
CIS419/519 Spring ’18

CIS 519/419
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

Lecture given by Daniel Khashabi

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton
for CIS519/419 at Penn, or from other authors who have made their ML slides available.

http://www.cis.upenn.edu/%7Edanroth/

CIS419/519 Spring ’18

Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of

functions

2

x

CIS419/519 Spring ’18

Blown Up Feature Space
 Data are separable in <x, x2> space

3

x

x2

CIS419/519 Spring ’18

Multi-Layer Neural Network
 Multi-layer network were designed to overcome the

computational (expressivity) limitation of a single
threshold element.

 The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

 Multi-layer networks can represent arbitrary
functions, but building effective learning methods
for such network was [thought to be] difficult.

4

activation

Input

Hidden

Output

CIS419/519 Spring ’18

Basic Units
 Linear Unit: Multiple layers of linear functions

oj = w ¢x produce linear functions. We want to
represent nonlinear functions.

 Need to do it in a way that
facilitates learning

 Threshold units: oj = sgn(w ¢x)
are not differentiable, hence
unsuitable for gradient descent.

 The key idea was to notice that the discontinuity of
the threshold element can be represents by a smooth
non-linear approximation: oj = [1+ exp{-w ¢x}]-1

 (Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html)

5

activation

Input

Hidden

Output

w2
ij

w1
ij

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

CIS419/519 Spring ’18

Model Neuron (Logistic)
 Us a non-linear, differentiable output function such

as the sigmoid or logistic function

 Net input to a unit is defined as:
 Output of a unit is defined as:

6

iijj xwnet ∑ •=

)T(netj jje1
1O −−+

=

jT

1
2

6

3
4
5

7

67w

17w

∑
T

jO

1x

7x

CIS419/519 Spring ’18

Learning with a Multi-Layer
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit.
 Given feedback (truth) at the top layer, and the activation at the

layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

 The problem is what to do with
the other set of weights – we do
not get feedback in the
intermediate layer(s).

7

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS419/519 Spring ’18

Learning with a Multi-Layer Perceptron
 The problem is what to do with

the other set of weights – we do
not get feedback in the
intermediate layer(s).

 Solution: If all the activation
functions are differentiable, then
the output of the network is also
a differentiable function of the input and weights in the network.

 Define an error function (multiple options) that is a differentiable function
of the output, that this error function is also a differentiable function of the
weights.

 We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function. This can be done, for example, using gradient descent .

 This results in an algorithm called back-propagation.

8

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS419/519 Spring ’18

Neural Networks
 Robust approach to approximating real-valued, discrete-

valued and vector valued target functions.
 Among the most effective general purpose supervised

learning method currently known.
 Effective especially for complex and hard to interpret

input data such as real-world sensory data, where a lot of
supervision is available.

 The Backpropagation algorithm for neural networks has
been shown successful in many practical problems
 handwritten character recognition, speech recognition, object

recognition, some NLP problems

9

CIS419/519 Spring ’18

Neural Networks
 Neural Networks are functions: NN:𝑋𝑋 → 𝑌𝑌

 where 𝑋𝑋 = 0,1 𝑛𝑛, or {0,1}𝑛𝑛 and 𝑌𝑌 = 0,1 , {0,1}
 NN can be used as an approximation of a target classifier

 In their general form, even with a single hidden layer, NN can
approximate any function

 Algorithms exist that can learn a NN representation from labeled
training data (e.g., Backpropagation).

10

CIS419/519 Spring ’18

Multi-Layer Neural Networks
 Multi-layer network were designed to overcome the

computational (expressivity) limitation of a single
threshold element.

 The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

11

activation

Input

Hidden

Output

CIS419/519 Spring ’18

Motivation for Neural Networks
 Inspired by biological systems

 But don’t take this (as well as any other words in the new on
“emergence” of intelligent behavior) seriously;

 We are currently on rising part of a wave of interest in NN
architectures, after a long downtime from the mid-90-ies.
 Better computer architecture (GPUs, parallelism)
 A lot more data than before; in many domains, supervision is

available.

 Current surge of interest has seen very minimal
algorithmic changes

12

CIS419/519 Spring ’18

Motivation for Neural Networks
 Minimal to no algorithmic changes
 One potentially interesting perspective:

 Before we looked at NN only as function approximators.
 Now, we look at the intermediate representations generated

while learning as meaningful
 Ideas are being developed on the value of these intermediate

representations for transfer learning etc.

 We will present in the next two lectures a few of the basic
architectures and learning algorithms, and provide some
examples for applications

13

CIS419/519 Spring ’18

Basic Unit in Multi-Layer Neural Network

 Linear Unit: 𝑜𝑜𝑗𝑗 = 𝑤𝑤. 𝑥⃗𝑥 multiple layers of linear functions
produce linear functions. We want to represent nonlinear
functions.

 Threshold units: 𝑜𝑜𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤. 𝑥⃗𝑥 − 𝑇𝑇) are not
differentiable, hence unsuitable for gradient descent

15

activation

Input

Hidden

Output

CIS419/519 Spring ’18

Model Neuron (Logistic)
 Neuron is modeled by a unit 𝑗𝑗 connected by weighted

links 𝑤𝑤𝑖𝑖𝑖𝑖 to other units 𝑖𝑖.

 Use a non-linear, differentiable output function such as the
sigmoid or logistic function

 Net input to a unit is defined as:

 Output of a unit is defined as:

16

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

The parameters so far?
The set of connective weights: 𝑤𝑤𝑖𝑖𝑖𝑖
The threshold value: 𝑇𝑇𝑗𝑗

CIS419/519 Spring ’18

History: Neural Computation

17

 McCollough and Pitts (1943) showed how linear
threshold units can be used to compute logical
functions

 Can build basic logic gates
 AND: 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗/𝑛𝑛
 OR: 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗
 NOT: use negative weight

 Can build arbitrary logic circuits, finite-state machines
and computers given these basis gates.

 Can specify any Boolean function using two layer
network (w/ negation)
 DNF and CNF are universal representations

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

CIS419/519 Spring ’18

History: Learning Rules
 Hebb (1949) suggested that if two units are both active

(firing) then the weights between them should increase:
𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑜𝑜𝑖𝑖𝑜𝑜𝑗𝑗

 𝑅𝑅 and is a constant called the learning rate
 Supported by physiological evidence

 Rosenblatt (1959) suggested that when a target output
value is provided for a single neuron with fixed input, it
can incrementally change weights and learn to produce
the output using the Perceptron learning rule.
 assumes binary output units; single linear threshold unit
 Led to the Perceptron Algorithm

 See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

18

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

CIS419/519 Spring ’18

Perceptron Learning Rule
 Given:

 the target output for the output unit is 𝑡𝑡𝑗𝑗
 the input the neuron sees is 𝑥𝑥𝑖𝑖
 the output it produces is 𝑜𝑜𝑗𝑗

 Update weights according to 𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖
 If output is correct, don’t change the weights
 If output is wrong, change weights for all inputs which are 1

 If output is low (0, needs to be 1) increment weights
 If output is high (1, needs to be 0) decrement weights

19

∑
𝑇𝑇𝑗𝑗

𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

CIS419/519 Spring ’18

Widrow-Hoff Rule
 This incremental update rule provides an approximation

to the goal:
 Find the best linear approximation of the data

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 𝑗𝑗 =
1
2
�
𝑑𝑑∈𝐷𝐷

𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 2

 where:

𝑜𝑜𝑑𝑑 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖 =𝑤𝑤 𝑗𝑗 . 𝑥⃗𝑥

output of linear unit on example d
 𝑡𝑡𝑑𝑑 = Target output for example d

20

CIS419/519 Spring ’18

Gradient Descent
 We use gradient descent determine the weight vector that minimizes

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 𝑗𝑗 ;

 Fixing the set 𝐷𝐷 of examples, 𝐸𝐸 is a function of 𝑤𝑤 𝑗𝑗

 At each step, the weight vector is modified in the direction that
produces the steepest descent along the error surface.

21

𝐸𝐸𝐸𝐸𝐸𝐸(𝑤𝑤)

𝑤𝑤𝑤𝑤3 𝑤𝑤2 𝑤𝑤1 𝑤𝑤0

CIS419/519 Spring ’18

Summary: Single Layer Network
 Variety of update rules

 Multiplicative
 Additive

 Batch and incremental algorithms
 Various convergence and efficiency conditions
 There are other ways to learn linear functions

 Linear Programming (general purpose)
 Probabilistic Classifiers (some assumption)

 Key algorithms are driven by gradient descent

22

CIS419/519 Spring ’18

General Stochastic Gradient Algorithms

wt+1 = wt – rt gw Q(xt, yt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – wT x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – 𝑤𝑤𝑡𝑡𝑇𝑇 xt) xt

Here, even though we make binary predictions based on sgn (wT x) we
do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y wT x)

This leads to the perceptron update rule:

If yi 𝑤𝑤𝑖𝑖𝑇𝑇∙ xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

23

wT x

The loss Q: a function of x, w and yLearning rate gradient

Here g = -yx
Good to think about the

case of Boolean examples

CIS419/519 Spring ’18

Summary: Single Layer Network
 Variety of update rules

 Multiplicative
 Additive

 Batch and incremental algorithms
 Various convergence and efficiency conditions
 There are other ways to learn linear functions

 Linear Programming (general purpose)
 Probabilistic Classifiers (some assumption)

 Key algorithms are driven by gradient descent
 However, the representational restriction is limiting in

many applications

24

CIS419/519 Spring ’18

Learning with a Multi-Layer
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit.
 Given feedback (truth) at the top layer, and the activation at the layer

below it, you can use the Perceptron update rule (more generally,
gradient descent) to updated these weights.

 The problem is what to do with
the other set of weights – we do
not get feedback in the
intermediate layer(s).

25

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS419/519 Spring ’18

Learning with a Multi-Layer
Perceptron

 The problem is what to do with
the other set of weights – we do
not get feedback in the
intermediate layer(s).

 Solution: If all the activation
functions are differentiable, then
the output of the network is also
a differentiable function of the input and weights in the network.

 Define an error function (e.g., sum of squares) that is a differentiable function
of the output, i.e. this error function is also a differentiable function of the
weights.

 We can then evaluate the derivatives of the error with respect to the weights,
and use these derivatives to find weight values that minimize this error
function, using gradient descent (or other optimization methods).

 This results in an algorithm called back-propagation.

26

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS419/519 Spring ’18

Some facts from real analysis
 Simple chain rule

 If 𝑧𝑧 is a function of 𝑦𝑦, and 𝑦𝑦 is a function of 𝑥𝑥
 Then 𝑧𝑧 is a function of 𝑥𝑥, as well.

 Question: how to find 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

27

We will use these facts to derive
the details of the Backpropagation
algorithm.

z will be the error (loss) function.
- We need to know how to
differentiate z

Intermediate nodes use a logistics
function (or another differentiable
step function).
- We need to know how to
differentiate it.

CIS419/519 Spring ’18

Some facts from real analysis
 Multiple path chain rule

28
Slide Credit: Richard Socher

CIS419/519 Spring ’18

Some facts from real analysis
 Multiple path chain rule: general

29Slide Credit: Richard Socher

CIS419/519 Spring ’18

Backpropagation Learning Rule
 Since there could be multiple output units, we define the

error as the sum over all the network output units.

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 = 1
2
∑𝑑𝑑∈𝐷𝐷 ∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘𝑑𝑑 − 𝑜𝑜𝑘𝑘𝑑𝑑 2

 where 𝐷𝐷 is the set of training examples,
 𝐾𝐾 is the set of output units

 This is used to derive the (global) learning rule which performs
gradient descent in the weight space in an attempt to minimize the
error function.

∆𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

30

𝑜𝑜1…𝑜𝑜𝑘𝑘

(1, 0, 1, 0, 0)

Function 1

CIS419/519 Spring ’18

Reminder: Model Neuron (Logistic)

 Neuron is modeled by a unit 𝑗𝑗 connected by weighted
links 𝑤𝑤𝑖𝑖𝑖𝑖 to other units 𝑖𝑖.

 Use a non-linear, differentiable output function such as the
sigmoid or logistic function

 Net input to a unit is defined as:

 Output of a unit is defined as:

31

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

Function 2

Function 3

CIS419/519 Spring ’18

Derivatives
 Function 1 (error):

 𝑦𝑦 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑥𝑥𝑘𝑘 2


𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥𝑖𝑖

= − 𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑥𝑥

 Function 2 (linear gate):
 𝑦𝑦 = ∑𝑤𝑤𝑖𝑖 . 𝑥𝑥𝑖𝑖


𝜕𝜕𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

= 𝑥𝑥𝑖𝑖
 Function 3 (differentiable step function):

 𝑦𝑦 = 1
1+exp{−(𝑥𝑥−𝑇𝑇)}


𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

= exp{−(𝑥𝑥−𝑇𝑇)}
(1+exp{−(𝑥𝑥−𝑇𝑇)})2

= 𝑦𝑦(1 − 𝑦𝑦)

32

𝑜𝑜1…𝑜𝑜𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

CIS419/519 Spring ’18

Derivation of Learning Rule
 The weights are updated incrementally; the error is

computed for each example and the weight update is
then derived.

 𝐸𝐸𝐸𝐸𝑟𝑟𝑑𝑑 𝑤𝑤 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through net𝑗𝑗
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖

 Therefore:
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

33

𝑜𝑜1…𝑜𝑜𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

CIS419/519 Spring ’18

= − 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

Derivation of Learning Rule (2)
 Weight updates of output units:

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through net𝑗𝑗
 Therefore:

34

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

𝐸𝐸𝐸𝐸𝑟𝑟𝑑𝑑 𝑤𝑤 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2 net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

= 𝑜𝑜𝑗𝑗(1 − 𝑜𝑜𝑗𝑗)

𝑜𝑜𝑗𝑗 =
1

1 + exp{−(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)}

CIS419/519 Spring ’18

Derivation of Learning Rule (3)
 Weights of output units:

 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

where
𝛿𝛿𝑗𝑗 = 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗

35

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖
= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖
𝑜𝑜𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

CIS419/519 Spring ’18

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑘𝑘

𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=

Derivation of Learning Rule (4)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 Influences the output only through all the units whose direct
input include 𝑗𝑗

36

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖

CIS419/519 Spring ’18

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑜𝑜𝑗𝑗(1 − 𝑜𝑜𝑗𝑗) 𝑥𝑥𝑖𝑖𝑖𝑖

Derivation of Learning Rule (5)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through all the units whose direct
input include 𝑗𝑗

37

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 =

CIS419/519 Spring ’18

Derivation of Learning Rule (6)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

 Where

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

 First determine the error for the output units.
 Then, backpropagate this error layer by layer through the network,

changing weights appropriately in each layer.

38

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘
∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �

𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

CIS419/519 Spring ’18

The Backpropagation Algorithm
 Create a fully connected three layer network. Initialize weights.
 Until all examples produce the correct output within 𝜖𝜖 (or other

criteria)
For each example in the training set do:

1. Compute the network output for this example
2. Compute the error between the output and target value

𝛿𝛿𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 𝑜𝑜𝑘𝑘 1 − 𝑜𝑜𝑘𝑘
1. For each output unit k, compute error term

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

1. For each hidden unit, compute error term:
∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

1. Update network weights
End epoch

39

CIS419/519 Spring ’18

More Hidden Layers
 The same algorithm holds for more hidden layers.

40

input ℎ1 ℎ2 ℎ3 output

CIS419/519 Spring ’18

Comments on Training
 No guarantee of convergence; may oscillate or reach a local

minima.
 In practice, many large networks can be trained on large

amounts of data for realistic problems.
 Many epochs (tens of thousands) may be needed for adequate

training. Large data sets may require many hours of CPU
 Termination criteria: Number of epochs; Threshold on training

set error; No decrease in error; Increased error on a validation
set.

 To avoid local minima: several trials with different random
initial weights with majority or voting techniques

41

CIS419/519 Spring ’18

Over-training Prevention
 Running too many epochs may over-train the network and

result in over-fitting. (improved result on training, decrease in
performance on test set)

 Keep an hold-out validation set and test accuracy after every
epoch

 Maintain weights for best performing network on the validation
set and return it when performance decreases significantly
beyond that.

 To avoid losing training data to validation:
 Use 10-fold cross-validation to determine the average number of epochs

that optimizes validation performance
 Train on the full data set using this many epochs to produce the final

results

42

CIS419/519 Spring ’18

Over-fitting prevention
 Too few hidden units prevent the system from adequately

fitting the data and learning the concept.
 Using too many hidden units leads to over-fitting.
 Similar cross-validation method can be used to determine

an appropriate number of hidden units. (general)
 Another approach to prevent over-fitting is weight-decay:

all weights are multiplied by some fraction in (0,1) after
every epoch.
 Encourages smaller weights and less complex hypothesis
 Equivalently: change Error function to include a term for the sum

of the squares of the weights in the network. (general)

43

CIS419/519 Spring ’18

Dropout training
 Proposed by (Hinton et al, 2012)

 Each time decide whether to delete one hidden unit with
some probability p

44

CIS419/519 Spring ’18

Dropout training

 Dropout of 50% of the hidden units and 20% of the input units (Hinton
et al, 2012)

45

CIS419/519 Spring ’18

Dropout training

 Model averaging effect
 Among 2H models, with shared parameters

 H: number of units in the network
 Only a few get trained
 Much stronger than the known regularizer

 What about the input space?
 Do the same thing!

46

CIS419/519 Spring ’18

Input-Output Coding
 Appropriate coding of inputs and outputs can make

learning problem easier and improve generalization.
 Encode each binary feature as a separate input unit;

 For multi-valued features include one binary unit per
value rather than trying to encode input information in
fewer units.
 Very common today to use distributed representation of the input

– real valued, dense representation.

 For disjoint categorization problem, best to have one
output unit for each category rather than encoding N
categories into log N bits.

47

One way to do it, if you start with a collection of sparsely
representation examples, is to use dimensionality reduction
methods:
- Your m examples are represented as a m x 106 matrix
- Multiple it by a random matrix of size 106 x 300, say.
- Random matrix: Normal(0,1)
- New representation: m x 300 dense rows

CIS419/519 Spring ’18

Representational Power
 The Backpropagation version presented is for networks with a

single hidden layer,
But:
 Any Boolean function can be represented by a two layer

network (simulate a two layer AND-OR network)
 Any bounded continuous function can be approximated with

arbitrary small error by a two layer network.
 Sigmoid functions provide a set of basis function from which

arbitrary function can be composed.
 Any function can be approximated to arbitrary accuracy by a

three layer network.

48

CIS419/519 Spring ’18

Hidden Layer Representation
 Weight tuning procedure sets weights that define

whatever hidden units representation is most effective at
minimizing the error.

 Sometimes Backpropagation will define new hidden layer
features that are not explicit in the input representation,
but which capture properties of the input instances that
are most relevant to learning the target function.

 Trained hidden units can be seen as newly constructed
features that re-represent the examples so that they are
linearly separable

49

CIS419/519 Spring ’18

Auto-associative Network
 An auto-associative network trained with 8 inputs, 3 hidden units and

8 output nodes, where the output must reproduce the input.
 When trained with vectors with only one bit on

INPUT HIDDEN
1 0 0 0 0 0 0 0 .89 .40 0.8
0 1 0 0 0 0 0 0 .97 .99 .71
….
0 0 0 0 0 0 0 1 .01 .11 .88

 Learned the standard 3-bit encoding for the 8 bit vectors.
 Illustrates also data compression aspects of learning

51

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

CIS419/519 Spring ’18

Sparse Auto-encoder

52

 Encoding:
 Decoding:

 Goal: perfect reconstruction of
input vector 𝒙𝒙, by the output �𝒙𝒙 = ℎ𝜽𝜽(𝒙𝒙)

 Where 𝜽𝜽 = {𝑾𝑾,𝑾𝑾′}
 Minimize an error function 𝒍𝒍(ℎ𝜽𝜽 𝒙𝒙 ,𝒙𝒙)

 For example:

 And regularize it

 After optimization drop the
reconstruction layer and add a new layer

𝒚𝒚 = 𝑓𝑓(𝑊𝑊𝒙𝒙 + 𝒃𝒃)

�𝒙𝒙 = 𝑔𝑔(𝑊𝑊′𝒚𝒚 + 𝒃𝒃′)

𝑙𝑙 ℎ𝜃𝜃 𝒙𝒙 ,𝒙𝒙 = ℎ𝜃𝜃 𝒙𝒙 − 𝒙𝒙 2

min𝜃𝜃�
𝒙𝒙

𝑙𝑙 ℎ𝜃𝜃 𝒙𝒙 ,𝒙𝒙 + �
𝑖𝑖

|𝑤𝑤𝑖𝑖|

CIS419/519 Spring ’18

Stacking Auto-encoder
 Add a new layer, and a reconstruction layer for it.
 And try to tune its parameters such that
 And continue this for each layer

53

CIS419/519 Spring ’18

Beyond supervised learning

54

 So far what we had was purely supervised.
 Initialize parameters randomly
 Train in supervised mode typically, using backprop
 Used in most practical systems (e.g. speech and image recognition)

 Unsupervised, layer-wise + supervised classifier on top
 Train each layer unsupervised, one after the other
 Train a supervised classifier on top, keeping the other layers fixed
 Good when very few labeled samples are available

 Unsupervised, layer-wise + global supervised fine-tuning
 Train each layer unsupervised, one after the other
 Add a classifier layer, and retrain the whole thing supervised
 Good when label set is poor (e.g. pedestrian detection)

We won’t talk about unsupervised pre-
training here. But it’s good to have this in

mind, since it is an active topic of research.

CIS419/519 Spring ’18

NN-2

55

CIS419/519 Spring ’18

Recap: Multi-Layer Perceptrons
 Multi-layer network

 A global approximator
 Different rules for training it

 The Back-propagation
 Forward step
 Back propagation of errors

 Congrats! Now you know the hardest concept about
neural networks!

 Today:
 Convolutional Neural Networks
 Recurrent Neural Networks

56

activation

Input

Hidden

Output

CIS419/519 Spring ’18

Receptive Fields
 The receptive field of an individual sensory neuron is the particular

region of the sensory space (e.g., the body surface, or the retina) in
which a stimulus will trigger the firing of that neuron.
 In the auditory system, receptive fields can correspond to volumes in

auditory space
 Designing “proper” receptive fields for the input Neurons is a

significant challenge.
 Consider a task with image inputs

 Receptive fields should give expressive features from the raw input to the
system

 How would you design the receptive fields for this problem?

57

CIS419/519 Spring ’18

 A fully connected layer:
 Example:

 100x100 images
 1000 units in the input

 Problems:
 10^7 edges!
 Spatial correlations lost!
 Variables sized inputs.

58
Slide Credit: Marc'Aurelio Ranzato

CIS419/519 Spring ’18

 Consider a task with image inputs:
 A locally connected layer:

 Example:
 100x100 images
 1000 units in the input
 Filter size: 10x10

 Local correlations preserved!
 Problems:

 10^5 edges
 This parameterization is good
when input image is
registered (e.g., face recognition).
 Variable sized inputs, again.

59
Slide Credit: Marc'Aurelio Ranzato

CIS419/519 Spring ’18

Convolutional Layer
 A solution:

 Filters to capture different patterns in the input space.
 Share parameters across different locations (assuming input is

stationary)
 Convolutions with learned filters

 Filters will be learned during training.
 The issue of variable-sized inputs will be
resolved with a pooling layer.

60
Slide Credit: Marc'Aurelio Ranzato

So what is a
convolution?

CIS419/519 Spring ’18

Convolution Operator
 Convolution operator: ∗

 takes two functions and gives another function

 One dimension:

61

𝑥𝑥 ∗ ℎ 𝑡𝑡 = �𝑥𝑥 𝜏𝜏 ℎ 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

𝑥𝑥 ∗ ℎ [𝑛𝑛] = ∑𝑚𝑚 𝑥𝑥 𝑚𝑚 ℎ[𝑛𝑛 − 𝑚𝑚]
“Convolution” is
very similar to

“cross-
correlation”,

except that in
convolution one
of the functions

is flipped.

CIS419/519 Spring ’18

Convolution Operator (2)
 Convolution in two dimension:

 The same idea: flip one matrix and slide it on the other matrix
 Example: Sharpen kernel:

62
Try other kernels: http://setosa.io/ev/image-kernels/

CIS419/519 Spring ’18

Convolution Operator (3)

Convolution in two dimension:
 The same idea: flip one matrix and slide it on the other

matrix

63Slide Credit: Marc'Aurelio Ranza

CIS419/519 Spring ’18

Complexity of Convolution
 Complexity of convolution operator is 𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 , for 𝑛𝑛

inputs.
 Uses Fast-Fourier-Transform (FFT)

 For two-dimension, each convolution takes 𝑀𝑀𝑀𝑀log 𝑀𝑀𝑀𝑀
time, where the size of input is 𝑀𝑀𝑀𝑀.

64
Slide Credit: Marc'Aurelio Ranzato

CIS419/519 Spring ’18

Convolutional Layer
 The convolution of the input (vector/matrix) with weights

(vector/matrix) results in a response vector/matrix.
 We can have multiple filters in each convolutional layer, each

producing an output.
 If it is an intermediate layer, it can have multiple inputs!

65

Convolutional
Layer

FilterFilterFilterFilterOne can add nonlinearity
at the output of

convolutional layer

CIS419/519 Spring ’18

Pooling Layer
 How to handle variable sized inputs?

 A layer which reduces inputs of different size, to a fixed size.
 Pooling

66
Slide Credit: Marc'Aurelio Ranzato

CIS419/519 Spring ’18

Pooling Layer
 How to handle variable sized inputs?

 A layer which reduces inputs of different size, to a fixed size.
 Pooling
 Different variations

 Max pooling

ℎ𝑖𝑖 𝑛𝑛 = max
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ [𝑖𝑖]

 Average pooling

ℎ𝑖𝑖 𝑛𝑛 = 1
𝑛𝑛

∑
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ [𝑖𝑖]

 L2-pooling

ℎ𝑖𝑖 𝑛𝑛 = 1
𝑛𝑛

∑
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ2 [𝑖𝑖]

 etc

67

CIS419/519 Spring ’18

Convolutional Nets
 One stage structure:

 Whole system:

68
Slide Credit: Druv Bhatra

Convol. Pooling

Stage 1 Stage 2 Stage 3
Fully

Connected
Layer

Input
Image

Class
Label

CIS419/519 Spring ’18

Training a ConvNet
 The same procedure from Back-propagation applies here.

 Remember in backprop we started from the error terms in the last stage,
and passed them back to the previous layers, one by one.

 Back-prop for the pooling layer:
 Consider, for example, the case of “max” pooling.
 This layer only routes the gradient to the input that has the highest value in the

forward pass.
 Hence, during the forward pass of a pooling layer it is common to keep track of the

index of the max activation (sometimes also called the switches) so that gradient
routing is efficient during backpropagation.

 Therefore we have: 𝛿𝛿 = 𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

69

Convol. Pooling

Stage 3 Fully Connected LayerInput
Image

Class
Label

𝛿𝛿last−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦last−layer

𝐸𝐸𝑑𝑑

Stage 1 Stage 2

𝛿𝛿first−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦first−layer

𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖

CIS419/519 Spring ’18

Training a ConvNet
 Back-prop for the convolutional layer:

70

Convol. Pooling

Stage 3 Fully Connected LayerInput
Image

Class
Label

𝛿𝛿last−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦last−layer

𝐸𝐸𝑑𝑑

Stage 1 Stage 2

𝛿𝛿first−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦first−layer

𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖

We derive the
update rules for a
1D convolution,

but the idea is the
same for bigger

dimensions.

�𝑦𝑦 = 𝑤𝑤 ∗ 𝑥𝑥 ⟺ �𝑦𝑦𝑖𝑖 = �
𝑎𝑎=0

𝑚𝑚−1

𝑤𝑤𝑎𝑎 𝑥𝑥𝑖𝑖−𝑎𝑎 = �
𝑎𝑎=0

𝑚𝑚−1

𝑤𝑤𝑖𝑖−𝑎𝑎 𝑥𝑥𝑎𝑎 ∀𝑖𝑖

𝑦𝑦 = 𝑓𝑓 �𝑦𝑦 ⟺ 𝑦𝑦𝑖𝑖 = 𝑓𝑓(�𝑦𝑦𝑖𝑖) ∀𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑎𝑎

=

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

=

𝛿𝛿 =
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑥𝑥𝑎𝑎

=

The convolution

A differentiable nonlinearity

�
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑤𝑤𝑎𝑎

= �
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖−𝑎𝑎

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓′(�𝑦𝑦)

�
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑎𝑎

= �
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝑤𝑤𝑖𝑖−𝑎𝑎

Now we have everything in
this layer to update the filter

We need to pass the gradient
to the previous layer

Now we can
repeat this for
each stage of

ConvNet.

CIS419/519 Spring ’18

Convolutional Nets

71

Stage
1

Stage
2

Stage
3

Fully
Connected

Layer
Input
Image

Class
Label

Feature visualization of convolutional net trained on ImageNet
from [Zeiler & Fergus 2013]

CIS419/519 Spring ’18

ConvNet roots
 Fukushima, 1980s designed network with same basic structure but

did not train by backpropagation.
 The first successful applications of Convolutional Networks by Yann

LeCun in 1990's (LeNet)
 Was used to read zip codes, digits, etc.

 Many variants nowadays, but the core idea is the same
 Example: a system developed in Google (GoogLeNet)

 Compute different filters
 Compose one big vector from all of them
 Layer this iteratively

72
See more: http://arxiv.org/pdf/1409.4842v1.pdf

CIS419/519 Spring ’18

Depth matters

73

Slide from [Kaiming He 2015]

CIS419/519 Spring ’18

Practical Tips
 Before large scale experiments, test on a small subset of the data and

check the error should go to zero.
 Overfitting on small training

 Visualize features (feature maps need to be uncorrelated) and have
high variance

 Bad training: many hidden units ignore the input and/or exhibit strong
correlations.

74
Figure Credit: Marc'Aurelio Ranzato

CIS419/519 Spring ’18

Debugging
 Training diverges:

 Learning rate may be too large → decrease learning rate
 BackProp is buggy → numerical gradient checking

 Loss is minimized but accuracy is low
 Check loss function: Is it appropriate for the task you want to solve? Does

it have degenerate solutions?
 NN is underperforming / under-fitting

 Compute number of parameters → if too small, make network larger
 NN is too slow

 Compute number of parameters → Use distributed framework, use GPU,
make network smaller

75

Many of these points apply to many machine learning models, no just neural
networks.

CIS419/519 Spring ’18

CNN for vector inputs

76

 Let’s study another variant of CNN for language
 Example: sentence classification (say spam or not spam)

 First step: represent each word with a vector in ℝ𝑑𝑑

This is not a spam

Concatenate the vectors

 Now we can assume that the input to the system is a
vector ℝ𝑑𝑑𝑑𝑑

 Where the input sentence has length 𝑙𝑙 (𝑙𝑙 = 5 in our example)
 Each word vector’s length 𝑑𝑑 (𝑑𝑑 = 7 in our example)

O O
O O O

O O

CIS419/519 Spring ’18

Convolutional Layer on vectors
 Think about a single convolutional layer

 A bunch of vector filters
 Each defined in ℝ𝑑𝑑ℎ

• Where ℎ is the number of the words the filter covers
• Size of the word vector 𝑑𝑑

 Find its (modified) convolution with the input vector

 Result of the convolution with the filter

 Convolution with a filter that spans 2 words, is operating on all of the bi-
grams (vectors of two consecutive word, concatenated): “this is”, “is not”,
“not a”, “a spam”.

 Regardless of whether it is grammatical (not appealing linguistically)

77

O O
O O O O O

O O O O O O O O O O O O O O

O O
O O O O O O O O O O O O O O
O O

O O O O O O O O O O O O O O
O O

O O O O O O O O O O O O O O
O O

O O O O O O O O O O O O O O

𝑐𝑐1 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥1:ℎ)𝑐𝑐2 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥ℎ+1:2ℎ)𝑐𝑐3 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥2ℎ+1:3ℎ)𝑐𝑐4 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥3ℎ+1:4ℎ)

𝑐𝑐 = [𝑐𝑐1, … . , 𝑐𝑐𝑛𝑛−ℎ+1] O O
O O

CIS419/519 Spring ’18

Convolutional Layer on vectors

78

O O O O O

O O O O O O O

O O

This is not a spam

O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O

O O
O O

O O O O
O O O O

O O O
O O O

Get word
vectors for
each words

Concatenate
vectors

Perform
convolution

with each filter Filter
bank

Set of
response
vectors

*

How are we going to
handle the variable

sized response
vectors?
Pooling!

#of filters

#words - #length of filter + 1

CIS419/519 Spring ’18

Convolutional Layer on vectors

 Now we can pass the fixed-sized vector to a logistic unit (softmax), or give it to multi-layer
network (last session)

79

O O O O O

O O O O O O O

O O

This is not a spam

O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O

O O
O O

O O O O
O O O O

O O O
O O O

Get word
vectors for
each words

Concatenate
vectors

Perform
convolution
with each

filter

Filter
bank

*

#of filters

#words - #length of filter + 1

Pooling on
filter

responses

O O
OO O O

O O O
O O O

O O O

Some choices for
pooling:

k-max, mean, etc

CIS419/519 Spring ’18

Recurrent Neural Networks

 Multi-layer feed-forward NN: DAG
 Just computes a fixed sequence of
non-linear learned transformations to convert an input patter into an
output pattern

 Recurrent Neural Network: Digraph
 Has cycles.
 Cycle can act as a memory;
 The hidden state of a recurrent net can carry along information

about a “potentially” unbounded number of previous inputs.
 They can model sequential data in a much more natural way.

80

CIS419/519 Spring ’18

Equivalence between RNN and Feed-forward NN

 Assume that there is a time delay of 1 in using each connection.

 The recurrent net is just a layered net that keeps reusing the same
weights.

81
Slide Credit: Geoff Hinton

W1 W2 W3 W4

time=0

time=2

time=1

time=3

W1 W2 W3 W4

W1 W2 W3 W4

w1 w4

w2 w3

CIS419/519 Spring ’18

Recurrent Neural Networks
 Training a general RNN’s can be hard

 Here we will focus on a special family of RNN’s

 Prediction on chain-like input:
 Example: POS tagging words of a sentence

 Issues :
 Structure in the output: There is connections between labels
 Interdependence between elements of the inputs: The final decision is based

on an intricate interdependence of the words on each other.
 Variable size inputs: e.g. sentences differ in size

 How would you go about solving this task?

82

𝑋𝑋 = This is a sample sentence
Y = DT VBZ DT NN NN

CIS419/519 Spring ’18

Recurrent Neural Networks
 A chain RNN:

 Has a chain-like structure
 Each input is replaced with its vector representation 𝑥𝑥𝑡𝑡
 Hidden (memory) unit ℎ𝑡𝑡 contain information about previous

inputs and previous hidden units ℎ𝑡𝑡−1,ℎ𝑡𝑡−2, etc
 Computed from the past memory and current word. It summarizes

the sentence up to that time.

83

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer

CIS419/519 Spring ’18

Recurrent Neural Networks
 A popular way of formalizing it:

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)
 Where 𝑓𝑓 is a nonlinear, differentiable (why?) function.

 Outputs?
 Many options; depending on problem and computational

resource

84

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer

CIS419/519 Spring ’18

Recurrent Neural Networks
 Prediction for 𝑥𝑥𝑡𝑡, with ℎ𝑡𝑡

 Prediction for 𝑥𝑥𝑡𝑡, with ℎ𝑡𝑡, … , ℎ𝑡𝑡−𝜏𝜏

 Prediction for the whole chain

 Some inherent issues with RNNs:
 Recurrent neural nets cannot capture phrases without prefix context
 They often capture too much of last words in final vector

85

𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

𝑦𝑦𝑇𝑇 = softmax 𝑊𝑊𝑜𝑜ℎ𝑇𝑇

𝑦𝑦𝑡𝑡 = softmax �
𝑖𝑖=0

𝜏𝜏

𝛼𝛼𝑖𝑖𝑊𝑊𝑜𝑜
−𝑖𝑖
ℎ𝑡𝑡−𝑖𝑖

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer

CIS419/519 Spring ’18

Bi-directional RNN
 One of the issues with RNN:

 Hidden variables capture only one side context

 A bi-directional structure

86
O

 O
O

O
O

O
 O

O
O

O

O
 O

O
O

O
�ℎ𝑡𝑡−1 �ℎ𝑡𝑡 �ℎ𝑡𝑡+1

𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

�ℎ𝑡𝑡 = 𝑓𝑓(�𝑊𝑊ℎ �ℎ𝑡𝑡+1 + �𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡 + �𝑊𝑊𝑜𝑜 �ℎ𝑡𝑡

CIS419/519 Spring ’18

Stack of bi-directional networks
 Use the same idea and make your model further

complicated:

87

CIS419/519 Spring ’18

Training RNNs
 How to train such model?

 Generalize the same ideas from back-propagation

 Total output error: 𝐸𝐸 𝑦⃗𝑦, 𝑡𝑡 = ∑𝑡𝑡=1𝑇𝑇 𝐸𝐸𝑡𝑡 𝑦𝑦𝑡𝑡 , 𝑡𝑡𝑡𝑡

88

O O O O O O O O O O O O O O O

𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

Oℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

Reminder:
𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝜕𝜕 = �

𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑦𝑦𝑡𝑡

𝜕𝜕𝑦𝑦𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

𝜕𝜕ℎ𝑡𝑡−𝑘𝑘
𝜕𝜕𝜕𝜕

Parameters?
𝑊𝑊𝑜𝑜, 𝑊𝑊𝑖𝑖, 𝑊𝑊ℎ +

vectors for
input

This sometimes is called
“Backpropagation Through Time”,
since the gradients are
propagated back through time.

CIS419/519 Spring ’18

Recurrent Neural Network

89
𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

O O O O O O O O O O O O O O O

𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

Reminder:
𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑦𝑦𝑡𝑡

𝜕𝜕𝑦𝑦𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

𝜕𝜕ℎ𝑡𝑡−𝑘𝑘
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡
𝜕𝜕ℎ𝑗𝑗
𝜕𝜕ℎ𝑗𝑗−1

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−1

= 𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡) diag 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 =
𝑎𝑎1 0 0
0 ⋱ 0
0 0 𝑎𝑎𝑛𝑛

CIS419/519 Spring ’18

Vanishing/exploding gradients

 Vanishing gradients are quite prevalent and a serious issue.
 A real example

 Training a feed-forward network
 y-axis: sum of the gradient norms
 Earlier layers have exponentially
smaller sum of gradient norms
 This will make training earlier
layers much slower.

90

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

≤ �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎ diag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡) ≤ �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝛼𝛼𝛼𝛼 = 𝛼𝛼𝛼𝛼 𝑘𝑘

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

Gradient can become very small or very large quickly, and the locality assumption
of gradient descent breaks down (Vanishing gradient) [Bengio et al 1994]

CIS419/519 Spring ’18

Vanishing/exploding gradients
 In an RNN trained on long sequences (e.g. 100 time steps) the

gradients can easily explode or vanish.
 So RNNs have difficulty dealing with long-range dependencies.

 Many methods proposed for reduce the effect of vanishing gradients;
although it is still a problem
 Introduce shorter path between long connections
 Abandon stochastic gradient descent in favor of a much more

sophisticated Hessian-Free (HF) optimization
 Add fancier modules that are robust to handling long memory;

e.g. Long Short Term Memory (LSTM)
 One trick to handle the exploding-gradients:

 Clip gradients with bigger sizes:

91

Defnne 𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

If 𝑔𝑔 ≥ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 then
𝑔𝑔 ← 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑔𝑔
𝑔𝑔

	�CIS 519/419 �Applied Machine Learning�www.seas.upenn.edu/~cis519��
	Functions Can be Made Linear
	Blown Up Feature Space
	Multi-Layer Neural Network
	Basic Units
	Model Neuron (Logistic)
	Learning with a Multi-Layer Perceptron
	Learning with a Multi-Layer Perceptron
	Neural Networks
	Neural Networks
	Multi-Layer Neural Networks
	Motivation for Neural Networks
	Motivation for Neural Networks
	Basic Unit in Multi-Layer Neural Network
	Model Neuron (Logistic)
	History: Neural Computation
	History: Learning Rules
	Perceptron Learning Rule
	Widrow-Hoff Rule
	Gradient Descent
	Summary: Single Layer Network
	General Stochastic Gradient Algorithms
	Summary: Single Layer Network
	Learning with a Multi-Layer Perceptron
	Learning with a Multi-Layer Perceptron
	Some facts from real analysis
	Some facts from real analysis
	Some facts from real analysis
	Backpropagation Learning Rule
	Reminder: Model Neuron (Logistic)
	Derivatives
	Derivation of Learning Rule
	Derivation of Learning Rule (2)
	Derivation of Learning Rule (3)
	Derivation of Learning Rule (4)
	Derivation of Learning Rule (5)
	Derivation of Learning Rule (6)
	The Backpropagation Algorithm
	More Hidden Layers
	Comments on Training
	Over-training Prevention
	Over-fitting prevention
	Dropout training
	Dropout training
	Dropout training
	Input-Output Coding
	Representational Power
	Hidden Layer Representation
	Auto-associative Network
	Sparse Auto-encoder
	Stacking Auto-encoder
	Beyond supervised learning
	NN-2
	Recap: Multi-Layer Perceptrons
	Receptive Fields
	Slide Number 58
	Slide Number 59
	Convolutional Layer
	Convolution Operator
	Convolution Operator (2)
	Convolution Operator (3)
	Complexity of Convolution
	Convolutional Layer
	Pooling Layer
	Pooling Layer
	Convolutional Nets
	Training a ConvNet
	Training a ConvNet
	Convolutional Nets
	ConvNet roots
	Depth matters
	Practical Tips
	Debugging
	CNN for vector inputs
	Convolutional Layer on vectors
	Convolutional Layer on vectors
	Convolutional Layer on vectors
	Recurrent Neural Networks
	Equivalence between RNN and Feed-forward NN
	Recurrent Neural Networks
	Recurrent Neural Networks
	Recurrent Neural Networks
	Recurrent Neural Networks
	Bi-directional RNN
	Stack of bi-directional networks
	Training RNNs
	Recurrent Neural Network
	Vanishing/exploding gradients
	Vanishing/exploding gradients

