)asso(A,
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• The normalized measure would be:

This is a measure of dissociation between clusters in the graph

V)asso(B,
B)cut(A,

V)asso(A,
B)cut(A, B)Ncut(A, +=

Cut Algorithms
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• The normalized measure would be:

This is a measure of dissociation between clusters in the graph

We can also define the normalized association within clusters:

Let                      be as before (total weights edges with A)

V)asso(B,
B)cut(A,

V)asso(A,
B)cut(A, B)Ncut(A, +=

A)asso(A,

V)asso(B,
B)asso(B,

V)asso(A,
A)asso(A, B)Nasso(A, +=

Cut Algorithms
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• We have two measures:
The disassociation measure

which we want to minimize.
and a measure of association within clusters:

which reflects how tightly, on average, nodes within the groups are 
connected to each other and we want to maximize.

V)asso(B,
B)cut(A,

V)asso(A,
B)cut(A, B)Ncut(A, +=

V)asso(B,
B)asso(B,

V)asso(A,
A)asso(A, B)Nasso(A, +=

Cut Algorithms
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• The disassociation measure (want to minimize)

                   

B)Nasso(A,2)
V)asso(B,
B)asso(B,

V)asso(A,
A)asso(A,(-2                   

V)asso(B,
B)asso(B,-V)asso(B,

V)asso(A,
A)asso(A,-V)asso(A,                   

V)asso(B,
B)cut(A,

V)asso(A,
B)cut(A, B)Ncut(A,

−=+

=+

=+=

Within cluster association measure  (want to maximize).

Cut Algorithms
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• The two partition criteria that we seek:
minimizing the disassociation measure and  
maximizing the within cluster association measure

are related and can be satisfied simultaneously.

• How to compute it efficiently: 
The problem of Normalized Cut is NP hard.
Approximation algorithms are based on 
Spectral Methods - solving an eigenvalue problem

Normalized Cut Algorithms
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Clustering: Summary
• The problem of partitioning a set of point into k groups is ill defined. 
• Determining the features space and the similarity measure may be  

application dependent and are crucial in many cases.

• Standard approaches: 
k-means; agglomerative methods 

• Graph Theoretic methods: 
• MST algorithms
• Cut algorithm
• Normalized Cut/Spectral Methods
• Key questions in current research:

• Scalability; Metric Learning
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Importance of a Metric for a Clustering 
Algorithm

d1(x,x’) = [(f1 - f1’) 2+(f2 - f2’) 2]1/2 d2(x,x’) = |(f1+ f2)-(f1’+f2’)|

(a) Single-Linkage with 
Euclidean

(b) K-Means with 
Euclidean

(c) K-Means with a Linear 
Metric

There is no ‘universal’ distance metric good for any 
clustering algorithms and for any problems.

65
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Traditional Clustering

 Unsupervised, without learning.
 Metric learning and supervision: (Mooney etc. 03, 04, Xing etc. 03, Schultz & 

Joachims 03, Bach & Jordan03) Li & Roth’05 

A partition function

h(S) = Ad(S)

unlabeled data 
set S

partition h(S)

distance
metric d

clustering 
algorithm A+

K-means
X = {x1,x2,…}, C = {c1,c2,…,ck}

Euclidean Distance:
d(x, x’) = [(x- x’)T(x- x’)]1/2

66
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K=4

Supervision in Clustering
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Supervision in Clustering

68
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labeled data set S

supervised
learner

Training Stage:

Goal: h*=argmin errS(h,p)

distance
metric d

clustering 
algorithm A+

unlabeled data 
set S’

partition h(S’)

Application Stage: 
h(S’ )

A partition function

h(S) = Ad(S)

Supervised Discriminative Clustering (SDC)
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Learning partitioning function h by learning 
metric d

Supervised Metric Learning:
 Given a data set S,
 a fixed clustering algorithm A 
 supervision p(S) = {(xi,ci)}1

m , 

the training process tries to find d*, minimizing the clustering 
error:

d*= argmind errS(h,p),   where h(S)=Ad(S).

70
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Clustering Error

Supervised Metric Learning: Given a data set S and a 
fixed clustering algorithm A and supervision p(S) = 
{(xi,ci)}1

m , the training process is to find d*,
minimizing the clustering error:

d*= argmind errS(h,p),   where h(S)=Ad(S).Mean of P
Mean of h

71
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Algorithm

Supervised Metric Learning: Given a data set S and a 
fixed clustering algorithm A and supervision p(S) = 
{(xi,ci)}1

m , the training process is to find d*,
minimizing the clustering error:

d*= argmind errS(h,p),   where h(S)=Ad(S).Mean of P
Mean of h

72

How to parameterize the 
distance function
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