


Ensemble Learning

Consider a set of classifiers h, ..., h;

Idea: construct a classifier H(x) that combines the
individual decisions of A, ..., h;
* e.g., could have the member classifiers vote, or

* e.g., could use different members for different regions of the
instance space

* Works well if the members each have low error rates

Successful ensembles require diversity
e C(lassifiers should make different mistakes

* (Can have different types of base learners

[Based on slide by Léon Bottou]



Practical Application: Netflix Prize

Goal: predict how a user will rate a movie
e Based on the user’s ratings for other movies N [ '|' |I I_ | x
* and other peoples’ ratings

* with no other information about the movies

This application is called “collaborative filtering”

Netflix Prize: S1M to the first team to do 10% better
then Netflix’ system (2007-2009)

Winner: BellKor’s Pragmatic Chaos —an ensemble of
more than 800 rating systems

[Based on slide by Léon Bottou]



Combining Classifiers: Averaging

h
hy

X ° = —> H(x)
hy

* Final hypothesis is a simple vote of the members



Combining Classifiers: Weighted Average

h,
hy

hy

e Coefficients of individual members are trained using
a validation set



Combining Classifiers: Gating
h]
h?

hy

Gating Fn

* Coefficients of individual members depend on input
* Train gating function via validation set



Combining Classifiers: Stacking
h, \
h

. ) C = H(x)
h, /

15t Layer 2" Layer

* Predictions of 1%t layer used as input to 2" layer
* Train 2"9 [ayer on validation set



How to Achieve Diversity

Cause of the Mistake Diversification Strategy
Pattern was difficult Hopeless
Overfitting Vary the training sets

Some features are noisy  Vary the set of input features

[Based on slide by Léon Bottou]



Manipulating the Training Data

Bootstrap replication:

* Given ntraining examples, construct a new training set by
sampling n instances with replacement

* Excludes ~30% of the training instances

Bagging:

* Create bootstrap replicates of training set

* Train a classifier (e.g., a decision tree) for each replicate

* Estimate classifier performance using out-of-bootstrap data
* Average output of all classifiers

Boosting: (in just a minute...)

[Based on slide by Léon Bottou]



Manipulating the Features

Random Forests

* Construct decision trees on bootstrap replicas

— Restrict the node decisions to a small subset of features
picked randomly for each node

* Do not prune the trees
— Estimate tree performance

X
on out-of-bootstrap data / \
* Average the output )a? gx )@? g«( j? i@(
of all trees \ /

[Based on slide by Léon Bottou]



Boosting



AdaBoost

[Freund & Schapire, 1997]

* A meta-learning algorithm with great theoretical and
empirical performance

 Turns a base learner (i.e., a “weak hypothesis”) into a
high performance classifier

* Creates an ensemble of weak hypotheses by
repeatedly emphasizing misspredicted instances



1: Initialize a vector of n uniform weights wy
2: fort=1,...,T

7
8: end for
9: Return the hypothesis

AdaBoost

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3; = %ln (ﬂ>

€¢
Update all instance weights:
Wi41,5 = W3 €XP (_5tyz'ht(xi>)

Normalize w11 to be a distribution

H(x) = sign <Z Behy (x))

e Size of point represents the instance’s weight
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1: Initialize a vector of n uniform weights wy
2: fort=1,...,T

3: Train model h; on X,y with weights wy
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AdaBoost
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2: fort=1,...,T

T
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he

* [, measures the importance of h,

o If ¢, <0.5,then 8; > 0

(can trivially guarantee)



AdaBoost
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he

* [, measures the importance of h,

e If ¢, <0.5,then 8 > 0

(f, grows as €; gets smaller)



1: Initialize a vector of n uniform weights wy
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7
8: end for
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* Weights of correct predictions are multiplied by e P <1
* Weights of incorrect predictions are multiplied by et > 1
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1: Initialize a vector of n uniform weights wy
2: fort=1,...,T

7
8: end for
9: Return the hypothesis

AdaBoost

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3; = %ln (12—;”)
Update all instance weights:
Wg+1,i — W, €XP (_Btyiht(x’i))

Normalize w; 1 to be a distribution

H(x) = sign (Z 5tht(x)>

Disclaimer: Note that resized points in the illustration above
are not necessarily to scale with g,
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AdaBoost
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1: Initialize a vector of n uniform weights w1

AdaBoost

2: fort=1,...,T

7
8: end for
9: Return the hypothesis

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3; = %ln <1z—:t>
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Normalize w; 1 to be a distribution

H(x) = sign <Z Btht(X)>
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1: Initialize a vector of n uniform weights wy

AdaBoost
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7
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1: Initialize a vector of n uniform weights wy

AdaBoost

2: fort=1,...,T
3: Train model h; on X,y with weights w,
4: Compute the weighted training error of h;
5: Choose 3; = %ln <1z—t€t>
6: Update all instance weights:
Wg+1,i — W, €XP (—ﬂtyz'ht (Xz>)
7 Normalize w; 1 to be a distribution
8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>
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AdaBoost

1: Initialize a vector of n uniform weights wy

2: fort=1,...,T

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3; = %ln <ﬂ>

€t

Update all instance weights:
Wg+1,i — W, €XP (—5tyz'ht (Xz>)

7 Normalize w; 1 to be a distribution

8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>
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1: Initialize a vector of n uniform weights wy
2: fort=1,...,T

7
8: end for
9: Return the hypothesis

AdaBoost

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3; = %ln (12—;”)
Update all instance weights:
Wi41,5 = W3 €XP (_5tyz'ht(xi>)

Normalize w11 to be a distribution

H(x) = sign <Z 5tht(x)>

* Final model is a weighted combination of members
— Each member weighted by its importance



AdaBoost

[Freund & Schapire, 1997]

INPUT: training data X,y = {(x;,y;) }1"_1,
the number of iterations T'
1: Initialize a vector of n uniform weights w; = [%
2: fort=1,...,T
3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:

€t — E Wt 4

1y Fhe(x4)
5: Choose 3; = %ln (1_—61‘)

3|~

]

9 o e ey

€t

6: Update all instance weights:

Wi41,5 = We,5 €EXP (_Btyiht(xi)) Vi=1,...,n

7 Normalize w11 to be a distribution:
Wt41,4 .
W41, — ) Vz:l,...,n
Zj:l Wi41,5
8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>



1: Initialize a vector of n uniform weights w; = [%, e

AdaBoost

INPUT: training data X,y = {(x;, y;) }™

the number of iterations 7T

2: fort=1,...,T

3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:

€t — Z Wt 4

1:y; 7Zhe (X;)

5: Choose 3; = %ln (1;—:’6)
6: Update all instance weights:

Wiy1; = Wi exXp (—Beyihe(x)) Vi=1,...,n
7 Normalize w11 to be a distribution:

w .
Wt1,4 = n AL Vi = 17"'7”
Zj:l Wi41,5

8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>

1=1>

Y

S|

]

W, is a vector of weights
over the instances at
iteration ¢

All points start with equal
weight



1: Initialize a vector of n uniform weights w; = [%, e

AdaBoost

INPUT: training data X,y = {(x;, y;) }™

1=1>

the number of iterations 7T

2: fort=1,...,T

S|

]

Y

We need a way to weight instances
differently when learning the model...

3: Train model h; on X,y with instance weights wy
4: Compute the wex ining error rate of hy:

€t — Z Wt 4

iy Fhe(x;)

5: Choose 3; = %ln (t—:t)
6: Update all instance weights:

Wiy1,; = Wy exp (—Byihe(x5)) Vi=1,...,n
7 Normalize w11 to be a distribution:

Wt41,4 )

Wit1,5 = Z?;l W Vi=1,...,n

8: end for

9: Return the hypothesis

H(x) = sign (Z 5tht(X)>
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Training a Model with Weighted Instances

* For algorithms like logistic regression, can simply
incorporate weights w into the cost function

— Essentially, weigh the cost of misclassification differently
for each instance

Jreg(g) — sz [yz lOg hG(Xi> + <1 — y’t) lOg (1 _ hO(XZ))] + >‘||9[1d] H%

1=1

* For algorithms that don’t directly support instance
weights (e.g., ID3 decision trees, etc.), use weighted
bootstrap sampling

— Form training set by resampling instances with
replacement according to w



Base Learner Requirements

 AdaBoost works best with “weak” learners
— Should not be complex
— Typically high bias classifiers

— Works even when weak learner has an error rate just
slightly under 0.5 (i.e., just slightly better than random)

e Can prove training error goes to 0 in O(log n) iterations

 Examples:
— Decision stumps (1 level decision trees)
— Depth-limited decision trees
— Linear classifiers



AdaBoost

INPUT: training data X,y = {(x;,y;)}I"_1,
the number of iterations T’

1: Initialize a vector of n uniform weights w; = [%, e ﬂ
2: fort=1,...,T
3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:

€t — Z Wt 4

iryi b (%) Error is the sum the weights of all

5. Choose 8; = 2 In (1‘—) misclassified instances
6: Update all instance weights:

Wiy1,; = Wi exp (—Beyihe(x)) Vi=1,....n
7 Normalize w11 to be a distribution:

w .
Wt1,4 = n AL Vi = 17"'7”
Zj:l Wi41,5

8: end for

9: Return the hypothesis

H(x) = sign (Z 5tht(X)>
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1: Initialize a vector of n uniform weights w; = [%, e

AdaBoost

INPUT: training data X,y = {(x;, y:) }7'_q,
the number of iterations T’

S|

]

Y

2: fort=1,...,T

3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:
€t — Z Wt 4
iy Fhe(x;)
5: Choose 3; = %ln (1;—:’6)
v Ugjii iHQLTStj;;(E_W;j}:j * [, measures the importance of A,
o e If ¢ <0.5,then 5; >0
7: Normalize Wt*;} tol be a dis o Trivial, otherwise flip h,s predictions
W1 = Z?:itﬂ;:l,j Vie B, grows as error h,‘s shrinks
8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>



1: Initialize a vectc
2: fort=1,...,T

3: Train model :
4: Compute the will be 21
a“= Q. . . L
vm (x ESSentially this emphasizes misclassified instances.
5: Choose 3 = 5 e J
6: Update all instance weights:
Wiy1,; = Wi exp (—Beyihe(x)) Vi=1,....n
7 Normalize w11 to be a distribution:
Wt+1,5 = nwt—i_l,i Vi = 17 sy I
23:1 Wt+-1,5
8: end for

INPUT: traini
the n

AdaBoost
will be <1

This is the same as: .
P i hy (%) = v
| | e 1 t\ X Yi
Wi41,; = W5 X if hy(x;) # v

9: Return the hypothesis

H(x) = sign (Z 5tht(X)>
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1: Initialize a vector of n uniform weights w; = [%, e

AdaBoost

INPUT: training data X,y = {(x;,y;)}I"_1,
the number of iterations T’

2: fort=1,...,T

3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:

€t — Z Wt 4

1:y; 7Zhe (X;)

5: Choose 3; = %ln (t—:t)
6: Update all instance weights:

Wiy1, = Wi exXp (—Beyihe(x3)) Vi=1,...,n
7 Normalize w11 to be a distribution:

w .
Wt1,4 = n AL Vi = 17"'7”
Zj:l Wi41,5

8: end for

9: Return the hypothesis

H(x) = sign (Z ﬁtht(X)>

Y

S|

]

Make w,,,sumto 1

53



1: Initialize a vector of n uniform weights w; = [%, e

AdaBoost

INPUT: training data X,y = {(x;, y:) }7'_q,
the number of iterations T’

2: fort=1,...,T

S|

]

Member classifiers with less
error are given more weight in
the final ensemble hypothesis

3: Train model h; on X,y with instance weights wy
4: Compute the weighted training error rate of h;:

€t — Z Wt 4

1:y; 7Zhe (X;)

5: Choose 3; = %ln (t—ft)
6: Update all instance weights:

Wiy = Wy exXp (—Bryihe(x)) Vi=1,
7 Normalize w11 to be a distribution:

Werd :
Wi41,i = n AL Vi = L...,n
Zj:l Wi41,5

8: end for

9: Return the hypothesis

H(x) = sign (Z Btht(X)>

Final prediction is a weighted
combination of each
member’s prediction



Dynamic Behavior of AdaBoost

* |f a pointis repeatedly misclassified...
— Each time, its weight is increased

— Eventually it will be emphasized enough to
generate a hypothesis that correctly predicts it

e Successive member hypotheses focus on the
hardest parts of the instance space

— Instances with highest weight are often outliers



AdaBoost and Overfitting

VC Theory originally predicted that AdaBoost would
always overfit as T grew large

— Hypothesis keeps growing more complex

In practice, AdaBoost often did not overfit,
contradicting VC theory

Also, AdaBoost does not explicitly regularize the model



Explaining Why AdaBoost Works

20-
: AdaBoost on OCR data with
C4.5 as the base learner

ETest

— —
..,..9

percent error

o

e

S

10 100 1000

rounds of boosting

 Empirically, boosting resists overfitting

e Note that it continues to drive down the test error
even AFTER the training error reaches zero

[Figure from Schapire: “Explaining AdaBoost”]



Explaining Why AdaBoost Works

20- ---- T=5

; AdaBoost on OCR data with g ---- T'=100
15- C4.5 as the base learner 2 |— T'=1000
5 : | s
§10i g 0.5- -
O . L ‘
o £
S 5 3
0- . e A
10 100 1000 -1 -0.5 margin 0.5 1

rounds of boosting

* The “margins explanation” shows that boosting tries
to increase the confidence in its predictions over time

— Improves generalization performance
— Effectively, boosting maximizes the margin!

[Figures from Schapire: “Explaining AdaBoost”]



AdaBoost in Practice

Strengths:

* Fast and simple to program

* No parameters to tune (besides T)
* No assumptions on weak learner

When boosting can fail:

* Given insufficient data

* Overly complex weak hypotheses
* Can be susceptible to noise

When there are a large number of outliers



Boosted Decision Trees

.. Error Rates on 27
e Boosted decision trees are one of Benchmark Data Sets

the best “off-the-shelf” classifiers

— i.e., no parameter tuning

* Limit member hypothesis
complexity by limiting tree depth
* Gradient boosting methods are

typically used with trees in O PRETEE Rr T
practice boosting C4.5

“AdaBoost with trees is the best off-the-shelf classifier in the world” -Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

[Figure from Freud and Schapire: “A Short Introduction to Boosting”]



