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Administration 
 Registration 
 Hw1 is due next week

 You should have started working on it already… 

 Hw2 will be out next week
 No lecture on Tuesday next Week (2/6)!!  
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Questions
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Projects
 CIS 519 students need to do a team project

 Teams will be of size 2-3
 Projects proposals are due on Friday 3/2/18 

 Details will be available on the website
 We will give comments and/or requests to modify / augment/ do a 

different project. 
 There may also be a mechanism for peer comments.

 Please start thinking and working on the project now.
 Your proposal is limited to 1-2 pages, but needs to include references 

and, ideally,  some preliminary results/ideas.
 Any project with a significant Machine Learning component is good. 

 Experimental work, theoretical work, a combination of both or a critical 
survey of results in some specialized topic. 

 The work has to include some reading of the literature . 
 Originality is not mandatory but is encouraged. 

 Try to make it interesting! 
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Project Examples
 KDD Cup 2013:

 "Author-Paper Identification": given an author and a small set of papers, we 
are asked to identify which papers are really written by the author. 
 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: 
identification, gender, native language, …. 

 Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

 Work on making learned hypothesis more comprehensible 
 Explain the prediction

 Develop a (multi-modal) People Identifier  
 Identify contradictions in news stories
 Large scale clustering of documents + name the cluster

 E.g., cluster news documents and give a title to the document
 Deep Neural Networks: convert a state of the art NLP program to a NN
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This Lecture
 Decision trees for (binary) classification

 Non-linear classifiers

 Learning decision trees (ID3 algorithm)
 Greedy heuristic (based on information gain)

Originally developed for discrete features
 Some extensions to the basic algorithm

 Overfitting
 Some experimental issues
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A Guide
 Learning Algorithms

 (Stochastic) Gradient Descent (with LMS)     
 Decision Trees 

 Importance of hypothesis space (representation) 
 How are we doing? 

 Quantification in terms of cumulative # of mistakes  
 Our algorithms were driven by a different metric than the one we care about.

 Today: Versions of Perceptron
 How to deal better with large features spaces & sparsity?
 Variations of Perceptron

 Dealing with overfitting

 Closing the loop: Back to Gradient Descent
 Dual Representations & Kernels

 Multilayer Perceptron
 Beyond Binary Classification? 

 Multi-class classification and Structured Prediction

 More general way to quantify learning performance (PAC) 
 New Algorithms (SVM, Boosting)
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Today: 
Take a more general 
perspective and think 
more about learning, 
learning protocols, 
quantifying performance, 
etc. 
This will motivate some of 
the ideas we will see next. 
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Quantifying Performance
 We want to be able to say something rigorous about the 

performance of our learning algorithm.

 We will concentrate on discussing the number of 
examples one needs to see before we can say that our 
learned hypothesis is good. 
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Learning Conjunctions
 There is a hidden (monotone) conjunction the learner 

(you) is to learn 
f(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100                                    

 How many examples are needed to learn it ?  How ?
 Protocol I:  The learner proposes instances as queries to the 

teacher
 Protocol II:  The teacher (who knows f) provides training examples 
 Protocol III: Some random source (e.g., Nature) provides training 

examples; the Teacher (Nature) provides the labels (f(x))

8
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Learning Conjunctions (I)
 Protocol I:  The learner proposes instances as queries to 

the teacher
 Since we know we are after a monotone conjunction:
 Is x100 in?   <(1,1,1…,1,0), ?>   f(x)=0 (conclusion: Yes)
 Is x99 in?   <(1,1,…1,0,1), ?>   f(x)=1 (conclusion: No)
 Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No)

 A straight forward algorithm requires n=100 queries, and 
will produce as a result the hidden conjunction (exactly).
 h(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100                                    

9

What happens here if the conjunction 
is not known to be monotone?
If we know of a positive example,
the same algorithm works. 
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Learning Conjunctions(II)
 Protocol II:  The teacher (who knows f) provides training 

examples
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Learning Conjunctions (II)
 Protocol II:  The teacher (who knows f) provides training 

examples
 <(0,1,1,1,1,0,…,0,1), 1>
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Learning Conjunctions (II)
 Protocol II:  The teacher (who knows f) provides training 

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)
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Learning Conjunctions (II)
 Protocol II:  The teacher (who knows f) provides training 

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

 To show you that all these variables are required…
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Learning Conjunctions (II)
 Protocol II:  The teacher (who knows f) provides training 

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

 To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0>   need x2

 <(0,1,0,1,1,0,…,0,1), 0>   need x3

 …..
 <(0,1,1,1,1,0,…,0,0), 0>   need x100

 A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly).

h(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100

14

Modeling Teaching 
Is tricky
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0>
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,1,0,...0,1,1), 0>
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>
 <(1,1,1,1,1,1,…,0,1), 1>
 <(0,1,0,1,0,0,...0,1,1), 0>

 How should we learn?
 Skip

15

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example

16

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example

17

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing: h= x1 ˄ x2 ,…,˄ x100 

 <(1,1,1,1,1,0,...0,1,1), 1>
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing: h= x1 ˄ x2 ,…,˄ x100 

 <(1,1,1,1,1,0,...0,1,1), 1>    h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100 
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>  h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100 

 <(1,0,1,1,0,0,...0,0,1), 0>    learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>    h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x99˄ x100 

 <(1,0,1,1,0,0,...0,0,1), 0>    learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>    h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>     h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 

 <(1,0,1,0,0,0,...0,1,1), 0>
 <(1,1,1,1,1,1,…,0,1), 1>
 <(0,1,0,1,0,0,...0,1,1), 0>
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f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions(III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>    Final hypothesis: 
 <(1,1,1,1,1,1,…,0,1), 1>       h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 

 <(0,1,0,1,0,0,...0,1,1), 0>
24

• Is it  good
• Performance ?
• # of examples ?

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  ……. 
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>     
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>   Final hypothesis:
 <(1,1,1,1,1,1,…,0,1), 1>     h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 

 <(0,1,0,1,0,0,...0,1,1), 0>
 <(0,1,0,1,0,0,...0,1,1), 0>

• Is it  good
• Performance ?
• # of examples ?

 With the given data, we only learned an 
“approximation” to the true concept

 We don’t know how many examples we 
need to see to learn exactly. (do we care?)

 But we know that we can make a limited # 
of mistakes. 

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Two Directions
 Can continue to analyze the probabilistic intuition:

 Never saw x1=0 in positive examples, maybe we’ll never see it?
 And if we will, it will be with small probability, so the concepts we 

learn may be pretty good
 Good: in terms of performance on future data
 PAC framework

 Mistake Driven Learning algorithms/On line algorithms
 Now, we can only reason about #(mistakes), not #(examples)

 any relations?
 Update your hypothesis only when you make mistakes

 Not all on-line algorithms are mistake driven, so performance 
measure could be different.

26
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On-Line Learning
 New learning algorithms

(all learn a linear function over the feature space) 
 Perceptron                   (+ many variations)
 General Gradient Descent view

 Issues:
 Importance of Representation
 Complexity of Learning
 Idea of Kernel Based Methods
 More about features

27
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Generic Mistake Bound Algorithms

 Is it clear that we can bound the number of mistakes ? 
 Let C be a finite concept class. Learn f 2 C
 CON:

 In the ith stage of the algorithm:
 Ci all concepts in C consistent with all i-1 previously seen examples
 Choose randomly f 2 Ci and use to predict the next example
 Clearly, Ci+1 µ Ci and, if a mistake is made on the ith example, 

then |Ci+1| < |Ci|       so progress is made.

 The CON algorithm makes at most |C|-1 mistakes
 Can we do better ?

28
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The Halving Algorithm
 Let C be a concept class. Learn f 2 C
 Algorithm:
 In the ith stage of the algorithm:

 Ci all concepts in C consistent with all i-1 previously seen examples

 Given an example et consider the value fj (et) for all fj 2  Ci
and predict  by majority.

 Predict 1 iff
|{𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖; 𝑓𝑓𝑗𝑗 (𝑒𝑒𝑖𝑖) = 0}| < |{𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖; 𝑓𝑓𝑗𝑗 (𝑒𝑒𝑖𝑖) = 1}|

 Clearly    𝐶𝐶𝑖𝑖+1 ⊆ 𝐶𝐶𝑖𝑖 and if a mistake is made in the ith
example, then 𝐶𝐶𝑖𝑖+1 < 1/2 |𝐶𝐶𝑖𝑖|

 The Halving algorithm makes at most log(|C|) mistakes
 Of course, this is a theoretical algorithm; can this ne achieved with an 

efficient algorithm?
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Administration 
 Hw1 is done 

 Recall that this is an Applied Machine Learning class. 
 We are not asking you to simply give us back what you’ve seen in class.
 The HW will try to simulate challenges you might face when you want 

to apply ML.
 Allow you to experience various ML scenarios and make observations 

that are best experienced when you play with it yourself.  

 Hw2 will be out tomorrow
 Please start to work on it early. 
 This way, you will have a chance to ask questions in time.
 Come to the recitations and to office hours.
 Be organized – you will run a lot of experiments, but a good script can 

do a lot of the work.

 Recitations
30

Questions?
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Projects
 CIS 519 students need to do a team project

 Teams will be of size 2-3
 Projects proposals are due on Friday 3/2/18 

 Details will be available on the website
 We will give comments and/or requests to modify / augment/ do a 

different project. 
 There may also be a mechanism for peer comments.

 Please start thinking and working on the project now.
 Your proposal is limited to 1-2 pages, but needs to include references 

and, ideally,  some preliminary results/ideas.
 Any project with a significant Machine Learning component is good. 

 Experimental work, theoretical work, a combination of both or a critical 
survey of results in some specialized topic. 

 The work has to include some reading of the literature . 
 Originality is not mandatory but is encouraged. 

 Try to make it interesting! 
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Learning Conjunctions
 There is a hidden conjunctions the learner is to learn

f(x1, x2,…,x100) = x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100                                    

 The number of (all; not monotone) conjunctions: 3𝑛𝑛

 log(|C|) = n
 The elimination algorithm makes n mistakes

 Learn …..

 k-conjunctions:
 Assume that only k<<n attributes occur in the disjunction

 The number of k-conjunctions: 𝑛𝑛
𝑘𝑘 2𝑘𝑘

 log(|C|) = klog n
 Can we learn efficiently with this number of mistakes ? 

32

Can this bound be 
achieved?

Can mistakes be 
bounded in the non-
finite case?

Last time: 
• Talked about various learning protocols & on algorithms for conjunctions. 
• Discussed the performance of the algorithms in terms of bounding the 

number of mistakes that algorithm makes. 
• Gave a “theoretical” algorithm with log|C| mistakes.
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Representation
 Assume that you want to learn conjunctions. Should your hypothesis 

space be the class of conjunctions?
 Theorem:   Given a sample on n attributes that is consistent with a conjunctive 

concept, it is NP-hard to find a pure conjunctive hypothesis that is both consistent 
with the sample and has the minimum number of attributes. 

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”] 

 Same holds for Disjunctions.
 Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples  so that learning 
the best (dis/conj)junction implies a minimal cover.

 Consequently, we cannot learn the concept efficiently as a 
(dis/con)junction.

 But, we will see that we can do that, if we are willing to learn the 
concept as a Linear Threshold function.

 In a more expressive class, the search for a good hypothesis 
sometimes becomes combinatorially easier.

33

So, there is a tradeoff!
(recall your DT results)
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Linear Threshold Functions  

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }
 Many functions are Linear 

 Conjunctions:
 y = x1 ˄ x3 ˄ x5                                        

 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 3};             w = (1, 0, 1, 0, 1) θ=3

 At least m of n:
 y = at least 2 of {x1 ,x3, x5 }       
 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 2} };           w = (1, 0, 1, 0, 1) θ=2

 Many functions are not
 Xor: y = (x1 ˄ x2 ) ˅( ¬𝑥𝑥1 ˄ ¬ x2 )
 Non trivial DNF: y = ( x1 ˄ x2 ) ˅ (  x3 ˄ x4 ) 

 But can be made linear
 Note: all the variables above are Boolean variables

34

Probabilistic Classifiers as well
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Canonical Representation
f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }

 Note: sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ}  = sgn {𝑤𝑤′𝑇𝑇 � 𝑥𝑥′} 
 Where: 

 x’ = (x, -1)  and w’ = (w, θ) 
 Moved from an n dimensional representation to an (n+1) dimensional 

representation, but now can look for hyperplanes that go through the origin. 
 Basically, that means that we learn both w and θ

36
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𝑤𝑤𝑇𝑇 � 𝑥𝑥 = θ
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Perceptron learning rule
 On-line, mistake driven algorithm.
 Rosenblatt (1959) suggested that when a target output 

value is provided for a single neuron with fixed input, it 
can incrementally change weights and learn to produce 
the output using the Perceptron learning rule

 (Perceptron == Linear Threshold Unit)

37
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Perceptron learning rule

 We learn f:X→{-1,+1} represented as f =sgn{wT•x)
 Where X=  {0,1}n  or X= Rn and w∈ Rn

 Given Labeled examples:  {(x1, y1), (x2, y2),…(xm, ym)}

38

1. Initialize w=0∈

2.   Cycle through all examples  [multiple times]        

a. Predict the label of instance x to be y’ = sgn{wT•x)

b. If y’≠y, update the weight vector: 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

nR
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Perceptron in action

39
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Perceptron in action

40
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Perceptron learning rule
 If x is Boolean, only weights of active features are updated
 Why is this important?

 𝑤𝑤𝑇𝑇𝑥𝑥 > 0 is equivalent to: 𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 = 1
1+𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

> 1
2

41

1. Initialize w=0∈

2.   Cycle through all examples          

a. Predict the label of instance x to be y’ = sgn{wT•x)

b. If y’≠y, update the weight vector to 

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

nR
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Perceptron Learnability
 Obviously can’t learn what it can’t represent (???)

 Only linearly separable functions
 Minsky and Papert (1969) wrote an influential book 

demonstrating Perceptron’s representational limitations
 Parity functions can’t be learned (XOR)
 In vision, if patterns are represented with local features, can’t 

represent symmetry, connectivity
 Research on Neural Networks stopped for years

 Rosenblatt himself (1959) asked,

• “What pattern recognition problems can be transformed so as to 
become linearly separable?” 

 Perceptron

42
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(x1 Λ x2) v (x3 Λ x4) y1 Λ y2
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Perceptron Convergence
 Perceptron Convergence Theorem:
 If there exist a set of weights that are consistent with the 

data (i.e., the data is linearly separable), the perceptron 
learning algorithm will converge
 How long would it take to converge ?

 Perceptron Cycling Theorem: 
 If the training data is not linearly separable the perceptron 

learning algorithm will eventually repeat the same set of 
weights and therefore enter an infinite loop.
 How to provide robustness, more expressivity ? 

44
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Perceptron

45

Just to make sure we understand
that we learn both w and µ
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Perceptron: Mistake Bound Theorem

 Maintains a weight vector w∈RN,    w0=(0,…,0).
 Upon receiving an example x ∈ RN

 Predicts according to the linear threshold function wT•x ≥ 0.

 Theorem [Novikoff,1963] Let (x1; y1),…,: (xt; yt), be a 
sequence of labeled examples with xi ∈< N, ||xi||≤R and yi ∈{-
1,1} for all i. Let u∈ < N, γ > 0 be such that, ||u|| = 1 and 
yi uT • xi ≥ γ for all i. 

Then Perceptron makes at most R2 / γ 2 mistakes on this 
example sequence.

(see additional notes)
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Complexity Parameter
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Perceptron-Mistake Bound
Proof: Let vk be the hypothesis before the k-th mistake.  Assume 
that the k-th mistake occurs on the input example (xi, yi).

Assumptions
v1 = 0
||u|| = 1
yi uT • xi ≥ γ

k < R2 / γ 2

1. Note that the bound does not 
depend on the dimensionality 
nor on the number of examples.

2. Note that we place weight vectors
and examples in the same space.

3.      Interpretation of the theorem

47
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Robustness to Noise
 In the case of non-separable data , the extent to which a data point 

fails to have margin ϒ via the hyperplane w can be quantified by a  
slack variable 

ξi= max(0, ϒ − yi wTxi). 
 Observe that when ξi = 0, the example xi has margin at least ϒ. 

Otherwise, it grows linearly with − yi wT xi

 Denote: D2 = [∑ {ξi
2}]1/2

 Theorem: The perceptron is 
guaranteed to make no more than 
((R+D2)/ϒ)2 mistakes on any sequence

of examples satisfying ||xi||2<R

 Perceptron is expected to 
have some robustness to noise. 

48

- --- -
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Perceptron for Boolean Functions

 How many mistakes will the Perceptron algorithms make 
when learning a k-disjunction?

 Try to figure out the bound 
 Find a sequence of examples that will cause Perceptron to 

make O(n) mistakes on k-disjunction on n attributes. 
 (Where is n coming from?)
 Recall that halving suggested the possibility of a better 

bound – klog(n). 

 This can be achieved by Winnow
 A multiplicative update algorithm [Littlestone’88]
 See HW2
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Practical Issues and Extensions
 There are many extensions that can be made to these basic algorithms.
 Some are necessary for them to perform well

 Regularization (next; will be motivated in the next section, COLT)
 Some are for ease of use and tuning

 Converting the output of a Perceptron/Winnow to a conditional probability

𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 =
1

1 + 𝑒𝑒−𝐴𝐴𝑤𝑤𝑇𝑇𝑥𝑥

 The parameter A can be tuned on a development set  
 Multiclass classification (later)
 Key efficiency issue: Infinite attribute domain

 Sparse representation on the input
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Regularization Via Averaged Perceptron

 An Averaged Perceptron Algorithm is motivated by the following considerations:
 In real life, we want more guarantees from our learning algorithm
 In the mistake bound model:

 We don’t know when we will make the mistakes. 

 Every Mistake-Bound Algorithm can be converted efficiently to a PAC algorithm – to 
yield global guarantees on performance. 

 In the PAC model: 
 Dependence is on number of examples seen and not number of mistakes.
 Being consistent with more examples is better 
 Which hypothesis will you choose…??

 To convert a given Mistake Bound algorithm (into a global guarantee algorithm):

 Wait for a long stretch w/o mistakes  (there must be one)
 Use the hypothesis at the end of this stretch.
 Its PAC behavior is relative to the length of the stretch.

 Averaged Perceptron returns a weighted average of a number of earlier 
hypotheses; the weights are a function of the length of no-mistakes 
stretch. 
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Regularization Via Averaged Perceptron

 Training: 
[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi ]
 Input: a labeled training set {(x1, y1),…(xm, ym)}
 Number of epochs T
 Output: a list of weighted perceptrons {(v1, c1),…,(vk, ck)}

 Initialize: k=0; v1 = 0, c1 = 0
 Repeat T times:

 For i =1,…m:
 Compute prediction y’ = sgn(𝑣𝑣𝑘𝑘𝑇𝑇 xi )
 If y’ = y,   then ck = ck + 1

else: vk+1 =  vk + yi x ; ck+1 = 1; k = k+1
 Prediction:
 Given: a list of weighted perceptrons {(v1, c1),…(vk, ck)} ; a new example x

Predict the label(x) as follows:
y(x)=  sgn [ ∑1, k ci (𝑣𝑣𝑖𝑖𝑇𝑇 x) ] 

53

• This can be done on top of any 
online mistake driven algorithm.

• In HW two you will run it over 
three different algorithms.

Averaged version of Perceptron 
/Winnow is as good as any other linear 
learning algorithm, if not better. 
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Perceptron with Margin
 Thick Separator  (aka as Perceptron with Margin)     

(Applies both for Perceptron and Winnow)

 Promote if:
 wT x - θ < γ

 Demote if:
 wT x - θ > γ

54

wT x = 0

- --- -
-
-- - - -

- -
-

-

wT x = θ

Note: γ is a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karov et. al 97) 
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Other Extensions 
 Assume you made a mistake on example x.
 You then see example x again; will you make a mistake on it?
 Threshold relative updating (Aggressive Perceptron)
 w w + rx

 𝑟𝑟 = 𝜃𝜃−𝑤𝑤𝑇𝑇𝑥𝑥
| 𝑥𝑥 |2

 Equivalent to updating 
on the same example 
multiple times
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LBJava
 Several of these extensions (and a couple more) are implemented in 

the LBJava learning architecture that supports several linear update 
rules (Winnow, Perceptron, naïve Bayes) 

 Supports 
 Regularization(averaged Winnow/Perceptron; Thick Separator)
 Conversion to probabilities
 Automatic parameter tuning 
 True multi-class classification 
 Feature Extraction and Pruning 
 Variable size examples 
 Good support for large scale domains in terms of number of examples and number 

of features.
 Very efficient 
 Many other options 

 [Download from: http://cogcomp.org/page/software/]
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The loss Q: a function 
of x, w and y

General Stochastic Gradient Algorithms 

 Given examples {z=(x,y)}1, m from a distribution over XxY, we are trying 
to learn a linear function, parameterized by a weight vector w, so that 
we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m ∑1, m Q(zi, wi)

 In Stochastic Gradient Descent Algorithms we approximate this 
minimization by incrementally updating the weight vector w as 
follows: 

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

Where gt = gw Q(zt, wt) is the gradient with respect to w at time t. 

 The difference between algorithms now amounts to choosing a 
different loss function Q(z, w)

57



CIS419/519 Spring ’18

General Stochastic Gradient Algorithms 

wt+1 = wt – rt gw Q(xt, yt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – wT x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – 𝑤𝑤𝑡𝑡𝑇𝑇 xt) xt

Here, even though we make binary predictions based on sgn (wT x) we 
do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y wT x)

This leads to the perceptron update rule:

If yi 𝑤𝑤𝑖𝑖𝑇𝑇∙ xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

58

wT x

The loss Q: a function of x, w and yLearning rate gradient

Here g = -yx
Good to think about the 

case of Boolean examples
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New Stochastic Gradient Algorithms 
wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change. 
AdaGrad alters the update to adapt based on historical information

Frequently occurring features in the gradients get small learning rates 
and infrequent features get higher ones. 
The idea is to “learn slowly” from frequent features but “pay attention” 
to rare but informative features.

Define a “per feature” learning rate for the feature j, as: 
rt,j = r/(Gt,j)1/2

where Gt,j = ∑k=1, t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagrad is:

wt+1,j = wt,j - gt,j r/(Gt,j)1/2

This algorithm is supposed to update weights faster than Perceptron 
or LMS when needed.

59

Easy to think about 
the case of 

Perceptron, and on 
Boolean examples. 
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Regularization
 The more general formalism adds a regularization

term to the risk function, and minimize: 
J(w) = ∑1, m Q(zi, wi) + λ Ri (wi)

 Where R is used to enforce “simplicity” of the learned functions. 

 LMS case: Q((x, y), w) =(y – wT x)2

 R(w) = ||w||2
2 gives the optimization problem called Ridge Regression.

 R(w) = ||w||1 gives a problem called the LASSO problem

 Hinge Loss case: Q((x, y), w) = max(0, 1 - y wT x)
 R(w) = ||w||2

2 gives the problem called Support Vector Machines

 Logistics Loss case:  Q((x,y),w) = log (1+exp{-y wT x}) 
 R(w) = ||w||2

2 gives the problem called Logistics Regression

 These are convex optimization problems and, in principle, the same gradient 
descent mechanism can be used in all cases. 

 We will see later why it makes sense to use the “size” of w as a way to control 
“simplicity”.
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Algorithmic Approaches
 Focus:    Two families of algorithms (one of the on-line 

representative) 
 Additive update algorithms: Perceptron

 SVM is a close relative of Perceptron
 Multiplicative update algorithms: Winnow

 Close relatives: Boosting, Max entropy/Logistic Regression
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Which algorithm is better? 
How to Compare? 

 Generalization
 Since we deal with linear learning algorithms, we know (???) that 

they will all converge eventually to a perfect representation. 
 All can represent the data

 So, how do we compare:
1. How many examples are needed to get to a given level of accuracy?
2. Efficiency: How long does it take to learn a hypothesis and evaluate 

it (per-example)? 
3. Robustness (to noise);  
4. Adaptation to a new domain, ….

 With (1) being the most fundamental question:
 Compare as a function of what? 

 One key issue is the characteristics of the data
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Sentence Representation
S= I don’t know whether to laugh or cry

 Define a set  of  features:
 features are relations that  hold in the sentence

 Map a sentence to its  feature-based representation
 The feature-based representation will give some of the 

information in the sentence

 Use  this feature-based representation as an example to 
your algorithm
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Sentence Representation
S= I don’t know whether to laugh or cry

 Define a set  of  features:
 features are properties that  hold in the sentence

 Conceptually, there are two steps in coming up with a 
feature-based representation
 What are  the information sources available? 

 Sensors: words, order of words, properties (?) of words
 What features to construct based on these?

64

Why is this distinction needed?
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Embedding

65

Weather

Whether

523341321 xxxxxxxxx ∨∨ 541 yyy ∨∨

New discriminator in functionally simpler



CIS419/519 Spring ’18

Domain Characteristics
 The number of potential features is very large

 The instance space is sparse

 Decisions depend on a small set of features: the function 
space is sparse

 Want  to  learn  from a number of examples that is 
small  relative  to  the  dimensionality
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Generalization
 Dominated by the sparseness of the function space

 Most features are irrelevant

 # of examples required by multiplicative algorithms 
depends mostly on # of relevant features
 (Generalization bounds depend on the target ||u|| )

 # of examples required by additive algorithms depends 
heavily on sparseness of features space: 
 Advantage to  additive. Generalization depend on input ||x||

 (Kivinen/Warmuth 95).

 Nevertheless, today most people use additive algorithms.
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Which Algorithm to Choose?
 Generalization

 Multiplicative algorithms:
 Bounds depend on ||u||, the separating hyperplane; i: example #)
 Mw =2ln n ||u||12 maxi||x(i)||1 2 /mini(u x(i))2

 Do not care much about data; advantage with sparse target u

 Additive algorithms:
 Bounds depend on ||x|| (Kivinen / Warmuth, ‘95)
 Mp = ||u||22 maxi||x(i)||22/mini(u x(i))2

 Advantage with few active features per example

68

The l1 norm: ||x||1 = ∑i|xi|              The l2 norm: ||x||2 =(∑1
n|xi|2)1/2

The lp norm: ||x||p = (∑1
n|xi|

P )1/p The l1 norm: ||x||1 = max
i
|x

i
|



CIS419/519 Spring ’18

Examples

 Extreme Scenario 1: Assume the u has exactly k active features, and 
the other n-k are 0. That is, only k input features are relevant to the 
prediction. Then:

||u||2, = k1/2  ; ||u||1, = k ; max ||x||2, = n1/2   ;; max ||x||1 , = 1

We get that: Mp = kn;     Mw = 2k2 ln n 
Therefore, if k<<n, Winnow behaves much better.

 Extreme Scenario 2: Now assume that u=(1, 1,….1) and the instances 
are very sparse, the rows of an nxn unit matrix. Then:

||u||2, = n1/2  ; ||u||1, = n ; max ||x||2, = 1 ;; max ||x||1 , = 1

We get that: Mp = n; Mw = 2n2 ln n 
Therefore, Perceptron has a better bound.
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Mw =2ln n ||u||12 maxi||x(i)||1 2 /mini(u x(i))2 

Mp = ||u||22 maxi||x(i)||22/mini(u x(i))2
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`

70

Function: At least 10 out of 
fixed 100 variables are active
Dimensionality is n

Perceptron,SVMs
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A term that forces 
simple hypothesis

A term that minimizes error on 
the training data

Summary
 Introduced multiple versions of on-line algorithms
 All turned out to be Stochastic Gradient Algorithms

 For different loss functions
 Some turned out to be mistake driven

 We suggested generic improvements via:
 Regularization via adding a term that forces a “simple hypothesis” 

J(w) = ∑1, m Q(zi, wi) + λ Ri (wi)
 Regularization via the Averaged Trick

 “Stability” of a hypothesis is related to its ability to generalize

 An improved, adaptive, learning rate (Adagrad)
 Dependence on function space and the instance space properties. 
 Today: 

 A way to deal with non-linear target functions (Kernels)
 Beginning of Learning Theory.

71

- ---- --- -- -
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wT x = θ
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Efficiency
 Dominated by the size of the feature space
 Most features are functions (e.g. conjunctions) of raw 

attributes

 Additive algorithms allow the use of Kernels
 No need to explicitly generate complex features

 Could be more efficient since work is done in the original 
feature space, but expressivity is a function of the kernel 
expressivity.
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Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of 

functions

73

x
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Blown Up Feature Space
 Data are separable in <x, x2> space

74

x

x2
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Making data linearly separable

75

f(x) = 1 iff  x1
2 + x2

2 ≤  1
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Making data linearly separable

76

Transform data: x = (x1, x2 )  => x’ = (x1
2, x2

2 ) 
f(x’) = 1 iff  x’1 + x’2 ≤  1

In order to deal with this, we 
introduce two new concepts: 

Dual Representation
Kernel (& the kernel trick)
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 Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be 
examples and assume mistakes are made on x1, x2 and x4. 

 What is the resulting weight vector? 

w = w + x1 + x2 - x4

 In general, the weight vector w can be written 
as a linear combination of examples: 

w = ∑1,m r αi yi xi

 Where αi is the number of mistakes made on xi.

Dual Representation

Note: We care about the dot 
product: f(x) = wT x =

= (∑1,m r αi yi xi)T x            
= ∑1,m r αi yi (xiT x) 

Examples x ∈ {0,1}N ;  Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }

Perceptron Update: 

If y’≠y, update: w = w + ry x
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Kernel Based Methods
 A method to  run Perceptron on a very large feature set, without 

incurring the cost of keeping a very large weight vector. 
 Computing the dot product can be done in the original feature space.
 Notice: this pertains only to efficiency: The classifier is identical to the 

one you get by blowing up the feature space.
 Generalization is still relative to the real dimensionality (or, related 

properties).
 Kernels were popularized by SVMs, but many other algorithms can 

make use of them (== run in the dual). 
 Linear Kernels: no kernels; stay in the original space. A lot of applications  actually 

use linear kernels.

78

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }
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 Let I be the set t1,t2,t3 …of monomials (conjunctions) over the 
feature space x1, x2… xn. 

 Then we can write a linear function over this new feature space.

1 (11011)xxx  0 (11010)xx    1 (11010)xxx  :Example 42143421 ===

Kernel Base Methods
Examples x ∈ {0,1}N ;  Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 (x)}

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}
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 Great Increase in expressivity
 Can run Perceptron (and Winnow) but the convergence bound 

may suffer exponential growth.

 Exponential number of monomials are true in each example. 
 Also, will have to keep many weights.

Kernel Based Methods
Examples x ∈ {0,1}N ;  Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update: 

If y’≠y, update: w = w + ry x
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Weather

Whether

523341321 xxxxxxxxx ∨∨ 541 yyy ∨∨

New discriminator in functionally simpler

Embedding
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The Kernel Trick(1)

82

 Consider the value of w used in the prediction.
 Each previous mistake, on example z, makes an additive 

contribution of +/-1 to some of the coordinates of w. 
 Note: examples are Boolean, so only coordinates of w that correspond 

to ON terms in the example z  (ti(z) = 1) are being updated.

 The value of w is determined by the number and type of 
mistakes.  

Examples x ∈ {0,1}N ;  Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update: 

If y’≠y, update: w = w + ry x
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The Kernel Trick(2)

 P – set of examples on which we Promoted
 D – set of examples on which we Demoted
 M = P [ D

83

Examples x ∈ {0,1}N ;  Learned hypothesis w ∈ RN

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

Perceptron Update: 

If y’≠y, update: w = w + ry x

f(x) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x) = ∑𝐼𝐼[∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1]𝑡𝑡𝑖𝑖 (x) =

= ∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖(𝑥𝑥)]
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The Kernel Trick(3)
f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x)}

 P – set of examples on which we Promoted
 D – set of examples on which we Demoted
 M = P [ D
f(x) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑡𝑡𝑖𝑖 (x) = ∑𝐼𝐼[∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =1 1]𝑡𝑡𝑖𝑖 (x) 

= sgn{∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆 𝑧𝑧 𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖 𝑥𝑥 ]}

 Where S(z)=1 if z ∈P and S(z) = -1 if z ∈D. 
 Reordering: 

f(x) = sgn{∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)∑𝐼𝐼 𝑆𝑆(𝑧𝑧)𝑡𝑡𝑖𝑖 𝑧𝑧 𝑡𝑡𝑖𝑖(𝑥𝑥)}
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∑ ∈
=

M
 f(x)      

z
z))S(z)K(x,(Thθ

The Kernel Trick(4)

 S(y)=1 if y ∈P and S(y) = -1 if y ∈D. 

 A mistake on z contributes the value +/-1 to all monomials 
satisfied by z. The total contribution of z to the sum is equal 
to the number of monomials that satisfy both x and z.

 Define a dot product in the t-space: 

 We get the standard notation:
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Kernel Based Methods

 What does this representation give us?

 We can view this Kernel as the distance between x,z in the 
t-space. 

 But, K(x,z) can be measured in the  original space, without 
explicitly writing the t-representation of x, z 
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Kernel Trick

 Consider the space of all 3n monomials (allowing both 
positive and negative literals). Then, 

 Claim:

 When  same(x,z) is the number of features that have the 
same value for both x and z. 

 We get: 

 Example: Take n=3; x=(001), z=(011), monomials of size 0,1,2,3
 Proof: let k=same(x,z); construct a “surviving” monomials by: (1) 

choosing to include one of these k literals with the right polarity in the 
monomial, or (2) choosing to not include it at all. Monomials with 
literals outside this set disappear. 
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x1x3 (001) = x1x3 (011) = 1             
x1 (001) = x1 (011) = 1 ;    x3 (001) = x3 (011) = 1

Φ (001) = Φ (011) = 1
If any other variables appears in the monomial, 

it’s evaluation on x, z will be different.
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Example 

 Take X={x1, x2, x3, x4}
 I = The space of all 3n monomials; | I |= 81
 Consider x=(1100), z=(1101)
 Write down I(x), I(z), the representation of x, z in the I space.

 Compute I(x) ∙I(z).
 Show that 
 K(x,z) =I(x) ∙ I(z) = ∑Ι ti(z) ti(x) = 2same(x,z) = 8
 Try to develop another kernel, e.g., where I is the space of 

all conjunctions of size 3 (exactly). 
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Implementation: Dual Perceptron

 Simply run Perceptron in an on-line mode, but keep track 
of the set M.

 Keeping the set M allows us to keep track of S(z).
 Rather than remembering the weight vector w,    

remember the set M (P and D) – all those examples on 
which we made mistakes.

 Dual Representation
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Example: Polynomial Kernel
 Prediction with respect to a separating hyper planes (produced by 

Perceptron, SVM) can be computed as a function of dot products 
of  feature based representation of examples. 

 We want to define a dot product in a high dimensional space. 
 Given two examples  x = (x1, x2, …xn) and y = (y1,y2, …yn) we want 

to map them to a high dimensional space [example- quadratic]: 
 Φ(x1,x2,…,xn) = (1, x1,…,xn, x1

2,…,xn
2, x1x2,…,xn-1xn) 

 Φ(y1,y2,…,yn) = (1, y1,…,yn ,y1
2,…,yn

2, y1y2,…,yn-1yn)
and compute the dot product A  = Φ(x)TΦ(y) [takes time ]

 Instead, in the original space, compute 
 B = k(x , y)= [1+ (x1,x2, …xn )T (y1,y2, …yn)]2

 Theorem: A = B                              (Coefficients do not really matter)
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We proved that K is a valid kernel by explicitly 
showing that it corresponds to a dot product. 

Kernels – General Conditions
 Kernel Trick: You want to work with degree 2 polynomial features, Φ(x). 

Then, your dot product will be in a space of dimensionality n(n+1)/2. The 
kernel trick allows you to save and compute dot products in an n 
dimensional space. 

 Can we use any K(.,.)? 
 A function K(x,z) is a valid kernel if it corresponds to an inner product in some 

(perhaps infinite dimensional) feature space. 

 Take the quadratic kernel: k(x,z) = (xTz)2

 Example: Direct construction  (2 dimensional, for simplicity): 
 K(x,z) = (x1 z1 + x2 z2)2 = x12 z12 +2x1 z1 x2 z2 + x22 z22

 = (x12, sqrt{2} x1x2, x22) (z12, sqrt{2} z1z2, z22) T

 = Φ(x)T Φ (z)  A dot product in an expanded space.
 It is not necessary to explicitly show the feature function Φ.
 General condition: construct the kernel matrix {k(xi ,zj)}; check that it’s 

positive semi definite.  
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Polynomial kernels
 Linear kernel: k(x, z) = xz

 Polynomial kernel of degree d: k(x, z) = (xz)d

(only dth-order interactions) 

 Polynomial kernel up to degree d: k(x, z) = (xz + c)d (c>0)
(all interactions of order d or lower)
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Constructing New Kernels
 You can construct new kernels k’(x, x’) from 

existing ones:
 Multiplying k(x, x’) by a constant c:

k’(x, x’) = ck(x, x’)

 Multiplying k(x, x’) by a function f applied to x and x’: 
k’(x, x’) = f(x)k(x, x’)f(x’)

 Applying a polynomial (with non-negative coefficients) to 
k(x, x’): 
k’(x, x’) = P( k(x, x’) )  with P(z) = ∑i aizi and ai≥0

 Exponentiating k(x, x’):
k’(x, x’) = exp(k(x, x’))
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Constructing New Kernels (2)
 You can construct k’(x, x’) from k1(x, x’), k2(x, x’) by:

 Adding k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’) + k2(x, x’)

 Multiplying k1(x, x’) and k2(x, x’):
k’(x, x’) = k1(x, x’)k2(x, x’)

 Also: 

 If φ(x) ∈ Rm and km(z, z’) a valid kernel in Rm, 
k(x, x’) = km(φ(x), φ(x’)) is also a valid kernel

 If A is a symmetric positive semi-definite matrix, 
k(x, x’) = xAx’ is also a valid kernel

 In all cases, it is easy to prove these directly by construction. 
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Gaussian Kernel 
(aka radial basis function kernel)

 k(x, z) = exp(−(x − z)2/c）
 (x − z)2: squared Euclidean distance between x and z 
 c = σ2: a free parameter 
 very small c: K ≈ identity matrix  (every item is different) 
 very large c: K ≈ unit matrix  (all items are the same)

 k(x, z) ≈ 1 when x, z close
 k(x, z) ≈ 0 when x, z dissimilar 
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Gaussian Kernel
 k(x, z) = exp(−(x − z)2/c）
 Is this a kernel?
 k(x, z) = exp(−(x − z)2/2σ2）

= exp(−(xx + zz − 2xz)/2σ2）
= exp(−xx/2σ2）exp(xz/σ2) exp(−zz/2σ2）
= f(x) exp(xz/σ2) f(z)  

 exp(xz/σ2)  is a valid kernel: 
 xz is the linear kernel; 
 we can multiply kernels by constants (1/σ2) 
 we can exponentiate kernels 
Unlike the discrete kernels discussed earlier, here you cannot easily 
explicitly blow up the feature space to get an identical representation.
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 A method to  run Perceptron on a very large feature set, 
without incurring the cost of keeping a very large weight vector. 

 Computing the weight vector can be done in the original feature 
space.

 Notice: this pertains only to efficiency: the classifier is identical 
to the one you get by blowing up the feature space.

 Generalization is still relative to the real dimensionality (or, 
related properties).

 Kernels were popularized by SVMs but apply to a range of 
models, Perceptron, Gaussian Models, PCAs, etc. 

Summary – Kernel Based Methods
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Explicit & Implicit Kernels: Complexity
 Is it always worthwhile to define kernels and work in 

the dual space? 

 Computationally: 
 Dual space – t1 m2 vs, Primal Space – t2 m
 Where m is # of examples, t1, t2 are the sizes of the (Dual, 

Primal) feature spaces, respectively.
 Typically, t1 << t2, so it boils down to the number of 

examples one needs to consider relative to the growth in 
dimensionality. 

 Rule of thumb: a lot of examples  use Primal space
 Most applications today: People use explicit kernels. That is, 

they blow up the feature space explicitly. 
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Kernels: Generalization
 Do we want to use the most expressive kernels we 

can? 
 (e.g., when you want to add quadratic terms, do you really 

want to add all of them?)

 No; this is equivalent to working in a larger feature 
space, and will lead to overfitting. 

 It’s possible to give simple arguments that show that 
simply adding irrelevant features does not help. 
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Conclusion- Kernels
 The use of Kernels to learn in the dual space is an important idea

 Different kernels may expand/restrict the hypothesis space in useful ways.
 Need to know the benefits and hazards

 To justify these methods we must embed in a space much larger 
than the training set size.
 Can affect generalization

 Expressive structures in the input data could give rise to specific 
kernels, designed to exploit these structures.
 E.g., people have developed kernels over parse trees: corresponds to 

features that are sub-trees.
 It is always possible to trade these with explicitly generated features, but 

it might help one’s thinking about appropriate features. 
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Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of 

functions
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Blown Up Feature Space
 Data are separable in <x, x2> space
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Multi-Layer Neural Network
 Multi-layer network were designed to overcome the 

computational (expressivity) limitation  of a single 
threshold element. 

 The idea is to stack several 
layers of threshold elements, 
each layer using the output of 
the previous layer as input.  

 Multi-layer networks can represent arbitrary 
functions, but  building effective learning methods 
for such network was [thought to be] difficult. 
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Basic Units 
 Linear Unit: Multiple layers of linear functions  

oj = w ¢x produce linear functions.  We want to 
represent nonlinear functions.

 Need to do it in a way that 
facilitates learning

 Threshold units:  oj = sgn(w ¢x) 
are not differentiable, hence 
unsuitable for gradient descent. 

 The key idea was to notice that the discontinuity of 
the threshold element can be represents by a smooth 
non-linear approximation: oj = [1+ exp{-w ¢x}]-1

 (Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html )
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Model Neuron (Logistic)
 Us a non-linear, differentiable output function such 

as the sigmoid or logistic function

 Net input to a unit is defined as: 
 Output of a unit is defined as:
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Learning with a Multi-Layer  
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit. 
 Given feedback (truth) at the top layer, and the activation at the 

layer below it, you can use the Perceptron update rule (more 
generally, gradient descent) to updated these weights.

 The problem is what to do with 
the other set of weights – we do
not get feedback in the 
intermediate layer(s). 
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Learning with a Multi-Layer  Perceptron
 The problem is what to do with 

the other set of weights – we do 
not get feedback in the 
intermediate layer(s). 

 Solution: If all the activation 
functions are differentiable, then 
the output of the network is also 
a differentiable function of the input and weights in the network.

 Define an error function (multiple options) that is a differentiable function 
of the output, that this error function is also a differentiable function of the 
weights. 

 We can then evaluate the derivatives of the error with respect to the 
weights, and use these derivatives to find weight values that minimize this 
error function.  This can be done, for example, using gradient descent .  

 This results in an algorithm called back-propagation.
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