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Administration 
 Midterm Exam next Thursday

 In class

 Closed books
 We’ll give you some examples
 All the material covered in class and HW

 HW2 is due on Monday next week 2/26
 Only 1 day of slack time since we want to release solutions and 

give you time to prepare for the mid-term. 

 Recitations: Moore 216
 Tue 6:30; Wed 5:30

 My Office hours: 5-6, Tue/Thur

Questions
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Projects
 CIS 519 students need to do a team project

 Teams will be of size 2-3
 Projects proposals are due on Friday 3/2/18 

 Details will be available on the website
 We will give comments and/or requests to modify / augment/ do a 

different project. 
 There may also be a mechanism for peer comments.

 Please start thinking and working on the project now.
 Your proposal is limited to 1-2 pages, but needs to include references 

and, ideally,  some preliminary results/ideas.
 Any project with a significant Machine Learning component is good. 

 Experimental work, theoretical work, a combination of both or a critical 
survey of results in some specialized topic. 

 The work has to include some reading of the literature . 
 Originality is not mandatory but is encouraged. 

 Try to make it interesting! 
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Project Examples
 KDD Cup 2013:

 "Author-Paper Identification": given an author and a small set of papers, we 
are asked to identify which papers are really written by the author. 
 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: 
identification, gender, native language, …. 

 Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

 Work on making learned hypothesis more comprehensible 
 Explain the prediction

 Develop a (multi-modal) People Identifier  
 Identify contradictions in news stories
 Large scale clustering of documents + name the cluster

 E.g., cluster news documents and give a title to the document
 Deep Neural Networks: convert a state of the art NLP program to a NN
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Where are we?
 Algorithmically: 

 Perceptron + Variations
 (Stochastic) Gradient Descent 

 Models:
 Online Learning; Mistake Driven Learning

 What do we know about Generalization? (to previously 
unseen examples?) 
 How will your algorithm do on the next example?

 Next we develop a theory of Generalization.
 We will come back to the same (or very similar) algorithms   and 

show how the new theory sheds light on appropriate 
modifications of them, and provides guarantees. 
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Computational Learning Theory
 What general laws constrain inductive learning ?

 What learning problems can be solved ? 
 When can we trust the output of a  learning  algorithm ? 

 We seek theory to relate
 Probability of successful Learning
 Number of training examples
 Complexity of hypothesis space
 Accuracy to which target concept is approximated
 Manner in which training examples are presented

6
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Quantifying Performance
 We want to be able to say something rigorous about the 

performance of our learning algorithm.

 We will concentrate on discussing the number of 
examples one needs to see before we can say that our 
learned hypothesis is good. 

Recall what we 
did earlier: 
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Learning Conjunctions
 There is a hidden conjunction the learner (you) is to learn 

 How many examples are needed to learn it ?  How ?
 Protocol I:  The learner proposes instances as queries to the 

teacher
 Protocol II:  The teacher (who knows f) provides training examples 
 Protocol III: Some random source (e.g., Nature) provides training 

examples; the Teacher (Nature) provides the labels (f(x))

1005432 xxxxxf ∧∧∧∧=
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Learning Conjunctions
 Protocol I:  The learner proposes instances as queries to 

the teacher
 Since we know we are after a monotone conjunction:
 Is x100 in?   <(1,1,1…,1,0), ?>   f(x)=0 (conclusion: Yes)
 Is x99 in?   <(1,1,…1,0,1), ?>   f(x)=1 (conclusion: No)
 Is x1 in ?  <(0,1,…1,1,1), ?>   f(x)=1 (conclusion: No)

 A straight forward algorithm requires n=100 queries, and 
will produce as a result the hidden conjunction (exactly).

1005432 xxxxxh ∧∧∧∧=
What happens here if the conjunction 
is not known to be monotone?
If we know of a positive example,
the same algorithm works. 
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1005432 xxxxxf ∧∧∧∧=

Learning Conjunctions
 Protocol II:  The teacher (who knows f) provides training 

examples
 <(0,1,1,1,1,0,…,0,1), 1> (We learned a superset of the good variables)

 To show you that all these variables are required…
 <(0,0,1,1,1,0,…,0,1), 0>   need x2

 <(0,1,0,1,1,0,…,0,1), 0>   need x3

 …..
 <(0,1,1,1,1,0,…,0,0), 0>   need x100

 A straight forward algorithm requires k = 6 examples to 
produce the hidden conjunction (exactly).

Modeling Teaching 
Is tricky

10
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 <(1,1,1,1,1,1,…,1,1), 1>
 <(1,1,1,0,0,0,…,0,0), 0>
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,1,0,...0,1,1), 0>
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>
 <(1,1,1,1,1,1,…,0,1), 1>
 <(0,1,0,1,0,0,...0,1,1), 0>

 How should we learn?
 Skip

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Learning Conjunctions(III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  Elimination 
 Start with the set of all literals as candidates
 Eliminate a literal that is not active (0) in a positive example
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      learned nothing
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>     learned nothing
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>    Final hypothesis: 
 <(1,1,1,1,1,1,…,0,1), 1>       h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 

 <(0,1,0,1,0,0,...0,1,1), 0>

• Is it  good
• Performance ?
• # of examples ?

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 

13



CIS419/519 Spring ’18

Learning Conjunctions (III)
 Protocol III:  Some random source (e.g., Nature) provides 

training examples
 Teacher (Nature) provides the labels (f(x)) 

 Algorithm:  ……. 
 <(1,1,1,1,1,1,…,1,1), 1>     
 <(1,1,1,0,0,0,…,0,0), 0>      
 <(1,1,1,1,1,0,...0,1,1), 1>
 <(1,0,1,1,0,0,...0,0,1), 0>     
 <(1,1,1,1,1,0,...0,0,1), 1>
 <(1,0,1,0,0,0,...0,1,1), 0>   Final hypothesis:
 <(1,1,1,1,1,1,…,0,1), 1>     h= x1 ˄ x2 ˄ x3 ˄ x4 ˄ x5 ˄ x100 

 <(0,1,0,1,0,0,...0,1,1), 0>
 <(0,1,0,1,0,0,...0,1,1), 0>

• Is it  good
• Performance ?
• # of examples ?

 With the given data, we only learned an 
“approximation” to the true concept

 We don’t know how many examples we 
need to see to learn exactly. (do we care?)

 But we know that we can make a limited # 
of mistakes. 

f= x2 ˄ x3 ˄ x4 ˄ x5  ˄ x100 
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Two Directions
 Can continue to analyze the probabilistic intuition:

 Never saw x1 in positive examples, maybe we’ll never see it?
 And if we will, it will be with small probability, so the concepts we 

learn may be pretty good
 Good: in terms of performance on future data
 PAC framework

 Mistake Driven Learning algorithms
 Update your hypothesis only when you make mistakes
 Good: in terms of how many mistakes you make before you stop, 

happy with your hypothesis. 
 Note: not all on-line algorithms are mistake driven, so 

performance measure could be different.

15
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Prototypical Concept Learning
 Instance Space:  X 

 Examples
 Concept Space: C 

 Set of possible target functions: f 2 C is the hidden target function
 All n-conjunctions; all n-dimensional linear functions. 

 Hypothesis Space: H set of possible hypotheses
 Training instances Sx{0,1}: positive and negative examples of the 

target concept f ∈ C

 Determine: A hypothesis h ∈ H such that h(x) = f(x)
 A hypothesis h ∈ H such that h(x) = f(x)     for all x ∈ S ?
 A hypothesis h ∈ H such that h(x) = f(x)    for all x ∈ X ? 

><><>< )(,,...)(,,)(, 2211 nn xfxxfxxfx

10054321 xxxxxxh ∧∧∧∧∧=
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Prototypical Concept Learning
 Instance Space:  X 

 Examples
 Concept Space: C 

 Set of possible target functions: f 2 C is the hidden target function
 All n-conjunctions; all n-dimensional linear functions. 

 Hypothesis Space: H set of possible hypotheses
 Training instances Sx{0,1}: positive and negative examples of the 

target concept f ∈ C. Training instances are generated by a fixed 
unknown probability distribution D over X

 Determine: A hypothesis h ∈ H that estimates f, evaluated by its 
performance on subsequent instances x ∈ X drawn according  to D

><><>< )(,,...)(,,)(, 2211 nn xfxxfxxfx

10054321 xxxxxxh ∧∧∧∧∧=
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PAC Learning – Intuition 
• We have seen many examples (drawn according to D ) 
• Since in all the positive examples x1 was active, it is very likely that it will be

active in future positive examples 
• If not, in any case, x1 is active only in a small percentage of the 

examples so our error will be small 

10054321 xxxxxxh ∧∧∧∧∧=

f
h

f and h disagree

+ +
-

-

-

h(x)][f(x)Error
DxD Pr ≠=

∈
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The notion of error
Can we bound the Error

given what we know about the training instances ? 

f
h

f and h disagree

+ +
-

-

-

10054321 xxxxxxh ∧∧∧∧∧=

h(x)][f(x)Error
DxD Pr ≠=

∈
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Learning Conjunctions– Analysis (1)
 Let z be a literal. Let p(z) be the probability that, in D-sampling an 

example, it is positive and z is false in it. Then: Error(h) · ∑z 2 h p(z) 
 p(z) is also the probability that a randomly chosen example is positive and z

is deleted from h. 
 If z is in the target concept, than p(z) = 0.

 Claim: h will make mistakes only on positive examples. 
 A mistake is made only if a literal z, that is in h but not in f, is  false in a 

f
h+ +
-

-

-

10054321 xxxxxxh ∧∧∧∧∧=

positive example. In this case, h will say NEG, but the 
example is POS.

Thus, p(z) is also the probability that z causes h to 
make a mistake on a randomly drawn example from D .
There may be overlapping reasons for mistakes,                                         
but the sum clearly bounds it.
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Learning Conjunctions– Analysis (2)
 Call a literal z in the hypothesis h bad if p(z) > ε/n.
 A bad literal is a literal that is not in the target concept and has a significant 

probability to appear false with a positive example.  
 Claim: If there are no bad literals, than error(h) < ε. Reason: Error(h) · ∑z 2 h p(z)
 What if there are bad literals ? 

 Let z be a bad literal. 
 What is the probability that it will not be eliminated by a given example?
Pr(z survives one example) = 1- Pr(z is eliminated by one example) = 

· 1 – p(z) < 1- ε/n
 The probability that z will not be eliminated by m examples is therefore:

Pr(z survives m independent examples)  = (1 –p(z))m < (1- ε/n)m 

 There are at most n bad literals, so the probability that some bad literal survives 
m examples is bounded by n(1- ε/n)m

21
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Learning Conjunctions– Analysis (3)
 We want  this probability to be small. Say,  we want to choose m large enough 

such that the probability that some z survives m examples is less than δ.  
 (I.e., that z remains in h, and makes it different from the target function)

Pr(z survives m example) =  n(1- ε/n)m < δ
 Using  1-x < e-x (x>0)  it is sufficient to require that  n e-mε/n < δ
 Therefore, we need 

examples to guarantee a probability of failure (error > ²) of less than δ.
 Theorem: If m is as above, then: 

 With probability > 1- δ ±, there are no bad literals; equivalently, 
 With probability > 1- δ ±, Err(h) < ε ²

 With δ=0.1, ε=0.1, and n=100, we need  6907 examples.
 With δ=0.1, ε=0.1, and n=10, we need  only 460 example, only 690 for δ=0.01

)}/1ln(){ln( δ
ε

+> nnm
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Formulating Prediction Theory
 Instance Space  X, Input to the Classifier;     Output Space Y = {-1, +1} 
 Making predictions with: h: X  Y 
 D: An unknown distribution over X £ Y 
 S: A set of examples drawn independently from D; m = |S|, size of sample.
Now we can define:
 True Error: ErrorD = Pr(x,y) 2  D [h(x) : = y]
 Empirical Error: ErrorS = Pr(x,y) 2  S [h(x) : = y] = ∑1,m [h(xi) : = yi]

 (Empirical Error (Observed Error, or Test/Train error, depending on S))
This will allow us to ask:  (1) Can we describe/bound  ErrorD given ErrorS ?
 Function Space: C – A set of possible target concepts; target is: f: X  Y 
 Hypothesis Space: H – A set of possible hypotheses
 This will allow us to ask: (2) Is C learnable?

 Is it possible to learn a given function in C using functions in H, given the 
supervised protocol? 

23
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Requirements of Learning
 Cannot expect a learner to learn a concept exactly, since 

 There will generally be multiple concepts consistent with the available 
data (which represent a small fraction of the available instance space).

 Unseen examples could potentially have any label    
 We “agree” to misclassify uncommon examples that do not show up in 

the training set.

 Cannot always expect to learn a close approximation to the 
target concept since 
 Sometimes (only in rare learning situations, we hope) the training set   

will not be representative (will contain uncommon examples).  

 Therefore, the only realistic expectation of a good learner is 
that with high probability it will learn a close approximation to 
the target concept.

24
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Probably Approximately Correct
 Cannot expect a learner to learn a concept exactly.
 Cannot always expect to learn a close approximation to 

the target concept 
 Therefore, the only realistic expectation of a good learner 

is that with high probability it will learn a close 
approximation to the target concept.

 In Probably Approximately Correct (PAC) learning, one 
requires that given small parameters ε and δ,  with 
probability at least (1- δ) a learner produces a hypothesis 
with error at most  ε

 The reason we can hope for that is the Consistent 
Distribution assumption.

25
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PAC Learnability
 Consider a  concept class C defined over an instance space X

(containing instances of length n),  and a learner L using a hypothesis 
space H.  

 C is PAC learnable by L using H if
 for all f ∈ C,
 for all distributions D  over X, and fixed 0< ε, δ < 1, 

 L, given a collection of m examples sampled independently according 
to D produces 
 with probability at least (1- δ) a hypothesis h ∈ H with error at most ε, 

(ErrorD = PrD[f(x) : = h(x)]) 

 where m is polynomial in 1/ ε, 1/ δ, n and size(H)
 C is efficiently learnable if L can produce the hypothesis in time

polynomial in 1/ ε, 1/ δ, n and size(H)

26
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PAC Learnability
 We impose two limitations: 
 Polynomial sample complexity  (information theoretic constraint)

 Is there enough information in the sample to distinguish a hypothesis h
that approximate f ?  

 Polynomial time complexity (computational complexity)
 Is there an efficient algorithm that can process the sample and produce a 

good hypothesis h ? 

 To be PAC learnable, there must be a hypothesis h ∈ H with arbitrary 
small error for every f ∈ C. We generally assume H ⊇ C. (Properly PAC 
learnable if H=C) 

 Worst Case definition: the algorithm must meet its accuracy 
 for every distribution (The distribution free assumption)
 for every target function f in the class C 

27
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Occam’s Razor (1)
Claim: The probability that there exists a hypothesis h ∈ H that 

(1) is consistent with m examples and 
(2) satisfies error(h) > ε ( ErrorD(h) = Prx 2 D [f(x) : =h(x)] )

is less than   |H|(1- ε )m .

So, what is m?

ε−<=
∈

1)]()([Pr xhxf
Dx

mH )1(|| ε−

m)1( ε−

Proof: Let h be such a bad hypothesis. 
- The probability that h is consistent with one example of f is

- Since the m examples are drawn independently of each other, 
The probability that h is consistent with m example of f is less than

- The probability that some hypothesis in H is consistent with m examples
is less than Note that we don’t need a true f for 

this argument; it can be done with h, 
relative to a distribution over XxY. 
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Occam’s Razor (1)
We want this probability to be smaller than δ, that is:

|H|(1- ε)  <  δ

ln(|H|) + m ln(1- ε)  <  ln(δ)

(with e-x = 1-x+x2/2+…; e-x > 1-x; ln (1- ε)  < - ε; gives a safer δ)

(gross over estimate)
It is called Occam’s razor, because it indicates a preference towards small 
hypothesis spaces 

What kind of hypothesis spaces do we want ?         Large ?            Small ?
To guarantee consistency we need H ⊇ C.    But do we want the smallest H possible ?

m

)}/1ln(|){ln(|1 δ
ε

+> Hm
We showed that a         
m-consistent hypothesis 
generalizes well (err< ε ²)
(Appropriate m is a 
function of |H|..±)

What do we know now 
about the Consistent 
Learner scheme?
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Why Should We Care?
 We now have a theory of generalization

 We know what the important complexity parameters are,
 We understand the dependence in the number of examples and 

in the size of the hypothesis class.

 We have a generic procedure for learning that is 
guaranteed to generalize well
 Draw a sample of size m.
 Develop an algorithm that is consistent with it.
 It will be good

 If m was large enough. 

30
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Consistent Learners
 Immediately from the definition, we get the following general scheme 

for PAC learning:
 Given a sample D of m examples

 Find some h ∈ H that is consistent with all m examples
 We showed that if m is large enough, a consistent hypothesis must be close 

enough to f 
 Check that m is not too large (polynomial in the relevant parameters) : we 

showed that the “closeness” guarantee requires that 
m > 1/² (ln |H| + ln 1/±) 

 Show that the consistent hypothesis h ∈ H can be computed efficiently

 In the case of conjunctions 
 We used the Elimination algorithm to find a hypothesis h that is consistent 

with the training set  (easy to compute) 
 We showed directly that if we have sufficiently many examples (polynomial 

in the parameters), than h is close to the target function.

We did not need to show it directly.  
See above.
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Examples
Conjunction (general): The size of the hypothesis space is 3   

Since there are 3 choices for each feature 
(not appear, appear positively or appear negatively)

(slightly different than previous bound) 

• If we want to guarantee a 95% chance of learning a hypothesis of at least 90% accuracy,
with n=10 Boolean variable,  m > (ln(1/0.05) +10ln(3))/0.1 =140.

• If we go to n=100, this goes just to 1130,     (linear with n)
• but changing the confidence to 1% it goes just to 1145   (logarithmic with δ)

These results hold  for any consistent learner.

)}/1ln(3ln{1)}/1ln()3{ln(1 δ
ε

δ
ε

+=+> nm n

n
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Why Should We Care?
 We now have a theory of generalization

 We know what are the important complexity parameters
 We understand the dependence in the number of examples and 

in the size of the hypothesis class

 We have a generic procedure for learning that is 
guaranteed to generalize well
 Draw a sample of size m.
 Develop an algorithm that is consistent with it.
 It will be good.

 We have tools to prove that some hypothesis classes are 
learnable and some are not

33
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Administration 
 Midterm Exam on Thursday

 Students whose name starts with A-K (inclusive))
 Go to LRSM, Room: AUD

 Students whose name starts with L-Z (inclusive) 
 Come here, Levine, Wu & Chen

 Please don’t be later!!!

 Closed books
 3 practice exams (on the web); will be discussed in recitations. 

 Moore 216: Tue 6:30; Wed 5:30

 Covers: all the material covered in class and HW
 HW2 + 1 day of slack time is due tonight. 
 My Office hours: 5-6, Tue/Thur

Questions

34
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K-CNF
)...(

211 kiii
m
i lllf ∨∨∨∧= =

Occam Algorithm (=Consitent Learner algorithm) for f ∈ k-CNF

• Draw a sample D of size m
• Find a hypothesis h that is consistent with  all the examples in D
• Determine sample complexity:

How do we find the consistent hypothesis h ?

knk nnOCNFk
k

)2(..........2...........                  )(|)ln(| )2(=−
kim lllCCCCf ∨∨∨=∧∧∧= ...;........;... 2121

• (1) Due to the sample complexity result h is guaranteed to be 
a PAC hypothesis; but we need to learn a consistent hypothesis. 
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K-CNF
)...(

211 kiii
m
i lllf ∨∨∨∧= =

(2) How do we find the consistent hypothesis h ?

• Define a new set of features (literals), one for each clause of size k

• Use the algorithm for learning monotone conjunctions, over the 
new set of literals

k
iiij njllly
k

,...,2,1;...
21

=∨∨∨=

436425324

413312211

           
           

xxyxxyxxy
xxyxxyxxy

∨=∨=∨=
∨=∨=∨=

Example: n=4, k=2; monotone k-CNF

Original examples:  (0000,l) (1010,l) (1110,l) (1111,l)

New examples: (000000,l) (111101,l) (111111,l) (111111,l) Distribution?
36
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Negative Results – Examples 
 Two types of non-learnability results:
 Complexity Theoretic

 Showing that various concepts classes cannot be learned, based on 
well-accepted assumptions from computational complexity theory. 

 E.g. : C cannot be learned unless P=NP
 Information Theoretic

 The concept class is sufficiently rich that a polynomial number of 
examples may not be sufficient to distinguish a particular target 
concept. 

 Both type involve “representation dependent” arguments.
 The proof shows that a given class cannot be learned by algorithms 

using hypotheses from the same class.  (So?)
 Usually proofs are for EXACT learning, but apply for the 

distribution free case.
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Negative Results for Learning

 Complexity Theoretic: 
 k-term DNF, for k>1         (k-clause CNF, k>1)
 Neural Networks of fixed architecture (3 nodes; n inputs)
 “read-once” Boolean formulas
 Quantified conjunctive concepts 

 Information Theoretic: 
 DNF Formulas;  CNF Formulas 
 Deterministic Finite Automata
 Context Free Grammars

We need to extend the theory in two ways:
(1) What if we cannot be completely consistent with the training data?
(2) What if the hypothesis class we work with is not finite? 
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Agnostic Learning
 Assume we are trying to learn a concept f using hypotheses in H, 

but f ∉ H 
 In this case, our goal should be to find a hypothesis h ∈ H,   with a 

small training error:

 We want a guarantee that a hypothesis with a small training error 
will have a good  accuracy on unseen examples

 Hoeffding bounds characterize the deviation between the true
probability of some event and its observed frequency over m 
independent trials. Pr 𝑝𝑝 > 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 +∈ < 𝑒𝑒−2𝑚𝑚∈2

 (p is the underlying probability of the binary variable (e.g., toss is 
Head) being 1; 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 is what we observe empirically – empirical error)

|)}()(;_{|1)( xhxfexamplestrainingx
m

hErrTR ≠∈=

)]()([Pr)( xhxfhErr DxD ≠= ∈
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Agnostic Learning
 Therefore, the probability that an element in H will have training error which is 

off by more than ε can be bounded as follows:

 Doing the same union bound  game as before, with  
δ=|H|e-2mε2 (from here, we can now isolate m, or ε) 

 We get a generalization bound – a bound on how much will the true error ED
deviate from the observed (training) error ETR.

 For any distribution D generating training and test instances, with probability at 
least 1-δ over the choice of the training set of size m, (drawn IID), for all h∈H

 See slide 71 in the On-line Lecture

m
H

hErrorhError TRD 2
)/1log(||log

)()(
δ+

+<

22])()([ εε m
TRD ehErrhErr −<+>Pr
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A term that forces 
simple hypothesis

A term that minimizes error on 
the training data

Summary
(on-line lecture #71)

 Introduced multiple versions of on-line algorithms
 All turned out to be Stochastic Gradient Algorithms

 For different loss functions
 Some turned out to be mistake driven

 We suggested generic improvements via:
 Regularization via adding a term that forces a “simple hypothesis” 

J(w) = ∑1, m Q(zi, wi) + λ Ri (wi)
 Regularization via the Averaged Trick

 “Stability” of a hypothesis is related to its ability to generalize

 An improved, adaptive, learning rate (Adagrad)
 Dependence on function space and the instance space properties. 
 Today: 

 A way to deal with non-linear target functions (Kernels)
 Beginning of Learning Theory.

45
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Agnostic Learning

 An agnostic learner which makes no commitment to 
whether f is in H and returns the hypothesis with least 
training error over at least the following number of 
examples m can guarantee with probability at least (1-δ)  
that its training error is not off by more than ε from the 
true error.

)}/1ln(|){ln(|
2

1
2 δ

ε
+> Hm

46



CIS419/519 Spring ’18

Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle 
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle 

 Will we be able to learn the Rectangle?
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Learning Rectangles
 Assume the target concept is an axis parallel rectangle 

 Will  we be able to learn the target rectangle ? 
 Can we come close ? 
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Infinite Hypothesis Space
 The previous analysis was restricted to finite hypothesis 

spaces 
 Some infinite hypothesis spaces are more expressive than 

others
 E.g., Rectangles, vs. 17- sides convex polygons vs. general convex 

polygons
 Linear threshold function vs. a conjunction of LTUs

 Need a measure of the expressiveness of an infinite 
hypothesis space other than its size 

 The Vapnik-Chervonenkis dimension (VC dimension)  
provides such a measure. 

 Analogous to |H|, there are bounds for sample complexity 
using VC(H)
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Shattering
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Shattering

Linear functions are expressive enough 
to shatter 2 points

(4 options; not all shown)

58



CIS419/519 Spring ’18

Shattering

Linear functions are not expressive 
enough to shatter 13 points
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples
(Intuition:  A rich set of functions shatters large sets of points)
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples
(Intuition:  A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis: [0,a), for some real number a>0

0 a
+ + + + + --
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples
(Intuition:  A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis: [0,a), for some real number a>0

Sets of two points cannot be shattered
(we mean: given two points, you can label them in such a way that 
no concept in this class will be consistent with  their labeling)

0 a
+ + + + + --

0 a
+ + + + +

-
-

+
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

Intervals on the real axis: [a,b], for some real numbers b>a

a b
+ + + + + ----

This is the set of functions (concept class) considered here
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

Intervals on the real axis: [a,b], for some real numbers b>a

All sets of one or two points can be shattered
but sets of three points cannot be shattered

a b
+ + + + + --

b b
+ + + + +

-
-

+
-- --

+
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

Half-spaces in the plane:

+ ---
-

+
+

+
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

Half-spaces in the plane:

sets of one, two or three points can be shattered
but there is no set of  four points that can be shattered

+ ---
-

+
+

+
+ -

- + 1. If the 4 points 
form a convex 

polygon… (if not?)
2. If one point is 

inside  the convex 
hull defined by the 

other three…
(if not?)

All sets of 
three?
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VC Dimension
• An unbiased hypothesis space H shatters the entire instance space X, i.e, 

it is able to induce every possible partition on the set of all possible instances. 

• The larger the subset X that can be shattered, the more expressive a 
hypothesis space is, i.e., the less biased.
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VC Dimension
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

• The VC dimension of hypothesis space H over instance space X
is the size of the largest finite subset of X that is shattered by H.

Two steps to proving that VC(H) =d:
• If  there exists a subset of size d that can be shattered, then VC(H) >=d
• If no subset of size d can be shattered, then VC(H) < d

VC(Half intervals) = 1 (no subset of size 2 can be shattered)
VC( Intervals) = 2 (no subset of size 3 can be shattered)
VC(Half-spaces in the plane) = 3 (no subset of size 4 can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are not
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Sample Complexity & VC Dimension

What if H 
is finite?

• Using VC(H) as a measure of expressiveness we have an Occam algorithm
for infinite hypothesis spaces.

• Given a sample D of m examples
• Find some h ∈ H that is consistent with all m examples
• If 
•

• Then with probability at least (1-δ), h has error less than ε.

(that is, if m is polynomial we have a PAC learning algorithm;
to be efficient, we need to produce the hypothesis h efficiently. 

• Notice that to shatter m examples it must be that: |H|>2m, so log(|H|)¸ VC(H)

)}2log(413log)(8{1
δεε

+> HVCm

69



CIS419/519 Spring ’18

Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ? 
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?

• Some four instance can be shattered

(need to consider here 16 different
rectangles)  Shows that VC(H)>=4
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?

• Some four instance can be shattered          and some cannot

(need to consider here 16 different
rectangles)  Shows that VC(H)>=4
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?

• But, no five instances can be shattered
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?

• But, no five instances can be shattered
There can be at most 4 distinct
extreme points (smallest or largest 
along some dimension) and these 
cannot be included (labeled +)
without including the 5th point.

Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ? 
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ? 

Find the smallest rectangle that 
contains the positive examples 
(necessarily, it will not contain any 
negative example, and the hypothesis
is consistent.

Axis parallel rectangles are efficiently PAC learnable.
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Sample Complexity Lower Bound
• There is also a general lower bound on the minimum number of examples 

necessary  for PAC leaning in the general case.

• Consider any concept class C such that VC(C)>2, 
any learner L and small enough ε, δ.  
Then, there exists  a distribution D and a target function in C such that 
if L observes less than 

examples, then with probability at least δ, 
L outputs a hypothesis having error(h) > ε .

Ignoring constant factors, the lower bound is the same as the upper bound,
except for the extra log(1/ε) factor in the upper bound.

]
32

1)(),1log(1max[
εδε

−
=

CVCm
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COLT Conclusions
 The PAC framework provides a reasonable model for theoretically 

analyzing the effectiveness of learning algorithms. 
 The sample complexity for any consistent learner using the hypothesis 

space, H, can be determined from a measure of H’s expressiveness (|H|, 
VC(H))

 If the sample complexity is tractable, then the computational complexity 
of  finding a consistent hypothesis governs the complexity of the problem.

 Sample complexity bounds given here are far from being tight, but 
separate  learnable classes from non-learnable classes (and show what’s 
important).

 Computational complexity results exhibit cases where information 
theoretic learning is feasible, but finding good hypothesis is intractable. 

 The theoretical framework allows for a concrete analysis of the 
complexity of learning as a function of various assumptions (e.g., relevant 
variables)   
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COLT Conclusions (2)
 Many additional models have been studied as extensions 

of the basic one:      
 Learning with noisy data
 Learning under specific distributions
 Learning probabilistic representations
 Learning neural networks
 Learning finite automata
 Active Learning; Learning with Queries
 Models of Teaching

 An important extension: PAC-Bayesians theory. 
 In addition to the Distribution Free assumption of PAC, makes also 

an assumption of a prior distribution over the hypothesis the 
learner can choose from. 

80



CIS419/519 Spring ’18

COLT Conclusions (3)
 Theoretical results shed light on important issues such as 

the importance of  the bias (representation), sample and 
computational complexity,  importance of interaction, etc.

 Bounds guide model selection even when not practical. 
 A lot of recent work is on data dependent bounds.   
 The impact COLT has had on practical learning system in 

the last few years has been very significant: 
 SVMs; 
 Winnow (Sparsity), 
 Boosting
 Regularization
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