
CIS419/519 Spring ’18

CIS 519/419
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton
for CIS519/419 at Penn, or from other authors who have made their ML slides available.

http://www.cis.upenn.edu/%7Edanroth/

CIS419/519 Spring ’18

Administration
 Registration
 Hw1 is due next week

 You should have started working on it already…

 Hw2 will be out next week
 No lecture on Tuesday next Week (2/6)!!

2

Questions

CIS419/519 Spring ’18

Projects
 CIS 519 students need to do a team project

 Teams will be of size 2-3
 Projects proposals are due on Friday 3/2/18

 Details will be available on the website
 We will give comments and/or requests to modify / augment/ do a

different project.
 There may also be a mechanism for peer comments.

 Please start thinking and working on the project now.
 Your proposal is limited to 1-2 pages, but needs to include references

and, ideally, some preliminary results/ideas.
 Any project with a significant Machine Learning component is good.

 Experimental work, theoretical work, a combination of both or a critical
survey of results in some specialized topic.

 The work has to include some reading of the literature .
 Originality is not mandatory but is encouraged.

 Try to make it interesting!

3

CIS419/519 Spring ’18

Project Examples
 KDD Cup 2013:

 "Author-Paper Identification": given an author and a small set of papers, we
are asked to identify which papers are really written by the author.
 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author:
identification, gender, native language, ….

 Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

 Work on making learned hypothesis more comprehensible
 Explain the prediction

 Develop a (multi-modal) People Identifier
 Identify contradictions in news stories
 Large scale clustering of documents + name the cluster

 E.g., cluster news documents and give a title to the document
 Deep Neural Networks: convert a state of the art NLP program to a NN

4

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

CIS419/519 Spring ’18

This Lecture
 Decision trees for (binary) classification

 Non-linear classifiers

 Learning decision trees (ID3 algorithm)
 Greedy heuristic (based on information gain)

Originally developed for discrete features
 Some extensions to the basic algorithm

 Overfitting
 Some experimental issues

5

CIS419/519 Spring ’18

A Guide
 Learning Algorithms

 (Stochastic) Gradient Descent (with LMS)
 Decision Trees

 Importance of hypothesis space (representation)
 How are we doing?

 Quantification in terms of cumulative # of mistakes
 Our algorithms were driven by a different metric than the one we care about.

 Today: Versions of Perceptron
 How to deal better with large features spaces & sparsity?
 Variations of Perceptron

 Dealing with overfitting

 Closing the loop: Back to Gradient Descent
 Dual Representations & Kernels

 Multilayer Perceptron
 Beyond Binary Classification?

 Multi-class classification and Structured Prediction

 More general way to quantify learning performance (PAC)
 New Algorithms (SVM, Boosting)

6

Today:
Take a more general
perspective and think
more about learning,
learning protocols,
quantifying performance,
etc.
This will motivate some of
the ideas we will see next.

CIS419/519 Spring ’18

Quantifying Performance
 We want to be able to say something rigorous about the

performance of our learning algorithm.

 We will concentrate on discussing the number of
examples one needs to see before we can say that our
learned hypothesis is good.

7

CIS419/519 Spring ’18

Learning Conjunctions
 There is a hidden (monotone) conjunction the learner

(you) is to learn
f(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

 How many examples are needed to learn it ? How ?
 Protocol I: The learner proposes instances as queries to the

teacher
 Protocol II: The teacher (who knows f) provides training examples
 Protocol III: Some random source (e.g., Nature) provides training

examples; the Teacher (Nature) provides the labels (f(x))

8

CIS419/519 Spring ’18

Learning Conjunctions (I)
 Protocol I: The learner proposes instances as queries to

the teacher
 Since we know we are after a monotone conjunction:
 Is x100 in? <(1,1,1…,1,0), ?> f(x)=0 (conclusion: Yes)
 Is x99 in? <(1,1,…1,0,1), ?> f(x)=1 (conclusion: No)
 Is x1 in ? <(0,1,…1,1,1), ?> f(x)=1 (conclusion: No)

 A straight forward algorithm requires n=100 queries, and
will produce as a result the hidden conjunction (exactly).
 h(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

9

What happens here if the conjunction
is not known to be monotone?
If we know of a positive example,
the same algorithm works.

CIS419/519 Spring ’18

Learning Conjunctions(II)
 Protocol II: The teacher (who knows f) provides training

examples

10

CIS419/519 Spring ’18

Learning Conjunctions (II)
 Protocol II: The teacher (who knows f) provides training

examples
 <(0,1,1,1,1,0,…,0,1), 1>

11

CIS419/519 Spring ’18

Learning Conjunctions (II)
 Protocol II: The teacher (who knows f) provides training

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

12

CIS419/519 Spring ’18

Learning Conjunctions (II)
 Protocol II: The teacher (who knows f) provides training

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

 To show you that all these variables are required…

13

CIS419/519 Spring ’18

Learning Conjunctions (II)
 Protocol II: The teacher (who knows f) provides training

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

 To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0> need x2

 <(0,1,0,1,1,0,…,0,1), 0> need x3

 …..
 <(0,1,1,1,1,0,…,0,0), 0> need x100

 A straight forward algorithm requires k = 6 examples to
produce the hidden conjunction (exactly).

h(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

14

Modeling Teaching
Is tricky

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0>
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,1,0,...0,1,1), 0>
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>
 <(1,1,1,1,1,1,…,0,1), 1>
 <(0,1,0,1,0,0,...0,1,1), 0>

 How should we learn?
 Skip

15

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example

16

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example

17

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0>

18

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing: h= x1 ˄ x2 ,…,˄ x100

 <(1,1,1,1,1,0,...0,1,1), 1>

19

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing: h= x1 ˄ x2 ,…,˄ x100

 <(1,1,1,1,1,0,...0,1,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100

20

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100

 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>

21

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100

 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

22

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

 <(1,0,1,0,0,0,...0,1,1), 0>
 <(1,1,1,1,1,1,…,0,1), 1>
 <(0,1,0,1,0,0,...0,1,1), 0>

23

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions(III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: Elimination
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0> learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0> learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0> Final hypothesis:
 <(1,1,1,1,1,1,…,0,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

 <(0,1,0,1,0,0,...0,1,1), 0>
24

• Is it good
• Performance ?
• # of examples ?

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III: Some random source (e.g., Nature) provides

training examples
 Teacher (Nature) provides the labels (f(x))

 Algorithm: …….
 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0>
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0> Final hypothesis:
 <(1,1,1,1,1,1,…,0,1), 1> h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

 <(0,1,0,1,0,0,...0,1,1), 0>
 <(0,1,0,1,0,0,...0,1,1), 0>

• Is it good
• Performance ?
• # of examples ?

 With the given data, we only learned an
“approximation” to the true concept

 We don’t know how many examples we
need to see to learn exactly. (do we care?)

 But we know that we can make a limited #
of mistakes.

f= x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

25

CIS419/519 Spring ’18

Two Directions
 Can continue to analyze the probabilistic intuition:

 Never saw x1=0 in positive examples, maybe we’ll never see it?
 And if we will, it will be with small probability, so the concepts we

learn may be pretty good
 Good: in terms of performance on future data
 PAC framework

 Mistake Driven Learning algorithms/On line algorithms
 Now, we can only reason about #(mistakes), not #(examples)

 any relations?
 Update your hypothesis only when you make mistakes

 Not all on-line algorithms are mistake driven, so performance
measure could be different.

26

CIS419/519 Spring ’18

On-Line Learning
 New learning algorithms

(all learn a linear function over the feature space)
 Perceptron (+ many variations)
 General Gradient Descent view

 Issues:
 Importance of Representation
 Complexity of Learning
 Idea of Kernel Based Methods
 More about features

27

CIS419/519 Spring ’18

Generic Mistake Bound Algorithms

 Is it clear that we can bound the number of mistakes ?
 Let C be a finite concept class. Learn f 2 C
 CON:

 In the ith stage of the algorithm:
 Ci all concepts in C consistent with all i-1 previously seen examples
 Choose randomly f 2 Ci and use to predict the next example
 Clearly, Ci+1 µ Ci and, if a mistake is made on the ith example,

then |Ci+1| < |Ci| so progress is made.

 The CON algorithm makes at most |C|-1 mistakes
 Can we do better ?

28

CIS419/519 Spring ’18

The Halving Algorithm
 Let C be a concept class. Learn f 2 C
 Algorithm:
 In the ith stage of the algorithm:

 Ci all concepts in C consistent with all i-1 previously seen examples

 Given an example et consider the value fj (et) for all fj 2 Ci
and predict by majority.

 Predict 1 iff
|{𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖; 𝑓𝑓𝑗𝑗 (𝑒𝑒𝑖𝑖) = 0}| < |{𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖; 𝑓𝑓𝑗𝑗 (𝑒𝑒𝑖𝑖) = 1}|

 Clearly 𝐶𝐶𝑖𝑖+1 ⊆ 𝐶𝐶𝑖𝑖 and if a mistake is made in the ith
example, then 𝐶𝐶𝑖𝑖+1 < 1/2 |𝐶𝐶𝑖𝑖|

 The Halving algorithm makes at most log(|C|) mistakes
 Of course, this is a theoretical algorithm; can this ne achieved with an

efficient algorithm?

29

CIS419/519 Spring ’18

Administration
 Hw1 is done

 Recall that this is an Applied Machine Learning class.
 We are not asking you to simply give us back what you’ve seen in class.
 The HW will try to simulate challenges you might face when you want

to apply ML.
 Allow you to experience various ML scenarios and make observations

that are best experienced when you play with it yourself.

 Hw2 will be out tomorrow
 Please start to work on it early.
 This way, you will have a chance to ask questions in time.
 Come to the recitations and to office hours.
 Be organized – you will run a lot of experiments, but a good script can

do a lot of the work.

 Recitations
30

Questions?

CIS419/519 Spring ’18

Projects
 CIS 519 students need to do a team project

 Teams will be of size 2-3
 Projects proposals are due on Friday 3/2/18

 Details will be available on the website
 We will give comments and/or requests to modify / augment/ do a

different project.
 There may also be a mechanism for peer comments.

 Please start thinking and working on the project now.
 Your proposal is limited to 1-2 pages, but needs to include references

and, ideally, some preliminary results/ideas.
 Any project with a significant Machine Learning component is good.

 Experimental work, theoretical work, a combination of both or a critical
survey of results in some specialized topic.

 The work has to include some reading of the literature .
 Originality is not mandatory but is encouraged.

 Try to make it interesting!

31

CIS419/519 Spring ’18

Learning Conjunctions
 There is a hidden conjunctions the learner is to learn

f(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100

 The number of (all; not monotone) conjunctions: 3𝑛𝑛

 log(|C|) = n
 The elimination algorithm makes n mistakes

 Learn …..

 k-conjunctions:
 Assume that only k<<n attributes occur in the disjunction

 The number of k-conjunctions: 𝑛𝑛
𝑘𝑘 2𝑘𝑘

 log(|C|) = klog n
 Can we learn efficiently with this number of mistakes ?

32

Can this bound be
achieved?

Can mistakes be
bounded in the non-
finite case?

Last time:
• Talked about various learning protocols & on algorithms for conjunctions.
• Discussed the performance of the algorithms in terms of bounding the

number of mistakes that algorithm makes.
• Gave a “theoretical” algorithm with log|C| mistakes.

CIS419/519 Spring ’18

Representation
 Assume that you want to learn conjunctions. Should your hypothesis

space be the class of conjunctions?
 Theorem: Given a sample on n attributes that is consistent with a conjunctive

concept, it is NP-hard to find a pure conjunctive hypothesis that is both consistent
with the sample and has the minimum number of attributes.

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”]

 Same holds for Disjunctions.
 Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples so that learning
the best (dis/conj)junction implies a minimal cover.

 Consequently, we cannot learn the concept efficiently as a
(dis/con)junction.

 But, we will see that we can do that, if we are willing to learn the
concept as a Linear Threshold function.

 In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

33

So, there is a tradeoff!
(recall your DT results)

CIS419/519 Spring ’18

Linear Threshold Functions

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }
 Many functions are Linear

 Conjunctions:
 y = x1 ˄ x3 ˄ x5

 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 3}; w = (1, 0, 1, 0, 1) θ=3

 At least m of n:
 y = at least 2 of {x1 ,x3, x5 }
 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 2} }; w = (1, 0, 1, 0, 1) θ=2

 Many functions are not
 Xor: y = (x1 ˄ x2) ˅(¬𝑥𝑥1 ˄ ¬ x2)
 Non trivial DNF: y = (x1 ˄ x2) ˅ (x3 ˄ x4)

 But can be made linear
 Note: all the variables above are Boolean variables

34

Probabilistic Classifiers as well

CIS419/519 Spring ’18 35

wT x = 0

- --- -
-
-- - - -

- -
-

-

wT x = θ

w

CIS419/519 Spring ’18

Canonical Representation
f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }

 Note: sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn {𝑤𝑤′𝑇𝑇 � 𝑥𝑥′}
 Where:

 x’ = (x, -1) and w’ = (w, θ)
 Moved from an n dimensional representation to an (n+1) dimensional

representation, but now can look for hyperplanes that go through the origin.
 Basically, that means that we learn both w and θ

36

0x

1x
0x

1x

θ 𝑤𝑤′𝑇𝑇 � 𝑥𝑥’ = 0
𝑤𝑤𝑇𝑇 � 𝑥𝑥 = θ

CIS419/519 Spring ’18

Perceptron learning rule
 On-line, mistake driven algorithm.
 Rosenblatt (1959) suggested that when a target output

value is provided for a single neuron with fixed input, it
can incrementally change weights and learn to produce
the output using the Perceptron learning rule

 (Perceptron == Linear Threshold Unit)

37

1
2

6

3
4
5

7

6w

1w

∑
T

y

1x

6x

CIS419/519 Spring ’18

Perceptron learning rule

 We learn f:X→{-1,+1} represented as f =sgn{wT•x)
 Where X= {0,1}n or X= Rn and w∈ Rn

 Given Labeled examples: {(x1, y1), (x2, y2),…(xm, ym)}

38

1. Initialize w=0∈

2. Cycle through all examples [multiple times]

a. Predict the label of instance x to be y’ = sgn{wT•x)

b. If y’≠y, update the weight vector:

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

nR

CIS419/519 Spring ’18

Perceptron in action

39

wTx = 0
Current
decision

boundary
w

Current weight
vector

x (with y = +1)
next item to be

classified
x as a vector

x as a vector added to
w

wTx = 0
New

decision
boundary

w
New weight

vector

(Figures from Bishop 2006)
Positive
Negative

CIS419/519 Spring ’18

Perceptron in action

40

wTx = 0
Current
decision

boundary

w
Current weight

vector

x (with y = +1)
next item to be

classified
x as a vector

x as a vector added to
w

wTx = 0
New

decision
boundary

w
New weight

vector

(Figures from Bishop 2006)
Positive
Negative

CIS419/519 Spring ’18

Perceptron learning rule
 If x is Boolean, only weights of active features are updated
 Why is this important?

 𝑤𝑤𝑇𝑇𝑥𝑥 > 0 is equivalent to: 𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 = 1
1+𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

> 1
2

41

1. Initialize w=0∈

2. Cycle through all examples

a. Predict the label of instance x to be y’ = sgn{wT•x)

b. If y’≠y, update the weight vector to

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

nR

CIS419/519 Spring ’18

Perceptron Learnability
 Obviously can’t learn what it can’t represent (???)

 Only linearly separable functions
 Minsky and Papert (1969) wrote an influential book

demonstrating Perceptron’s representational limitations
 Parity functions can’t be learned (XOR)
 In vision, if patterns are represented with local features, can’t

represent symmetry, connectivity
 Research on Neural Networks stopped for years

 Rosenblatt himself (1959) asked,

• “What pattern recognition problems can be transformed so as to
become linearly separable?”

 Perceptron

42

CIS419/519 Spring ’18 43

(x1 Λ x2) v (x3 Λ x4) y1 Λ y2

CIS419/519 Spring ’18

Perceptron Convergence
 Perceptron Convergence Theorem:
 If there exist a set of weights that are consistent with the

data (i.e., the data is linearly separable), the perceptron
learning algorithm will converge
 How long would it take to converge ?

 Perceptron Cycling Theorem:
 If the training data is not linearly separable the perceptron

learning algorithm will eventually repeat the same set of
weights and therefore enter an infinite loop.
 How to provide robustness, more expressivity ?

44

CIS419/519 Spring ’18

Perceptron

45

Just to make sure we understand
that we learn both w and µ

CIS419/519 Spring ’18

Perceptron: Mistake Bound Theorem

 Maintains a weight vector w∈RN, w0=(0,…,0).
 Upon receiving an example x ∈ RN

 Predicts according to the linear threshold function wT•x ≥ 0.

 Theorem [Novikoff,1963] Let (x1; y1),…,: (xt; yt), be a
sequence of labeled examples with xi ∈< N, ||xi||≤R and yi ∈{-
1,1} for all i. Let u∈ < N, γ > 0 be such that, ||u|| = 1 and
yi uT • xi ≥ γ for all i.

Then Perceptron makes at most R2 / γ 2 mistakes on this
example sequence.

(see additional notes)

46

Complexity Parameter

CIS419/519 Spring ’18

Perceptron-Mistake Bound
Proof: Let vk be the hypothesis before the k-th mistake. Assume
that the k-th mistake occurs on the input example (xi, yi).

Assumptions
v1 = 0
||u|| = 1
yi uT • xi ≥ γ

k < R2 / γ 2

1. Note that the bound does not
depend on the dimensionality
nor on the number of examples.

2. Note that we place weight vectors
and examples in the same space.

3. Interpretation of the theorem

47

CIS419/519 Spring ’18

Robustness to Noise
 In the case of non-separable data , the extent to which a data point

fails to have margin ϒ via the hyperplane w can be quantified by a
slack variable

ξi= max(0, ϒ − yi wTxi).
 Observe that when ξi = 0, the example xi has margin at least ϒ.

Otherwise, it grows linearly with − yi wT xi

 Denote: D2 = [∑ {ξi
2}]1/2

 Theorem: The perceptron is
guaranteed to make no more than
((R+D2)/ϒ)2 mistakes on any sequence

of examples satisfying ||xi||2<R

 Perceptron is expected to
have some robustness to noise.

48

- --- -
-
-- - - -

- -
-

-

CIS419/519 Spring ’18

Perceptron for Boolean Functions

 How many mistakes will the Perceptron algorithms make
when learning a k-disjunction?

 Try to figure out the bound
 Find a sequence of examples that will cause Perceptron to

make O(n) mistakes on k-disjunction on n attributes.
 (Where is n coming from?)
 Recall that halving suggested the possibility of a better

bound – klog(n).

 This can be achieved by Winnow
 A multiplicative update algorithm [Littlestone’88]
 See HW2

49

CIS419/519 Spring ’18

Practical Issues and Extensions
 There are many extensions that can be made to these basic algorithms.
 Some are necessary for them to perform well

 Regularization (next; will be motivated in the next section, COLT)
 Some are for ease of use and tuning

 Converting the output of a Perceptron/Winnow to a conditional probability

𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 =
1

1 + 𝑒𝑒−𝐴𝐴𝑤𝑤𝑇𝑇𝑥𝑥

 The parameter A can be tuned on a development set
 Multiclass classification (later)
 Key efficiency issue: Infinite attribute domain

 Sparse representation on the input

50

CIS419/519 Spring ’18

Regularization Via Averaged Perceptron

 An Averaged Perceptron Algorithm is motivated by the following considerations:
 In real life, we want more guarantees from our learning algorithm
 In the mistake bound model:

 We don’t know when we will make the mistakes.

 Every Mistake-Bound Algorithm can be converted efficiently to a PAC algorithm – to
yield global guarantees on performance.

 In the PAC model:
 Dependence is on number of examples seen and not number of mistakes.
 Being consistent with more examples is better
 Which hypothesis will you choose…??

 To convert a given Mistake Bound algorithm (into a global guarantee algorithm):

 Wait for a long stretch w/o mistakes (there must be one)
 Use the hypothesis at the end of this stretch.
 Its PAC behavior is relative to the length of the stretch.

 Averaged Perceptron returns a weighted average of a number of earlier
hypotheses; the weights are a function of the length of no-mistakes
stretch.

52

CIS419/519 Spring ’18

Regularization Via Averaged Perceptron

 Training:
[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi]
 Input: a labeled training set {(x1, y1),…(xm, ym)}
 Number of epochs T
 Output: a list of weighted perceptrons {(v1, c1),…,(vk, ck)}

 Initialize: k=0; v1 = 0, c1 = 0
 Repeat T times:

 For i =1,…m:
 Compute prediction y’ = sgn(𝑣𝑣𝑘𝑘𝑇𝑇 xi)
 If y’ = y, then ck = ck + 1

else: vk+1 = vk + yi x ; ck+1 = 1; k = k+1
 Prediction:
 Given: a list of weighted perceptrons {(v1, c1),…(vk, ck)} ; a new example x

Predict the label(x) as follows:
y(x)= sgn [∑1, k ci (𝑣𝑣𝑖𝑖𝑇𝑇 x)]

53

• This can be done on top of any
online mistake driven algorithm.

• In HW two you will run it over
three different algorithms.

Averaged version of Perceptron
/Winnow is as good as any other linear
learning algorithm, if not better.

CIS419/519 Spring ’18

Perceptron with Margin
 Thick Separator (aka as Perceptron with Margin)

(Applies both for Perceptron and Winnow)

 Promote if:
 wT x - θ < γ

 Demote if:
 wT x - θ > γ

54

wT x = 0

- --- -
-
-- - - -

- -
-

-

wT x = θ

Note: γ is a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karov et. al 97)

CIS419/519 Spring ’18

Other Extensions
 Assume you made a mistake on example x.
 You then see example x again; will you make a mistake on it?
 Threshold relative updating (Aggressive Perceptron)
 w w + rx

 𝑟𝑟 = 𝜃𝜃−𝑤𝑤𝑇𝑇𝑥𝑥
| 𝑥𝑥 |2

 Equivalent to updating
on the same example
multiple times

55

CIS419/519 Spring ’18

LBJava
 Several of these extensions (and a couple more) are implemented in

the LBJava learning architecture that supports several linear update
rules (Winnow, Perceptron, naïve Bayes)

 Supports
 Regularization(averaged Winnow/Perceptron; Thick Separator)
 Conversion to probabilities
 Automatic parameter tuning
 True multi-class classification
 Feature Extraction and Pruning
 Variable size examples
 Good support for large scale domains in terms of number of examples and number

of features.
 Very efficient
 Many other options

 [Download from: http://cogcomp.org/page/software/]

56

CIS419/519 Spring ’18

The loss Q: a function
of x, w and y

General Stochastic Gradient Algorithms

 Given examples {z=(x,y)}1, m from a distribution over XxY, we are trying
to learn a linear function, parameterized by a weight vector w, so that
we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ∑1, m Q(zi, wi)

 In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

Where gt = gw Q(zt, wt) is the gradient with respect to w at time t.

 The difference between algorithms now amounts to choosing a
different loss function Q(z, w)

57

CIS419/519 Spring ’18

General Stochastic Gradient Algorithms

wt+1 = wt – rt gw Q(xt, yt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – wT x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – 𝑤𝑤𝑡𝑡𝑇𝑇 xt) xt

Here, even though we make binary predictions based on sgn (wT x) we
do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y wT x)

This leads to the perceptron update rule:

If yi 𝑤𝑤𝑖𝑖𝑇𝑇∙ xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

58

wT x

The loss Q: a function of x, w and yLearning rate gradient

Here g = -yx
Good to think about the

case of Boolean examples

CIS419/519 Spring ’18

New Stochastic Gradient Algorithms
wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change.
AdaGrad alters the update to adapt based on historical information

Frequently occurring features in the gradients get small learning rates
and infrequent features get higher ones.
The idea is to “learn slowly” from frequent features but “pay attention”
to rare but informative features.

Define a “per feature” learning rate for the feature j, as:
rt,j = r/(Gt,j)1/2

where Gt,j = ∑k=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagrad is:

wt+1,j = wt,j - gt,j r/(Gt,j)1/2

This algorithm is supposed to update weights faster than Perceptron
or LMS when needed.

59

Easy to think about
the case of

Perceptron, and on
Boolean examples.

CIS419/519 Spring ’18

Regularization
 The more general formalism adds a regularization

term to the risk function, and minimize:
J(w) = ∑1, m Q(zi, wi) + λ Ri (wi)

 Where R is used to enforce “simplicity” of the learned functions.

 LMS case: Q((x, y), w) =(y – wT x)2

 R(w) = ||w||2
2 gives the optimization problem called Ridge Regression.

 R(w) = ||w||1 gives a problem called the LASSO problem

 Hinge Loss case: Q((x, y), w) = max(0, 1 - y wT x)
 R(w) = ||w||2

2 gives the problem called Support Vector Machines

 Logistics Loss case: Q((x,y),w) = log (1+exp{-y wT x})
 R(w) = ||w||2

2 gives the problem called Logistics Regression

 These are convex optimization problems and, in principle, the same gradient
descent mechanism can be used in all cases.

 We will see later why it makes sense to use the “size” of w as a way to control
“simplicity”.

60

CIS419/519 Spring ’18

Algorithmic Approaches
 Focus: Two families of algorithms (one of the on-line

representative)
 Additive update algorithms: Perceptron

 SVM is a close relative of Perceptron
 Multiplicative update algorithms: Winnow

 Close relatives: Boosting, Max entropy/Logistic Regression

61

CIS419/519 Spring ’18

Which algorithm is better?
How to Compare?

 Generalization
 Since we deal with linear learning algorithms, we know (???) that

they will all converge eventually to a perfect representation.
 All can represent the data

 So, how do we compare:
1. How many examples are needed to get to a given level of accuracy?
2. Efficiency: How long does it take to learn a hypothesis and evaluate

it (per-example)?
3. Robustness (to noise);
4. Adaptation to a new domain, ….

 With (1) being the most fundamental question:
 Compare as a function of what?

 One key issue is the characteristics of the data

62

CIS419/519 Spring ’18

Sentence Representation
S= I don’t know whether to laugh or cry

 Define a set of features:
 features are relations that hold in the sentence

 Map a sentence to its feature-based representation
 The feature-based representation will give some of the

information in the sentence

 Use this feature-based representation as an example to
your algorithm

63

CIS419/519 Spring ’18

Sentence Representation
S= I don’t know whether to laugh or cry

 Define a set of features:
 features are properties that hold in the sentence

 Conceptually, there are two steps in coming up with a
feature-based representation
 What are the information sources available?

 Sensors: words, order of words, properties (?) of words
 What features to construct based on these?

64

Why is this distinction needed?

CIS419/519 Spring ’18

Embedding

65

Weather

Whether

523341321 xxxxxxxxx ∨∨ 541 yyy ∨∨

New discriminator in functionally simpler

CIS419/519 Spring ’18

Domain Characteristics
 The number of potential features is very large

 The instance space is sparse

 Decisions depend on a small set of features: the function
space is sparse

 Want to learn from a number of examples that is
small relative to the dimensionality

66

CIS419/519 Spring ’18

Generalization
 Dominated by the sparseness of the function space

 Most features are irrelevant

 # of examples required by multiplicative algorithms
depends mostly on # of relevant features
 (Generalization bounds depend on the target ||u||)

 # of examples required by additive algorithms depends
heavily on sparseness of features space:
 Advantage to additive. Generalization depend on input ||x||

 (Kivinen/Warmuth 95).

 Nevertheless, today most people use additive algorithms.

67

CIS419/519 Spring ’18

Which Algorithm to Choose?
 Generalization

 Multiplicative algorithms:
 Bounds depend on ||u||, the separating hyperplane; i: example #)
 Mw =2ln n ||u||12 maxi||x(i)||1 2 /mini(u x(i))2

 Do not care much about data; advantage with sparse target u

 Additive algorithms:
 Bounds depend on ||x|| (Kivinen / Warmuth, ‘95)
 Mp = ||u||22 maxi||x(i)||22/mini(u x(i))2

 Advantage with few active features per example

68

The l1 norm: ||x||1 = ∑i|xi| The l2 norm: ||x||2 =(∑1
n|xi|2)1/2

The lp norm: ||x||p = (∑1
n|xi|

P)1/p The l1 norm: ||x||1 = max
i
|x

i
|

CIS419/519 Spring ’18

Examples

 Extreme Scenario 1: Assume the u has exactly k active features, and
the other n-k are 0. That is, only k input features are relevant to the
prediction. Then:

||u||2, = k1/2 ; ||u||1, = k ; max ||x||2, = n1/2 ;; max ||x||1 , = 1

We get that: Mp = kn; Mw = 2k2 ln n
Therefore, if k<<n, Winnow behaves much better.

 Extreme Scenario 2: Now assume that u=(1, 1,….1) and the instances
are very sparse, the rows of an nxn unit matrix. Then:

||u||2, = n1/2 ; ||u||1, = n ; max ||x||2, = 1 ;; max ||x||1 , = 1

We get that: Mp = n; Mw = 2n2 ln n
Therefore, Perceptron has a better bound.

69

Mw =2ln n ||u||12 maxi||x(i)||1 2 /mini(u x(i))2

Mp = ||u||22 maxi||x(i)||22/mini(u x(i))2

CIS419/519 Spring ’18

`

70

Function: At least 10 out of
fixed 100 variables are active
Dimensionality is n

Perceptron,SVMs

n: Total # of Variables (Dimensionality)

Winnow

Mistakes bounds for 10 of 100 of n

of
 m

ist
ak

es
 to

 c
on

ve
rg

en
ce

HW2

CIS419/519 Spring ’18

A term that forces
simple hypothesis

A term that minimizes error on
the training data

Summary
 Introduced multiple versions of on-line algorithms
 All turned out to be Stochastic Gradient Algorithms

 For different loss functions
 Some turned out to be mistake driven

 We suggested generic improvements via:
 Regularization via adding a term that forces a “simple hypothesis”

J(w) = ∑1, m Q(zi, wi) + λ Ri (wi)
 Regularization via the Averaged Trick

 “Stability” of a hypothesis is related to its ability to generalize

 An improved, adaptive, learning rate (Adagrad)
 Dependence on function space and the instance space properties.
 Today:

 A way to deal with non-linear target functions (Kernels)
 Beginning of Learning Theory.

71

- ---- --- -- -
- - --

wT x = θ

CIS419/519 Spring ’18

Efficiency
 Dominated by the size of the feature space
 Most features are functions (e.g. conjunctions) of raw

attributes

 Additive algorithms allow the use of Kernels
 No need to explicitly generate complex features

 Could be more efficient since work is done in the original
feature space, but expressivity is a function of the kernel
expressivity.

72

kn) (x)... (x), (x), (x) n321 >>Χ→ χχχχ(),...,,(321 kxxxxX

∑=
i

ii)K(x,xcf(x)

CIS419/519 Spring ’18

Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of

functions

73

x

CIS419/519 Spring ’18

Blown Up Feature Space
 Data are separable in <x, x2> space

74

x

x2

CIS419/519 Spring ’18

Making data linearly separable

75

f(x) = 1 iff x1
2 + x2

2 ≤ 1

CIS419/519 Spring ’18

Making data linearly separable

76

Transform data: x = (x1, x2) => x’ = (x1
2, x2

2)
f(x’) = 1 iff x’1 + x’2 ≤ 1

In order to deal with this, we
introduce two new concepts:

Dual Representation
Kernel (& the kernel trick)

CIS419/519 Spring ’18 77

 Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be
examples and assume mistakes are made on x1, x2 and x4.

 What is the resulting weight vector?

w = w + x1 + x2 - x4

 In general, the weight vector w can be written
as a linear combination of examples:

w = ∑1,m r αi yi xi

 Where αi is the number of mistakes made on xi.

Dual Representation

Note: We care about the dot
product: f(x) = wT x =

= (∑1,m r αi yi xi)T x
= ∑1,m r αi yi (xiT x)

Examples x ∈ {0,1}N ; Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }

Perceptron Update:

If y’≠y, update: w = w + ry x

CIS419/519 Spring ’18

Kernel Based Methods
 A method to run Perceptron on a very large feature set, without

incurring the cost of keeping a very large weight vector.
 Computing the dot product can be done in the original feature space.
 Notice: this pertains only to efficiency: The classifier is identical to the

one you get by blowing up the feature space.
 Generalization is still relative to the real dimensionality (or, related

properties).
 Kernels were popularized by SVMs, but many other algorithms can

make use of them (== run in the dual).
 Linear Kernels: no kernels; stay in the original space. A lot of applications actually

use linear kernels.

78

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }

CIS419/519 Spring ’18 79

 Let I be the set t1,t2,t3 …of monomials (conjunctions) over the
feature space x1, x2… xn.

 Then we can write a linear function over this new feature space.

1 (11011)xxx 0 (11010)xx 1 (11010)xxx :Example 42143421 ===

Kernel Base Methods
Examples x ∈ {0,1}N ; Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 (x)}

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

CIS419/519 Spring ’18 80

 Great Increase in expressivity
 Can run Perceptron (and Winnow) but the convergence bound

may suffer exponential growth.

 Exponential number of monomials are true in each example.
 Also, will have to keep many weights.

Kernel Based Methods
Examples x ∈ {0,1}N ; Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update:

If y’≠y, update: w = w + ry x

CIS419/519 Spring ’18

Weather

Whether

523341321 xxxxxxxxx ∨∨ 541 yyy ∨∨

New discriminator in functionally simpler

Embedding

CIS419/519 Spring ’18

The Kernel Trick(1)

82

 Consider the value of w used in the prediction.
 Each previous mistake, on example z, makes an additive

contribution of +/-1 to some of the coordinates of w.
 Note: examples are Boolean, so only coordinates of w that correspond

to ON terms in the example z (ti(z) = 1) are being updated.

 The value of w is determined by the number and type of
mistakes.

Examples x ∈ {0,1}N ; Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update:

If y’≠y, update: w = w + ry x

CIS419/519 Spring ’18

The Kernel Trick(2)

 P – set of examples on which we Promoted
 D – set of examples on which we Demoted
 M = P [D

83

Examples x ∈ {0,1}N ; Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update:

If y’≠y, update: w = w + ry x

f(x) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x) = ∑𝐼𝐼[∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1]𝑡𝑡𝑖𝑖 (x) =

= ∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖(𝑥𝑥)]

CIS419/519 Spring ’18

The Kernel Trick(3)
f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

 P – set of examples on which we Promoted
 D – set of examples on which we Demoted
 M = P [D
f(x) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x) = ∑𝐼𝐼[∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1]𝑡𝑡𝑖𝑖 (x)

= sgn{∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆 𝑧𝑧 𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖 𝑥𝑥]}

 Where S(z)=1 if z ∈P and S(z) = -1 if z ∈D.
 Reordering:

f(x) = sgn{∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)∑𝐼𝐼 𝑆𝑆(𝑧𝑧)𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖(𝑥𝑥)}

84

CIS419/519 Spring ’18

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ

The Kernel Trick(4)

 S(y)=1 if y ∈P and S(y) = -1 if y ∈D.

 A mistake on z contributes the value +/-1 to all monomials
satisfied by z. The total contribution of z to the sum is equal
to the number of monomials that satisfy both x and z.

 Define a dot product in the t-space:

 We get the standard notation:

85

∑ ∑∈
∈

=
M

I
((f(x)

z
i

ii))xz)ttS(z)(Thθ

)xz)tt z)K(x,
i

ii∑
∈

=
I

((

)xtw(Th f(x)
i ii∑∈

=
I

)(θ

CIS419/519 Spring ’18

Kernel Based Methods

 What does this representation give us?

 We can view this Kernel as the distance between x,z in the
t-space.

 But, K(x,z) can be measured in the original space, without
explicitly writing the t-representation of x, z

86

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ

)xz)tt z)K(x,
i

ii∑
∈

=
I

((

CIS419/519 Spring ’18

Kernel Trick

 Consider the space of all 3n monomials (allowing both
positive and negative literals). Then,

 Claim:

 When same(x,z) is the number of features that have the
same value for both x and z.

 We get:

 Example: Take n=3; x=(001), z=(011), monomials of size 0,1,2,3
 Proof: let k=same(x,z); construct a “surviving” monomials by: (1)

choosing to include one of these k literals with the right polarity in the
monomial, or (2) choosing to not include it at all. Monomials with
literals outside this set disappear.

87

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ)xz)tt z)K(x,

i
ii∑

∈

=
I

((

 z)same(x,2 z)K(x, == ∑
∈Ii

ii (x)(z)tt

∑ ∈
=

M
 f(x)

z
z)same(x,)S(z)(2(Thθ

x1x3 (001) = x1x3 (011) = 1
x1 (001) = x1 (011) = 1 ; x3 (001) = x3 (011) = 1

Φ (001) = Φ (011) = 1
If any other variables appears in the monomial,

it’s evaluation on x, z will be different.

CIS419/519 Spring ’18

Example

 Take X={x1, x2, x3, x4}
 I = The space of all 3n monomials; | I |= 81
 Consider x=(1100), z=(1101)
 Write down I(x), I(z), the representation of x, z in the I space.

 Compute I(x) ∙I(z).
 Show that
 K(x,z) =I(x) ∙ I(z) = ∑Ι ti(z) ti(x) = 2same(x,z) = 8
 Try to develop another kernel, e.g., where I is the space of

all conjunctions of size 3 (exactly).

88

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ)xz)tt z)K(x,

i
ii∑

∈

=
I

((

CIS419/519 Spring ’18

Implementation: Dual Perceptron

 Simply run Perceptron in an on-line mode, but keep track
of the set M.

 Keeping the set M allows us to keep track of S(z).
 Rather than remembering the weight vector w,

remember the set M (P and D) – all those examples on
which we made mistakes.

 Dual Representation

89

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ

)xz)tt z)K(x,
i

ii∑
∈

=
I

((

CIS419/519 Spring ’18

Example: Polynomial Kernel
 Prediction with respect to a separating hyper planes (produced by

Perceptron, SVM) can be computed as a function of dot products
of feature based representation of examples.

 We want to define a dot product in a high dimensional space.
 Given two examples x = (x1, x2, …xn) and y = (y1,y2, …yn) we want

to map them to a high dimensional space [example- quadratic]:
 Φ(x1,x2,…,xn) = (1, x1,…,xn, x1

2,…,xn
2, x1x2,…,xn-1xn)

 Φ(y1,y2,…,yn) = (1, y1,…,yn ,y1
2,…,yn

2, y1y2,…,yn-1yn)
and compute the dot product A = Φ(x)TΦ(y) [takes time]

 Instead, in the original space, compute
 B = k(x , y)= [1+ (x1,x2, …xn)T (y1,y2, …yn)]2

 Theorem: A = B (Coefficients do not really matter)

90

Sq(2)

CIS419/519 Spring ’18

We proved that K is a valid kernel by explicitly
showing that it corresponds to a dot product.

Kernels – General Conditions
 Kernel Trick: You want to work with degree 2 polynomial features, Φ(x).

Then, your dot product will be in a space of dimensionality n(n+1)/2. The
kernel trick allows you to save and compute dot products in an n
dimensional space.

 Can we use any K(.,.)?
 A function K(x,z) is a valid kernel if it corresponds to an inner product in some

(perhaps infinite dimensional) feature space.

 Take the quadratic kernel: k(x,z) = (xTz)2

 Example: Direct construction (2 dimensional, for simplicity):
 K(x,z) = (x1 z1 + x2 z2)2 = x12 z12 +2x1 z1 x2 z2 + x22 z22

 = (x12, sqrt{2} x1x2, x22) (z12, sqrt{2} z1z2, z22) T

 = Φ(x)T Φ (z) A dot product in an expanded space.
 It is not necessary to explicitly show the feature function Φ.
 General condition: construct the kernel matrix {k(xi ,zj)}; check that it’s

positive semi definite.

91

∑ ∈
=

M
 f(x)

z
z))S(z)K(x,(Thθ

)xz)tt z)K(x,
i

ii∑
∈

=
I

((

CIS419/519 Spring ’18

Polynomial kernels
 Linear kernel: k(x, z) = xz

 Polynomial kernel of degree d: k(x, z) = (xz)d

(only dth-order interactions)

 Polynomial kernel up to degree d: k(x, z) = (xz + c)d (c>0)
(all interactions of order d or lower)

96

CIS419/519 Spring ’18

Constructing New Kernels
 You can construct new kernels k’(x, x’) from

existing ones:
 Multiplying k(x, x’) by a constant c:

k’(x, x’) = ck(x, x’)

 Multiplying k(x, x’) by a function f applied to x and x’:
k’(x, x’) = f(x)k(x, x’)f(x’)

 Applying a polynomial (with non-negative coefficients) to
k(x, x’):
k’(x, x’) = P(k(x, x’)) with P(z) = ∑i aizi and ai≥0

 Exponentiating k(x, x’):
k’(x, x’) = exp(k(x, x’))

97

CIS419/519 Spring ’18

Constructing New Kernels (2)
 You can construct k’(x, x’) from k1(x, x’), k2(x, x’) by:

 Adding k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’) + k2(x, x’)

 Multiplying k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’)k2(x, x’)

 Also:

 If φ(x) ∈ Rm and km(z, z’) a valid kernel in Rm,
k(x, x’) = km(φ(x), φ(x’)) is also a valid kernel

 If A is a symmetric positive semi-definite matrix,
k(x, x’) = xAx’ is also a valid kernel

 In all cases, it is easy to prove these directly by construction.

98

CIS419/519 Spring ’18

Gaussian Kernel
(aka radial basis function kernel)

 k(x, z) = exp(−(x − z)2/c）
 (x − z)2: squared Euclidean distance between x and z
 c = σ2: a free parameter
 very small c: K ≈ identity matrix (every item is different)
 very large c: K ≈ unit matrix (all items are the same)

 k(x, z) ≈ 1 when x, z close
 k(x, z) ≈ 0 when x, z dissimilar

99

CIS419/519 Spring ’18

Gaussian Kernel
 k(x, z) = exp(−(x − z)2/c）
 Is this a kernel?
 k(x, z) = exp(−(x − z)2/2σ2）

= exp(−(xx + zz − 2xz)/2σ2）
= exp(−xx/2σ2）exp(xz/σ2) exp(−zz/2σ2）
= f(x) exp(xz/σ2) f(z)

 exp(xz/σ2) is a valid kernel:
 xz is the linear kernel;
 we can multiply kernels by constants (1/σ2)
 we can exponentiate kernels
Unlike the discrete kernels discussed earlier, here you cannot easily
explicitly blow up the feature space to get an identical representation.

100

CIS419/519 Spring ’18 102

 A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

 Computing the weight vector can be done in the original feature
space.

 Notice: this pertains only to efficiency: the classifier is identical
to the one you get by blowing up the feature space.

 Generalization is still relative to the real dimensionality (or,
related properties).

 Kernels were popularized by SVMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, etc.

Summary – Kernel Based Methods
∑ ∈

=
M

 f(x)
z

z))S(z)K(x,(Thθ

CIS419/519 Spring ’18

Explicit & Implicit Kernels: Complexity
 Is it always worthwhile to define kernels and work in

the dual space?

 Computationally:
 Dual space – t1 m2 vs, Primal Space – t2 m
 Where m is # of examples, t1, t2 are the sizes of the (Dual,

Primal) feature spaces, respectively.
 Typically, t1 << t2, so it boils down to the number of

examples one needs to consider relative to the growth in
dimensionality.

 Rule of thumb: a lot of examples use Primal space
 Most applications today: People use explicit kernels. That is,

they blow up the feature space explicitly.

104

CIS419/519 Spring ’18

Kernels: Generalization
 Do we want to use the most expressive kernels we

can?
 (e.g., when you want to add quadratic terms, do you really

want to add all of them?)

 No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

 It’s possible to give simple arguments that show that
simply adding irrelevant features does not help.

105

CIS419/519 Spring ’18 107

Conclusion- Kernels
 The use of Kernels to learn in the dual space is an important idea

 Different kernels may expand/restrict the hypothesis space in useful ways.
 Need to know the benefits and hazards

 To justify these methods we must embed in a space much larger
than the training set size.
 Can affect generalization

 Expressive structures in the input data could give rise to specific
kernels, designed to exploit these structures.
 E.g., people have developed kernels over parse trees: corresponds to

features that are sub-trees.
 It is always possible to trade these with explicitly generated features, but

it might help one’s thinking about appropriate features.

CIS419/519 Spring ’18

Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of

functions

108

x

CIS419/519 Spring ’18

Blown Up Feature Space
 Data are separable in <x, x2> space

109

x

x2

CIS419/519 Spring ’18

Multi-Layer Neural Network
 Multi-layer network were designed to overcome the

computational (expressivity) limitation of a single
threshold element.

 The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

 Multi-layer networks can represent arbitrary
functions, but building effective learning methods
for such network was [thought to be] difficult.

110

activation

Input

Hidden

Output

CIS419/519 Spring ’18

Basic Units
 Linear Unit: Multiple layers of linear functions

oj = w ¢x produce linear functions. We want to
represent nonlinear functions.

 Need to do it in a way that
facilitates learning

 Threshold units: oj = sgn(w ¢x)
are not differentiable, hence
unsuitable for gradient descent.

 The key idea was to notice that the discontinuity of
the threshold element can be represents by a smooth
non-linear approximation: oj = [1+ exp{-w ¢x}]-1

 (Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html)

111

activation

Input

Hidden

Output

w2
ij

w1
ij

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

CIS419/519 Spring ’18

Model Neuron (Logistic)
 Us a non-linear, differentiable output function such

as the sigmoid or logistic function

 Net input to a unit is defined as:
 Output of a unit is defined as:

112

iijj xwnet ∑ •=

)T(netj jje1
1O −−+

=

jT

1
2

6

3
4
5

7

67w

17w

∑
T

jO

1x

7x

CIS419/519 Spring ’18

Learning with a Multi-Layer
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit.
 Given feedback (truth) at the top layer, and the activation at the

layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

 The problem is what to do with
the other set of weights – we do
not get feedback in the
intermediate layer(s).

113

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS419/519 Spring ’18

Learning with a Multi-Layer Perceptron
 The problem is what to do with

the other set of weights – we do
not get feedback in the
intermediate layer(s).

 Solution: If all the activation
functions are differentiable, then
the output of the network is also
a differentiable function of the input and weights in the network.

 Define an error function (multiple options) that is a differentiable function
of the output, that this error function is also a differentiable function of the
weights.

 We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function. This can be done, for example, using gradient descent .

 This results in an algorithm called back-propagation.

114

activation

Input

Hidden

Output

w2
ij

w1
ij

	�CIS 519/419 �Applied Machine Learning�www.seas.upenn.edu/~cis519��
	Administration
	Projects
	Project Examples
	This Lecture
	A Guide
	Quantifying Performance
	Learning Conjunctions
	Learning Conjunctions (I)
	Learning Conjunctions(II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions(III)
	Learning Conjunctions (III)
	Two Directions
	On-Line Learning
	Generic Mistake Bound Algorithms
	The Halving Algorithm
	Administration
	Projects
	Learning Conjunctions
	Representation
	Linear Threshold Functions
	Slide Number 35
	Canonical Representation
	Perceptron learning rule
	Perceptron learning rule
	Perceptron in action
	Perceptron in action
	Perceptron learning rule
	Perceptron Learnability
	Slide Number 43
	Perceptron Convergence
	Perceptron
	Perceptron: Mistake Bound Theorem
	Perceptron-Mistake Bound
	Robustness to Noise
	Perceptron for Boolean Functions
	Practical Issues and Extensions
	Regularization Via Averaged Perceptron
	Regularization Via Averaged Perceptron
	 Perceptron with Margin
	Other Extensions
	LBJava
	General Stochastic Gradient Algorithms
	General Stochastic Gradient Algorithms
	New Stochastic Gradient Algorithms
	Regularization
	Algorithmic Approaches
	Which algorithm is better? �How to Compare?
	Sentence Representation
	Sentence Representation
	Embedding
	Domain Characteristics
	Generalization
	Which Algorithm to Choose?
	Examples
	`
	Summary
	Efficiency
	Functions Can be Made Linear
	Blown Up Feature Space
	Making data linearly separable
	Making data linearly separable
	Dual Representation
	Kernel Based Methods
	Kernel Base Methods
	Kernel Based Methods
	Slide Number 81
	The Kernel Trick(1)
	The Kernel Trick(2)
	The Kernel Trick(3)
	The Kernel Trick(4)
	Kernel Based Methods
	Kernel Trick
	Example
	Implementation: Dual Perceptron
	Example: Polynomial Kernel
	Kernels – General Conditions
	Polynomial kernels
	Constructing New Kernels
	Constructing New Kernels (2)
	Gaussian Kernel �(aka radial basis function kernel)
	Gaussian Kernel
	Summary – Kernel Based Methods
	Explicit & Implicit Kernels: Complexity
	Kernels: Generalization
	Conclusion- Kernels
	Functions Can be Made Linear
	Blown Up Feature Space
	Multi-Layer Neural Network
	Basic Units
	Model Neuron (Logistic)
	Learning with a Multi-Layer Perceptron
	Learning with a Multi-Layer Perceptron

