Quiz Instructions

 $\bigcirc \ \frac{13}{35}$

Let $f(x) = -4x^2$ - decimal number		of x will maximize the	function f(x)? Pleas	se input your answer as
Question 2				11
	Man	Woman	Child	Total
First Class	10	15	5	30
Second Class	25	30	10	65
Third Class	30	35	15	80
Total	65	80	30	175
Given that a passeraveled in the se		t random was a man,	find the probability	y that the passenger
$\bigcirc \frac{6}{35}$				
$\bigcirc \frac{5}{13}$				

	Question 3	1 pts			
	Suppose we have 5 input features, x_1 , x_2 , x_3 , x_4 , x_5 , and each feature can take on 3 possible vectors what is the cardinality of this instance space?	alues.			
	O 125				
	O 243				
	O 25				
	○ 32				
L					
	Question 4	1 pts			
	Let x_1, x_2, x_3, x_4 be the input features to the model and y be the label determined by the function $f(x_1, x_2, x_3, x_4)$ such that $y = f(x_1, x_2, x_3, x_4)$.				
	Suppose the 4 input features are, $x1$, $x2$, $x3$, $x4$, can each take on 3 possible values and the label y can be either '+' or '-'. What is the total number of possible functions?				
	$\frac{\bigcirc 2}{\bigcirc 3^{16}}$				
	\bigcirc 4 9				
	○ 2 ⁸¹				

Question 5	1 pts			
As seen in question 4 the space of all possible functions is far too large! To deal with this, lear usually consider only a subset of all the possible functions. This is called the hypothesis space				
Suppose the hypothesis space we are considering is the space of all conjunctions over k input features, x_1, x_2, x_3, x_4, x_5 , for k=0,1,2,3,4,5. For example, $x_1 \land x_5$ is an element in the hypothesis space. $x_2 \lor x_3$ is not.				
What is the cardinality of this hypothesis space H?				
O 243				
O 16				
○ 32				
O 81				