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Functions Can be Made Linear
 Data are not linearly separable in one dimension
 Not separable if you insist on using a specific class of 

functions
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Blown Up Feature Space
 Data are separable in <x, x2> space
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Multi-Layer Neural Network
 Multi-layer network were designed to overcome the 

computational (expressivity) limitation  of a single 
threshold element. 

 The idea is to stack several 
layers of threshold elements, 
each layer using the output of 
the previous layer as input.  

 Multi-layer networks can represent arbitrary 
functions, but  building effective learning methods 
for such network was [thought to be] difficult. 
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Basic Units 
 Linear Unit: Multiple layers of linear functions  

oj = w ¢x produce linear functions.  We want to 
represent nonlinear functions.

 Need to do it in a way that 
facilitates learning

 Threshold units:  oj = sgn(w ¢x) 
are not differentiable, hence 
unsuitable for gradient descent. 

 The key idea was to notice that the discontinuity of 
the threshold element can be represents by a smooth 
non-linear approximation: oj = [1+ exp{-w ¢x}]-1

 (Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html )
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Model Neuron (Logistic)
 Us a non-linear, differentiable output function such 

as the sigmoid or logistic function

 Net input to a unit is defined as: 
 Output of a unit is defined as:
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Learning with a Multi-Layer  
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit. 
 Given feedback (truth) at the top layer, and the activation at the 

layer below it, you can use the Perceptron update rule (more 
generally, gradient descent) to updated these weights.

 The problem is what to do with 
the other set of weights – we do
not get feedback in the 
intermediate layer(s). 
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Learning with a Multi-Layer  Perceptron
 The problem is what to do with 

the other set of weights – we do 
not get feedback in the 
intermediate layer(s). 

 Solution: If all the activation 
functions are differentiable, then 
the output of the network is also 
a differentiable function of the input and weights in the network.

 Define an error function (multiple options) that is a differentiable function 
of the output, that this error function is also a differentiable function of the 
weights. 

 We can then evaluate the derivatives of the error with respect to the 
weights, and use these derivatives to find weight values that minimize this 
error function.  This can be done, for example, using gradient descent .  

 This results in an algorithm called back-propagation.
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Neural Networks 
 Robust approach to approximating real-valued, discrete-

valued and vector valued target functions.
 Among the most effective general purpose supervised 

learning method currently known.
 Effective especially for complex and hard to interpret 

input data such as real-world sensory data, where a lot of 
supervision is available. 

 The Backpropagation algorithm for neural networks has 
been shown successful in many practical problems
 handwritten character recognition, speech recognition,  object 

recognition, some NLP problems

9
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Neural Networks 
 Neural Networks are functions: NN:𝑋𝑋 → 𝑌𝑌

 where 𝑋𝑋 = 0,1 𝑛𝑛, or {0,1}𝑛𝑛 and  𝑌𝑌 = 0,1 , {0,1}
 NN can be used as an approximation of a target classifier

 In their general form, even with a single hidden layer, NN can 
approximate any function

 Algorithms exist that can learn a NN representation from labeled 
training data  (e.g., Backpropagation).

10
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Multi-Layer Neural Networks
 Multi-layer network were designed to overcome the 

computational (expressivity) limitation  of a single 
threshold element. 

 The idea is to stack several 
layers of threshold elements, 
each layer using the output of 
the previous layer as input.  
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Motivation for Neural Networks
 Inspired by biological systems

 But don’t take this (as well as any other words in the new on 
“emergence” of intelligent behavior) seriously; 

 We are currently on rising part of a wave of interest in NN 
architectures, after a long downtime from the mid-90-ies.
 Better computer architecture (GPUs, parallelism) 
 A lot more data than before; in many domains, supervision is 

available.

 Current surge of interest has seen very minimal 
algorithmic changes

12
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Motivation for Neural Networks
 Minimal to no algorithmic changes
 One potentially interesting perspective:

 Before we looked at NN only as function approximators.
 Now, we look at  the intermediate representations generated 

while learning as meaningful
 Ideas are being developed on the value of these intermediate 

representations for transfer learning etc. 

 We will present in the next two lectures a few of the basic 
architectures and learning algorithms, and provide some 
examples for applications

13
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Basic Unit in Multi-Layer Neural Network

 Linear Unit: 𝑜𝑜𝑗𝑗 = 𝑤𝑤. 𝑥⃗𝑥 multiple layers of linear functions 
produce linear functions.  We want to represent nonlinear 
functions.

 Threshold units: 𝑜𝑜𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤. 𝑥⃗𝑥 − 𝑇𝑇) are not 
differentiable,  hence unsuitable for gradient descent
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Model Neuron (Logistic)
 Neuron is modeled by a unit  𝑗𝑗 connected by weighted 

links 𝑤𝑤𝑖𝑖𝑖𝑖 to other units 𝑖𝑖. 

 Use a non-linear, differentiable output function such as the 
sigmoid or logistic function

 Net input to a unit is defined as: 

 Output of a unit is defined as:

16

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

The parameters so far? 
The set of connective weights:  𝑤𝑤𝑖𝑖𝑖𝑖
The threshold value: 𝑇𝑇𝑗𝑗
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History: Neural Computation 

17

 McCollough and Pitts (1943) showed how linear 
threshold units can be used to compute logical 
functions 

 Can build basic logic gates
 AND: 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗/𝑛𝑛
 OR: 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑗𝑗
 NOT: use negative weight

 Can build arbitrary logic circuits, finite-state machines 
and computers given these basis gates.

 Can specify any Boolean function using two layer 
network (w/ negation)
 DNF and CNF are universal representations

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)
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History: Learning Rules 
 Hebb (1949) suggested that if two units are both active 

(firing) then the weights between them should increase:       
𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑜𝑜𝑖𝑖𝑜𝑜𝑗𝑗

 𝑅𝑅 and is a constant called the learning rate
 Supported by physiological evidence

 Rosenblatt (1959) suggested that when a target output 
value is provided for a single neuron with fixed input, it 
can incrementally change weights and learn to produce 
the output using the Perceptron learning rule.
 assumes binary output units; single linear threshold unit
 Led to the Perceptron Algorithm

 See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

18
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Perceptron Learning Rule
 Given:

 the target output for the output unit is 𝑡𝑡𝑗𝑗
 the input the neuron sees is 𝑥𝑥𝑖𝑖
 the output it produces is  𝑜𝑜𝑗𝑗

 Update weights according to   𝑤𝑤𝑖𝑖𝑖𝑖 ← 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖
 If output is correct, don’t change the weights
 If output is wrong, change weights for all inputs which are 1

 If output is low (0, needs to be 1) increment weights
 If output is high (1, needs to be 0) decrement weights

19
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Widrow-Hoff Rule 
 This incremental update rule provides an approximation 

to the goal:
 Find the best linear approximation of the data 

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 𝑗𝑗 =
1
2
�
𝑑𝑑∈𝐷𝐷

𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 2

 where: 

𝑜𝑜𝑑𝑑 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖 =𝑤𝑤 𝑗𝑗 . 𝑥⃗𝑥

output of linear unit on example d
 𝑡𝑡𝑑𝑑 = Target output for example d

20
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Gradient Descent 
 We use gradient descent determine the weight vector that minimizes  

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 𝑗𝑗 ;

 Fixing the set 𝐷𝐷 of examples, 𝐸𝐸 is a function of  𝑤𝑤 𝑗𝑗

 At each step, the weight vector is modified in the direction that 
produces the steepest descent along the error surface.

21

𝐸𝐸𝐸𝐸𝐸𝐸(𝑤𝑤)

𝑤𝑤𝑤𝑤3 𝑤𝑤2 𝑤𝑤1 𝑤𝑤0
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Summary: Single Layer Network 
 Variety of update rules

 Multiplicative
 Additive

 Batch and incremental algorithms
 Various convergence and efficiency conditions
 There are other ways to learn linear functions

 Linear Programming (general purpose)
 Probabilistic Classifiers ( some assumption)

 Key algorithms are driven by gradient descent 

22
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General Stochastic Gradient Algorithms 

wt+1 = wt – rt gw Q(xt, yt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – wT x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – 𝑤𝑤𝑡𝑡𝑇𝑇 xt) xt

Here, even though we make binary predictions based on sgn (wT x) we 
do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y wT x)

This leads to the perceptron update rule:

If yi 𝑤𝑤𝑖𝑖𝑇𝑇∙ xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

23

wT x

The loss Q: a function of x, w and yLearning rate gradient

Here g = -yx
Good to think about the 

case of Boolean examples
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Summary: Single Layer Network 
 Variety of update rules

 Multiplicative
 Additive

 Batch and incremental algorithms
 Various convergence and efficiency conditions
 There are other ways to learn linear functions

 Linear Programming (general purpose)
 Probabilistic Classifiers ( some assumption)

 Key algorithms are driven by gradient descent 
 However, the representational restriction is limiting in 

many applications

24
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Learning with a Multi-Layer  
Perceptron

 It’s easy to learn the top layer – it’s just a linear unit. 
 Given feedback (truth) at the top layer, and the activation at the layer 

below it, you can use the Perceptron update rule (more generally, 
gradient descent) to updated these weights.

 The problem is what to do with 
the other set of weights – we do
not get feedback in the 
intermediate layer(s). 

25
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Learning with a Multi-Layer  
Perceptron

 The problem is what to do with 
the other set of weights – we do 
not get feedback in the 
intermediate layer(s). 

 Solution: If all the activation 
functions are differentiable, then 
the output of the network is also 
a differentiable function of the input and weights in the network.

 Define an error function (e.g., sum of squares) that is a differentiable function 
of the output, i.e. this error function is also a differentiable function of the 
weights. 

 We can then evaluate the derivatives of the error with respect to the weights, 
and use these derivatives to find weight values that minimize this error 
function, using gradient descent (or other optimization methods). 

 This results in an algorithm called back-propagation.

26
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Some facts from real analysis
 Simple chain rule

 If 𝑧𝑧 is a function of 𝑦𝑦, and 𝑦𝑦 is a function of 𝑥𝑥
 Then 𝑧𝑧 is a function of 𝑥𝑥, as well. 

 Question:  how to find 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

27

We will use these facts to derive 
the details of the Backpropagation  
algorithm. 

z will be the error (loss) function.
- We need to know how to 
differentiate z 

Intermediate nodes use a logistics 
function (or another differentiable 
step function). 
- We need to know how to 
differentiate it. 
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Some facts from real analysis
 Multiple path chain rule 

28
Slide Credit: Richard Socher
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Some facts from real analysis
 Multiple path chain rule: general 

29Slide Credit: Richard Socher
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Backpropagation Learning Rule
 Since there could be multiple output units, we define the 

error as the sum over all the network output units.

𝐸𝐸𝐸𝐸𝐸𝐸 𝑤𝑤 = 1
2
∑𝑑𝑑∈𝐷𝐷 ∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘𝑑𝑑 − 𝑜𝑜𝑘𝑘𝑑𝑑 2

 where 𝐷𝐷 is the set of training examples, 
 𝐾𝐾 is the set of output units

 This is used to derive the (global) learning rule which performs 
gradient descent in the weight space in an attempt to minimize the 
error function. 

∆𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

30

𝑜𝑜1…𝑜𝑜𝑘𝑘

(1, 0, 1, 0, 0)

Function 1
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Reminder: Model Neuron (Logistic)

 Neuron is modeled by a unit  𝑗𝑗 connected by weighted 
links 𝑤𝑤𝑖𝑖𝑖𝑖 to other units 𝑖𝑖. 

 Use a non-linear, differentiable output function such as the 
sigmoid or logistic function

 Net input to a unit is defined as: 

 Output of a unit is defined as:

31

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

Function 2

Function 3
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Derivatives
 Function 1 (error): 

 𝑦𝑦 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑥𝑥𝑘𝑘 2


𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥𝑖𝑖

= − 𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑥𝑥

 Function 2 (linear gate): 
 𝑦𝑦 = ∑𝑤𝑤𝑖𝑖 . 𝑥𝑥𝑖𝑖


𝜕𝜕𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

= 𝑥𝑥𝑖𝑖
 Function 3 (differentiable step function):

 𝑦𝑦 = 1
1+exp{−(𝑥𝑥−𝑇𝑇)}


𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

= exp{−(𝑥𝑥−𝑇𝑇)}
(1+exp{−(𝑥𝑥−𝑇𝑇)})2

= 𝑦𝑦(1 − 𝑦𝑦)

32

𝑜𝑜1…𝑜𝑜𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖
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Derivation of Learning Rule
 The weights are updated incrementally;  the error is 

computed for each example and the weight update is 
then derived.

 𝐸𝐸𝐸𝐸𝑟𝑟𝑑𝑑 𝑤𝑤 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through  net𝑗𝑗
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖

 Therefore:
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

33

𝑜𝑜1…𝑜𝑜𝑘𝑘
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𝑤𝑤𝑖𝑖𝑖𝑖



CIS419/519 Spring ’18

= − 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

Derivation of Learning Rule (2)
 Weight updates of output units:

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through net𝑗𝑗
 Therefore:

34

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

𝐸𝐸𝐸𝐸𝑟𝑟𝑑𝑑 𝑤𝑤 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2 net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

= 𝑜𝑜𝑗𝑗(1 − 𝑜𝑜𝑗𝑗)

𝑜𝑜𝑗𝑗 =
1

1 + exp{−(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)}
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Derivation of Learning Rule (3)
 Weights of output units:

 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

where 
𝛿𝛿𝑗𝑗 = 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗

35

∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖
= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖
𝑜𝑜𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖
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= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑘𝑘

𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=

Derivation of Learning Rule (4)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 Influences the output only through all the units whose direct 
input include 𝑗𝑗

36

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑥𝑥𝑖𝑖𝑖𝑖
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= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑜𝑜𝑗𝑗(1 − 𝑜𝑜𝑗𝑗) 𝑥𝑥𝑖𝑖𝑖𝑖

Derivation of Learning Rule (5)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through all the units whose direct 
input include 𝑗𝑗

37

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 =
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Derivation of Learning Rule (6)
 Weights of hidden units:

 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

 Where 

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

 First determine the error for the output units.
 Then, backpropagate this error layer by layer through the network, 

changing weights appropriately in each layer.

38

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘
∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �

𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖

= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
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The Backpropagation Algorithm
 Create a fully connected three layer network. Initialize weights.
 Until all examples produce the correct output within 𝜖𝜖 (or other 

criteria)
For each example in the training set do:

1. Compute the network output for this example 
2. Compute the error between the output and target value

𝛿𝛿𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 𝑜𝑜𝑘𝑘 1 − 𝑜𝑜𝑘𝑘
1. For each output unit k, compute error term 

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

1. For each hidden unit, compute error term:
∆𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

1. Update network weights
End epoch

39
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More Hidden Layers
 The same algorithm holds for more hidden layers. 

40

input    ℎ1 ℎ2 ℎ3 output
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Comments on Training 
 No guarantee of convergence; may oscillate or reach a local 

minima.
 In practice, many large networks can be trained on large 

amounts of data for realistic problems.
 Many epochs (tens of thousands) may be needed for adequate 

training. Large data sets may require many hours of CPU 
 Termination criteria: Number of epochs;  Threshold on training 

set error; No decrease in error; Increased error on a validation 
set.

 To avoid local minima: several trials with different random 
initial weights with majority or voting techniques

41
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Over-training Prevention 
 Running too many epochs may over-train the network and 

result in over-fitting. (improved result on training, decrease in 
performance on test set) 

 Keep an hold-out validation set and test accuracy after every 
epoch

 Maintain weights for best performing network on the validation 
set and return it when performance decreases significantly 
beyond that.

 To avoid losing training data to validation:
 Use 10-fold cross-validation to determine the average number of epochs 

that optimizes validation performance
 Train on the full data set using this many epochs to produce the final 

results

42
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Over-fitting prevention 
 Too few hidden units prevent the system from adequately 

fitting the data and learning the concept.
 Using too many hidden units leads to over-fitting.
 Similar cross-validation method can  be used to determine 

an appropriate number of hidden units.  (general)
 Another approach to prevent over-fitting is weight-decay: 

all weights are multiplied by some fraction in (0,1) after 
every epoch.
 Encourages smaller weights and less complex hypothesis
 Equivalently: change Error function to include a term for the sum 

of the squares of the weights in the network. (general)

43
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Dropout training
 Proposed by (Hinton et al, 2012)

 Each time decide whether to delete one hidden unit with 
some probability p

44
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Dropout training

 Dropout of 50% of the hidden units and 20% of the input units (Hinton 
et al, 2012)

45
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Dropout training

 Model averaging effect 
 Among 2H models, with shared parameters 

 H: number of units in the network 
 Only a few get trained 
 Much stronger than the known regularizer

 What about the input space?
 Do the same thing! 

46
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Input-Output Coding
 Appropriate coding of inputs and outputs can make 

learning problem easier and improve generalization. 
 Encode each binary feature as a separate input unit;

 For multi-valued features include one binary unit per 
value rather than trying to encode input information in 
fewer units.
 Very common today to use distributed representation of the input 

– real valued, dense representation. 

 For disjoint categorization problem, best to have one 
output unit for each category rather than encoding N 
categories into log N bits.

47

One way to do it, if you start with a collection of sparsely 
representation examples, is to use dimensionality reduction 
methods:
- Your m examples are represented as a m x 106 matrix
- Multiple it by a random matrix of size 106 x 300, say.
- Random matrix: Normal(0,1) 
- New representation: m x 300 dense rows 
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Representational Power 
 The Backpropagation version presented is for networks with a 

single hidden layer,
But:
 Any Boolean function can be represented by a two layer 

network (simulate a two layer AND-OR network)
 Any bounded continuous function can be approximated with 

arbitrary small error by a two layer network.
 Sigmoid functions provide a set of basis function from which 

arbitrary function can be composed. 
 Any function can be approximated to arbitrary accuracy by a 

three layer network.

48
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Hidden Layer Representation 
 Weight tuning procedure sets weights that define 

whatever hidden units representation is most effective at 
minimizing the error.

 Sometimes Backpropagation will define new hidden layer 
features that are not explicit in the input representation, 
but which capture properties of the input instances that 
are most relevant to learning the target function.

 Trained hidden units can be seen as newly constructed 
features that re-represent the examples so that they are 
linearly separable

49
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Auto-associative Network
 An auto-associative network trained with 8 inputs, 3 hidden units and 

8 output nodes, where the output must reproduce the input.
 When trained with vectors with only one bit on

INPUT                HIDDEN
1 0 0 0 0 0 0 0    .89   .40  0.8
0 1 0 0 0 0 0 0    .97   .99  .71
….
0 0 0 0 0 0 0 1    .01   .11  .88

 Learned the standard 3-bit encoding for the 8 bit vectors.
 Illustrates also data compression aspects of learning

51

1    0    0    0    1    0    0    0

1    0    0    0    1    0    0    0
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Sparse Auto-encoder 

52

 Encoding: 
 Decoding: 

 Goal: perfect reconstruction of 
input vector 𝒙𝒙, by the output �𝒙𝒙 = ℎ𝜽𝜽(𝒙𝒙)

 Where 𝜽𝜽 = {𝑾𝑾,𝑾𝑾′}
 Minimize an error function 𝒍𝒍(ℎ𝜽𝜽 𝒙𝒙 ,𝒙𝒙)

 For example:

 And regularize it 

 After optimization drop the 
reconstruction layer and add a new layer

𝒚𝒚 = 𝑓𝑓(𝑊𝑊𝒙𝒙 + 𝒃𝒃)

�𝒙𝒙 = 𝑔𝑔(𝑊𝑊′𝒚𝒚 + 𝒃𝒃′)

𝑙𝑙 ℎ𝜃𝜃 𝒙𝒙 ,𝒙𝒙 = ℎ𝜃𝜃 𝒙𝒙 − 𝒙𝒙 2

min𝜃𝜃�
𝒙𝒙

𝑙𝑙 ℎ𝜃𝜃 𝒙𝒙 ,𝒙𝒙 + �
𝑖𝑖

|𝑤𝑤𝑖𝑖|
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Stacking Auto-encoder 
 Add a new layer, and a reconstruction layer for it. 
 And try to tune its parameters such that 
 And continue this for each layer 

53
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Beyond supervised learning

54

 So far what we had was purely supervised.
 Initialize parameters randomly 
 Train in supervised mode typically, using backprop
 Used in most practical systems (e.g. speech and image recognition)

 Unsupervised, layer-wise + supervised classifier on top 
 Train each layer unsupervised, one after the other 
 Train a supervised classifier on top, keeping the other layers fixed 
 Good when very few labeled samples are available

 Unsupervised, layer-wise + global supervised fine-tuning 
 Train each layer unsupervised, one after the other 
 Add a classifier layer, and retrain the whole thing supervised 
 Good when label set is poor (e.g. pedestrian detection)  

We won’t talk about unsupervised pre-
training here.  But it’s good to have this in 

mind, since it is an active topic of research. 
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NN-2

55
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Recap: Multi-Layer Perceptrons
 Multi-layer network 

 A global approximator
 Different rules for training it 

 The Back-propagation
 Forward step 
 Back propagation of errors 

 Congrats! Now you know the hardest concept about 
neural networks!

 Today: 
 Convolutional Neural Networks 
 Recurrent Neural Networks  

56

activation

Input

Hidden

Output
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Receptive Fields 
 The receptive field of an individual sensory neuron is the particular 

region of the sensory space (e.g., the body surface, or the retina) in 
which a stimulus will trigger the firing of that neuron.
 In the auditory system, receptive fields can correspond to volumes in 

auditory space
 Designing “proper” receptive fields for the input Neurons is a 

significant challenge. 
 Consider a task with image inputs

 Receptive fields should give expressive features from the raw input to the 
system 

 How would you design the receptive fields for this problem? 

57
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 A fully connected layer: 
 Example: 

 100x100 images 
 1000 units in the input 

 Problems: 
 10^7 edges! 
 Spatial correlations lost! 
 Variables sized inputs. 

58
Slide Credit: Marc'Aurelio Ranzato
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 Consider a task with image inputs: 
 A locally connected layer: 

 Example: 
 100x100 images 
 1000 units in the input 
 Filter size: 10x10

 Local correlations preserved!
 Problems: 

 10^5 edges 
 This parameterization is good 
when input image is 
registered (e.g., face recognition).  
 Variable sized inputs, again. 

59
Slide Credit: Marc'Aurelio Ranzato
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Convolutional Layer 
 A solution: 

 Filters to capture different patterns in the input space. 
 Share parameters across different locations (assuming input is 

stationary) 
 Convolutions with learned filters 

 Filters will be learned during training. 
 The issue of variable-sized inputs will be 
resolved with a pooling layer.

60
Slide Credit: Marc'Aurelio Ranzato

So what is a 
convolution?
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Convolution Operator 
 Convolution operator: ∗

 takes two functions and gives another function 

 One dimension:  

61

𝑥𝑥 ∗ ℎ 𝑡𝑡 = �𝑥𝑥 𝜏𝜏 ℎ 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

𝑥𝑥 ∗ ℎ [𝑛𝑛] = ∑𝑚𝑚 𝑥𝑥 𝑚𝑚 ℎ[𝑛𝑛 − 𝑚𝑚]
“Convolution” is 
very similar to 

“cross-
correlation”, 

except that in 
convolution one 
of the functions 

is flipped. 
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Convolution Operator (2)
 Convolution in two dimension:

 The same idea: flip one matrix and slide it on the other matrix 
 Example: Sharpen kernel: 

62
Try other kernels: http://setosa.io/ev/image-kernels/ 
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Convolution Operator (3)

Convolution in two dimension:
 The same idea: flip one matrix and slide it on the other 

matrix 

63Slide Credit: Marc'Aurelio Ranza
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Complexity of Convolution
 Complexity of convolution operator is 𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 , for 𝑛𝑛

inputs. 
 Uses Fast-Fourier-Transform (FFT)

 For two-dimension, each convolution takes 𝑀𝑀𝑀𝑀log 𝑀𝑀𝑀𝑀
time, where the size of input is 𝑀𝑀𝑀𝑀. 

64
Slide Credit: Marc'Aurelio Ranzato
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Convolutional Layer
 The convolution of the input (vector/matrix) with weights 

(vector/matrix) results in a response vector/matrix. 
 We can have multiple filters in each convolutional layer, each 

producing an output.  
 If it is an intermediate layer, it can have multiple inputs! 

65

Convolutional 
Layer

FilterFilterFilterFilterOne can add nonlinearity 
at the output of 

convolutional layer
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Pooling Layer 
 How to handle variable sized inputs? 

 A layer which reduces inputs of different size, to a fixed size.
 Pooling  

66
Slide Credit: Marc'Aurelio Ranzato
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Pooling Layer 
 How to handle variable sized inputs? 

 A layer which reduces inputs of different size, to a fixed size.
 Pooling  
 Different variations 

 Max pooling 

ℎ𝑖𝑖 𝑛𝑛 = max
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ [𝑖𝑖]

 Average pooling 

ℎ𝑖𝑖 𝑛𝑛 = 1
𝑛𝑛

∑
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ [𝑖𝑖]

 L2-pooling 

ℎ𝑖𝑖 𝑛𝑛 = 1
𝑛𝑛

∑
𝑖𝑖∈𝑁𝑁(𝑛𝑛)

�ℎ2 [𝑖𝑖]

 etc
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Convolutional Nets
 One stage structure: 

 Whole system: 

68
Slide Credit: Druv Bhatra

Convol. Pooling

Stage 1 Stage 2 Stage 3
Fully 

Connected 
Layer

Input 
Image

Class 
Label 
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Training a ConvNet
 The same procedure from Back-propagation applies here. 

 Remember in backprop we started from the error terms in the last stage, 
and passed them back to the previous layers, one by one. 

 Back-prop for the pooling layer: 
 Consider, for example, the case of “max” pooling. 
 This layer only routes the gradient to the input that has the highest value in the 

forward pass. 
 Hence, during the forward pass of a pooling layer it is common to keep track of the 

index of the max activation (sometimes also called the switches) so that gradient 
routing is efficient during backpropagation.

 Therefore we have:  𝛿𝛿 = 𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

69

Convol. Pooling

Stage 3 Fully Connected LayerInput 
Image

Class 
Label 

𝛿𝛿last−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦last−layer

𝐸𝐸𝑑𝑑

Stage 1 Stage 2

𝛿𝛿first−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦first−layer

𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖
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Training a ConvNet
 Back-prop for the convolutional layer:

70

Convol. Pooling

Stage 3 Fully Connected LayerInput 
Image

Class 
Label 

𝛿𝛿last−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦last−layer

𝐸𝐸𝑑𝑑

Stage 1 Stage 2

𝛿𝛿first−layer =
𝜕𝜕𝐸𝐸𝑑𝑑

𝜕𝜕𝑦𝑦first−layer

𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖

We derive the 
update rules for a 
1D convolution, 

but the idea is the 
same for bigger 

dimensions.  

�𝑦𝑦 = 𝑤𝑤 ∗ 𝑥𝑥 ⟺ �𝑦𝑦𝑖𝑖 = �
𝑎𝑎=0

𝑚𝑚−1

𝑤𝑤𝑎𝑎 𝑥𝑥𝑖𝑖−𝑎𝑎 = �
𝑎𝑎=0

𝑚𝑚−1

𝑤𝑤𝑖𝑖−𝑎𝑎 𝑥𝑥𝑎𝑎 ∀𝑖𝑖

𝑦𝑦 = 𝑓𝑓 �𝑦𝑦 ⟺ 𝑦𝑦𝑖𝑖 = 𝑓𝑓( �𝑦𝑦𝑖𝑖) ∀𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑎𝑎

=

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

=

𝛿𝛿 =
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑥𝑥𝑎𝑎

=

The convolution

A differentiable nonlinearity 

�
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑤𝑤𝑎𝑎

= �
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖−𝑎𝑎

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑦𝑦𝑖𝑖

𝑓𝑓′( �𝑦𝑦)

�
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑎𝑎

= �
𝑖𝑖=0

𝑚𝑚−1
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕 �𝑦𝑦𝑖𝑖

𝑤𝑤𝑖𝑖−𝑎𝑎

Now we have everything in 
this layer to update the filter

We need to pass the gradient 
to the previous layer 

Now we can 
repeat this for 
each stage of 

ConvNet. 
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Convolutional Nets

71

Stage 
1

Stage 
2

Stage 
3

Fully 
Connected 

Layer
Input 
Image

Class 
Label 

Feature visualization of convolutional net trained on ImageNet
from [Zeiler & Fergus 2013]
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ConvNet roots 
 Fukushima, 1980s designed network with same basic structure but 

did not train by backpropagation. 
 The first successful applications of Convolutional Networks by Yann 

LeCun in 1990's (LeNet)
 Was used to read zip codes, digits, etc.

 Many variants nowadays, but the core idea is the same
 Example: a system developed in Google (GoogLeNet) 

 Compute different filters 
 Compose one big vector from all of them
 Layer this iteratively

72
See more: http://arxiv.org/pdf/1409.4842v1.pdf
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Depth matters

73

Slide from [Kaiming He 2015]
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Practical Tips 
 Before large scale experiments, test on a small subset of the data and 

check the error should go to zero. 
 Overfitting on small training 

 Visualize features (feature maps need to be uncorrelated) and have 
high variance

 Bad training: many hidden units ignore the input and/or exhibit strong 
correlations.

74
Figure Credit: Marc'Aurelio Ranzato
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Debugging
 Training diverges: 

 Learning rate may be too large → decrease learning rate 
 BackProp is buggy → numerical gradient checking 

 Loss is minimized but accuracy is low 
 Check loss function: Is it appropriate for the task you want to solve? Does 

it have degenerate solutions? 
 NN is underperforming / under-fitting 

 Compute number of parameters → if too small, make network larger 
 NN is too slow 

 Compute number of parameters → Use distributed framework, use GPU, 
make network smaller

75

Many of these points apply to many machine learning models, no just neural 
networks. 
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CNN for vector inputs

76

 Let’s study another variant of CNN for language 
 Example: sentence classification (say spam or not spam)

 First step: represent each word with a vector in ℝ𝑑𝑑

This is not a spam 

Concatenate the vectors 

 Now we can assume that the input to the system is a 
vector  ℝ𝑑𝑑𝑑𝑑

 Where the input sentence has length 𝑙𝑙 (𝑙𝑙 = 5 in our example )
 Each word vector’s length 𝑑𝑑 (𝑑𝑑 = 7 in our example )

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
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Convolutional Layer on vectors
 Think about a single convolutional layer

 A bunch of vector filters
 Each defined in ℝ𝑑𝑑ℎ

• Where ℎ is the number of the words the filter covers 
• Size of the word vector 𝑑𝑑

 Find its (modified) convolution with the input vector 

 Result of the convolution with the filter 

 Convolution with a filter that spans 2 words, is operating on all of the bi-
grams (vectors of two consecutive word, concatenated): “this is”, “is not”, 
“not a”, “a spam”. 

 Regardless of whether it is grammatical  (not appealing linguistically)

77

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O

O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O

𝑐𝑐1 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥1:ℎ)𝑐𝑐2 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥ℎ+1:2ℎ)𝑐𝑐3 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥2ℎ+1:3ℎ)𝑐𝑐4 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥3ℎ+1:4ℎ)

𝑐𝑐 = [𝑐𝑐1, … . , 𝑐𝑐𝑛𝑛−ℎ+1] O O
O O
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Convolutional Layer on vectors

78

O O O O O

O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

This is not a spam 

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O

O O O O
O O O O

O O O
O O O

Get word 
vectors for 
each words 

Concatenate 
vectors 

Perform 
convolution 

with each filter Filter 
bank

Set of 
response 
vectors 

*

How are we going to 
handle the variable 

sized response 
vectors?
Pooling!  

#of filters

#words - #length of filter + 1
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Convolutional Layer on vectors

 Now we can pass the fixed-sized vector to a logistic unit (softmax), or give it to multi-layer 
network (last session)

79

O O O O O

O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

This is not a spam 

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O

O O O O
O O O O

O O O
O O O

Get word 
vectors for 
each words 

Concatenate 
vectors 

Perform 
convolution 
with each 

filter 

Filter 
bank

*

#of filters

#words - #length of filter + 1

Pooling on 
filter 

responses 

O O
OO O O

O O O
O O O

O O O

Some choices for 
pooling: 

k-max, mean, etc
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Recurrent Neural Networks 

 Multi-layer feed-forward NN: DAG
 Just computes a fixed sequence of 
non-linear learned transformations to convert an input patter into an 
output pattern

 Recurrent Neural Network: Digraph 
 Has cycles. 
 Cycle can act as a memory; 
 The hidden state of a recurrent net can carry along  information 

about a “potentially” unbounded number of previous inputs.
 They can model sequential data in a much more natural way.

80
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Equivalence between RNN and Feed-forward NN

 Assume that there is a time delay of 1 in using each connection.

 The recurrent net is just a layered net that keeps reusing the same 
weights.

81
Slide Credit: Geoff Hinton

W1    W2       W3   W4

time=0

time=2

time=1

time=3

W1    W2      W3     W4

W1      W2     W3  W4

w1 w4

w2 w3
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Recurrent Neural Networks 
 Training a general RNN’s can be hard

 Here we will focus on a special family of RNN’s 

 Prediction on chain-like input: 
 Example: POS tagging words of a sentence 

 Issues : 
 Structure in the output: There is connections between labels
 Interdependence between elements of the inputs: The final decision is based 

on an intricate interdependence of the words on each other. 
 Variable size inputs:  e.g. sentences differ in size 

 How would you go about solving this task? 

82

𝑋𝑋 = This is a sample sentence
Y = DT                      VBZ             DT                   NN   NN            
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Recurrent Neural Networks 
 A chain RNN:

 Has a chain-like structure 
 Each input is replaced with its vector representation 𝑥𝑥𝑡𝑡
 Hidden (memory) unit ℎ𝑡𝑡 contain information about previous 

inputs and previous hidden units ℎ𝑡𝑡−1,ℎ𝑡𝑡−2, etc
 Computed from the past memory and current word. It summarizes 

the sentence up to that time.

83

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer
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Recurrent Neural Networks 
 A popular way of formalizing it: 

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)
 Where 𝑓𝑓 is a nonlinear, differentiable (why?) function. 

 Outputs?
 Many options; depending on problem and computational 

resource

84

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer
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Recurrent Neural Networks 
 Prediction for 𝑥𝑥𝑡𝑡, with ℎ𝑡𝑡

 Prediction for 𝑥𝑥𝑡𝑡, with ℎ𝑡𝑡, … , ℎ𝑡𝑡−𝜏𝜏

 Prediction for the whole chain

 Some inherent issues with RNNs: 
 Recurrent neural nets cannot capture phrases without prefix context 
 They often capture too much of last words in final vector

85

𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

𝑦𝑦𝑇𝑇 = softmax 𝑊𝑊𝑜𝑜ℎ𝑇𝑇

𝑦𝑦𝑡𝑡 = softmax �
𝑖𝑖=0

𝜏𝜏

𝛼𝛼𝑖𝑖𝑊𝑊𝑜𝑜
−𝑖𝑖
ℎ𝑡𝑡−𝑖𝑖

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1
Memory layer

Input layer
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Bi-directional RNN
 One of the issues with RNN: 

 Hidden variables capture only one side context 

 A bi-directional structure

86
O

 O
O

O
O

O
 O

O
O

O

O
 O

O
O

O
�ℎ𝑡𝑡−1 �ℎ𝑡𝑡 �ℎ𝑡𝑡+1

𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

O O O O O O O O O O O O O O O
𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

�ℎ𝑡𝑡 = 𝑓𝑓( �𝑊𝑊ℎ �ℎ𝑡𝑡+1 + �𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡 + �𝑊𝑊𝑜𝑜 �ℎ𝑡𝑡
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Stack of bi-directional networks 
 Use the same idea and make your model further 

complicated: 

87
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Training RNNs
 How to train such model? 

 Generalize the same ideas from back-propagation 

 Total output error: 𝐸𝐸 𝑦⃗𝑦, 𝑡𝑡 = ∑𝑡𝑡=1𝑇𝑇 𝐸𝐸𝑡𝑡 𝑦𝑦𝑡𝑡 , 𝑡𝑡𝑡𝑡

88

O O O O O O O O O O O O O O O

𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

Oℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

Reminder: 
𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝜕𝜕 = �

𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑦𝑦𝑡𝑡

𝜕𝜕𝑦𝑦𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

𝜕𝜕ℎ𝑡𝑡−𝑘𝑘
𝜕𝜕𝜕𝜕

Parameters? 
𝑊𝑊𝑜𝑜, 𝑊𝑊𝑖𝑖, 𝑊𝑊ℎ +

vectors for 
input

This sometimes  is called 
“Backpropagation Through Time”, 
since the gradients are 
propagated back through time. 
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Recurrent Neural Network 

89
𝑦𝑦𝑡𝑡−1 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡+1

O O O O O O O O O O O O O O O

𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

O
 O

O
O

O

O
 O

O
O

O

O
 O

O
O

O

ℎ𝑡𝑡−1 ℎ𝑡𝑡 ℎ𝑡𝑡+1

Reminder: 
𝑦𝑦𝑡𝑡 = softmax 𝑊𝑊𝑜𝑜ℎ𝑡𝑡

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝑡𝑡=1

𝑇𝑇 𝜕𝜕𝐸𝐸𝑡𝑡
𝜕𝜕𝑦𝑦𝑡𝑡

𝜕𝜕𝑦𝑦𝑡𝑡
𝜕𝜕ℎ𝑡𝑡

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

𝜕𝜕ℎ𝑡𝑡−𝑘𝑘
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡
𝜕𝜕ℎ𝑗𝑗
𝜕𝜕ℎ𝑗𝑗−1

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−1

= 𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡) diag 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 =
𝑎𝑎1 0 0
0 ⋱ 0
0 0 𝑎𝑎𝑛𝑛
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Vanishing/exploding gradients 

 Vanishing gradients are quite prevalent and a serious issue.  
 A real example 

 Training a feed-forward network 
 y-axis: sum of the gradient norms
 Earlier layers have exponentially 
smaller sum of gradient norms
 This will make training earlier 
layers much slower. 
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𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑘𝑘

≤ �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎ diag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡) ≤ �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝛼𝛼𝛼𝛼 = 𝛼𝛼𝛼𝛼 𝑘𝑘

𝜕𝜕ℎ𝑡𝑡
𝜕𝜕ℎ𝑡𝑡−𝑘𝑘

= �
𝑗𝑗=𝑡𝑡−𝑘𝑘+1

𝑡𝑡

𝑊𝑊ℎdiag 𝑓𝑓′(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡)

Gradient can become very small or very large quickly, and the locality assumption 
of gradient descent breaks down (Vanishing gradient) [Bengio et al 1994]
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Vanishing/exploding gradients 
 In an RNN trained on long sequences (e.g. 100 time steps) the 

gradients can easily explode or vanish.
 So RNNs have difficulty dealing with long-range dependencies.

 Many methods proposed for reduce the effect of vanishing gradients; 
although it is still a problem 
 Introduce shorter path between long connections 
 Abandon stochastic gradient descent in favor of a much more 

sophisticated Hessian-Free (HF) optimization
 Add fancier modules that are robust to handling long memory; 

e.g. Long Short Term Memory (LSTM) 
 One trick to handle the exploding-gradients: 

 Clip gradients with bigger sizes: 
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Defnne 𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

If  𝑔𝑔 ≥ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 then 
𝑔𝑔 ← 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑔𝑔
𝑔𝑔
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