CIS 519/419
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth

danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

Lecture given by Daniel Khashabi

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton
for CIS519/419 at Penn, or from other authors who have made their ML slides available.

CIS419/519 Spring'18

Functions Can be Made Linear

= Data are notlinearly separable in one dimension

= Not separable if you insist on using a specific class of
functions

CIS419/519 Spring'18

Blown Up Feature Space

= Data are separable in <x, x*> space

o ®
X2
®
o
®
T
® ..
Q‘. ®
X

CIS419/519 Spring'18

Multi-Layer Neural Network

= Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single

threshold element. T
activation Output

= Theideais to stack several)

layers of threshold elements,
_ Hidden
each layer using the output of

the previous layer as input.

Input

= Multi-layer networks can represent arbitrary
functions, but buildingeffective learning methods
for such network was [thought to be] difficult.

CIS419/519 Spring'18

Basic Units

" Linear Unit: Multiplelayers of linear functions
0;=w ¢ x produce linear functions. We want to
represent nonlinear functions. activation

A

Output

= Need todoitina way that

Wzij
facilitates learning Hidden

= Threshold units: o;=sgn(w ¢ x) wl,

are not differentiable, hence
Input

unsuitable for gradient descent.

= The key idea was to notice that the discontinuity of
the threshold element can be represents by a smooth
non-linearapproximation: o, = [1+ exp{-w ¢ x}|™*

(Rumelhart, Hinton, Willilam, 1986), (Linnainmaa, 1970), see: http://people.idsia.ch/~juergen/who-
invented-backpropagation.html)

CIS419/519 Spring'18 5

Model Neuron (Logistic)

= Us anon-linear, differentiable output function such
as the sigmoid or logistic function

)(1 1
2 17
7
; S illa 0,
4] I g
5 Tj
X7 6 W67

= Netinputto aunitisdefined aslletj = EWH ®X.
= Qutput of a unitis defined as:

1

—(net;-T;)

0. =

J
1+e

CIS419/519 Spring 18

Neural Networks

= Neural Networks are functions: NN: X - Y
« whereX =[0,1]"% or {0,1}" and Y = [0,1], {0,1}
= Robustapproach to approximatingreal-valued, discrete-valued
and vector valued target functions.

= Among the most effective general purpose supervised
learning method currently known.

= Effective especially for complex and hard to interpret
input data such as real-world sensory data, where a lot of
supervision is available.

= The Backpropagationalgorithm for neural networks has
been shown successful in many practical problems

= handwritten characterrecognition, speech recognition, object
recognition, some NLP problems

CIS419/519 Spring'18

Neural Networks

= Neural Networks are functions: NN: X - Y
« whereX =[0,1]"% or {0,1}" and Y = [0,1], {0,1}
= NN can be used as an approximation of a target classifier

= In theirgeneral form, even with a single hidden layer, NN can
approximate any function
= Algorithms existthat canlearna NN representationfromlabeled

trainingdata (e.g., Backpropagation).

CIS419/519 Spring'18

Multi-Layer Neural Networks

= Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single

threshold element.

. . tivati Output
= Theideais to stack several activation P

layers of threshold elements,

each layer using the output of Hidden

the previous layer as input.

Input

CIS419/519 Spring'18 9

Motivation for Neural Networks

= |nspired by biological systems

= But don’t take this (as well as any other words in the new on
“emergence” of intelligent behavior) seriously;

= \We are currently on rising part of a wave of interest in NN
architectures, after a long downtime from the mid-90-ies.
= Better computerarchitecture (GPUs, parallelism)
= Alot moredatathan before;in manydomains, supervisionis
available.
= Current surge of interest has seen very minimal
algorithmic changes

CIS419/519 Spring'18

10

Motivation for Neural Networks

= Minimal to no algorithmic changes
= One potentiallyinteresting perspective:

= Beforewe looked at NN only as function approximators.

= Now, we lookat theintermediate representations generated
while learning as meaningful

= |deas arebeing developed on thevalue of these intermediate
representationsfor transferlearningetc.

= We will present in the next two lectures a few of the basic
architectures and learning algorithms, and provide some
examples for applications

CIS419/519 Spring'18 11

Neural Speed Constraints

= Neuron “switching time” is O(milliseconds), compared to
nanosecond for transistors.

= However, biological systems can perform significant cognitive
tasks (vision, language understanding) in fractions of a second.

= Even for limited abilities, current Al systems require orders
of magnitude more steps.

= Human brain has approximately 10210 neurons, each
connected to 10"4; must explore massive parallelism (but
there’s more...)

CIS419/519 Spring'18

12

Basic Unit in Multi-Layer Neural Network

" Linear Unit: o; = w.Xx multiplelayers of linear functions
produce linear functions. We want to represent nonlinear
functions.

= Threshold units: 0; = sgn(w.x —T) are not
differentiable, hence unsuitable for gradient descent

activation Output

Inputs Weights
Wi 1

Hidden

Threshold T

Input

In

CIS419/519 Spring'18 13

Model Neuron (Logistic)

= Neuronis modeled by a unit j connected by weighted
links w;; to other units i.

| +e*]
=) o

= Use a non-linear, differentiable output function such as the
sigmoid or logisticfunction

= Netinputtoa unitis defined as: net; = Yw;j.x;
1
Oj —
1+ exp(—(netj — Tj))
CIS419/519 Spring'18 14

= Qutputofaunitisdefined as:

History: Neural Computation

= McCulloch and Pitts (1943) showed how linear
threshold units can be used to compute logical

functions
netj = Zwij'xi
1

- 1+ exp(—(netj — T]))

= Can build basic logic gates
« AND:w;; = Tj/n 0j
OR:w;; = T;
NOT: use negative weight

= Can build arbitrary logic circuits, finite-state machines
and computers given these basis gates.

= Can specify any Boolean function using two layer
network (w/ negation)

DNF and CNF are universal representations

CIS419/519 Spring'18 15

Representational Power

= AnyBooleanfunction can be represented by a two layer
network (simulate a two layer AND-OR network)

= Anybounded continuous function can be approximated with
arbitrary small error by a two layer network.

= Sigmoid functions provide a set of basis function from which
arbitrary function can be composed.

= Any function can be approximated to arbitraryaccuracy by a
three layer network.

CIS419/519 Spring'18

16

Quiz Timel

= Given a neural network, how can we
make predictions?

= Giveninput, calculate the output of each
layer (starting from thefirst layer), until you
get to the output.

= What is required to fully specify a neural
network?

= The weights.

= Why NN predictions can be quick?

= Because many of the computations could be parallelized.

= What makes a neural networks non-linear approximator?

= The non-linear units.

CIS419/519 Spring'18 17

Training a Neural Net

CIS419/519 Spring'18

Widrow-Hoff Rule

= Thisincremental update rule providesan approximation
to the goal:

= Findthe best linearapproximation of the data

: 1
ETT(WU)) — E Z(td — Od)z

dE€eD
= where:

Oq = zwij'xi ZW(])J_C)
[

output oflinearuniton exampled
= t4 =Target outputforexampled

CIS419/519 Spring'18 19

History: Learning Rules

= Hebb (1949) suggested that if two units are both active
(firing) then the weights between them should increase:
Wij = Wij + ROin
= R andis aconstant called thelearning rate
= Supported by physiological evidence

= Rosenblatt (1959) suggested that when a target output
value is provided for a single neuron with fixed input, it
can incrementally change weights and learn to produce
the output using the Perceptronlearning rule.
= assumes binary output units; single linear threshold unit

= Led to the Perceptron Algorithm

" See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

CIS419/519 Spring'18

20

Perceptron Learning Rule

= @Given:
= the target output forthe outputunitist;
= theinputthe neuronseesis x;

= the outputit producesis o;

= Update weights accordingto w;; < w;; + R(tj — oj)xl-
= |f outputiscorrect, don’t change the weights

= If outputiswrong, change weights for all inputs whichare 1
= If output is low (0, needs to be 1) increment weights
= |f output is high (1, needs to be 0) decrement weights

X
1
X Wi7
2 X
X
: —)) o,
X4
X5 We7
X6

CIS419/519 Spring'18 21

Gradient Descent

= We usegradient descent determine the weight vector that minimizes
Err(v_v’(j));

= Fixingtheset D of examples, E isa function of w)

= At each step, the weight vector is modified in the direction that
produces the steepest descentalongthe error surface.

Err(w) %

CIS419/519 Spring'18

22

Summary: Single Layer Network

= Variety of update rules
Multiplicative
= Additive

= Batch and incremental algorithms
= Various convergence and efficiency conditions
= There are other ways to learn linear functions

Linear Programming (general purpose)
Probabilistic Classifiers (some assumption)

= Key algorithms are driven by gradient descent

CIS419/519 Spring'18 23

General Stochastic Gradient Algorithms

Learning rate gradient The loss Q: a function of x, wand y

Wi = W — I 8y QXy Yo W) = W — 1 &

LMS: Q((x, y), w) =172 (y —w' x)?
leads to the update rule (Also called Widrow’s Adaline):
Wiy = Wy + 1 (Y, — WtT X¢) X
Here, even though we make binary predictions based on sgn (w' x) we
do not take the sign of the dot-productinto accountin theloss.

E(z)

Another common loss functionis:
Hinge loss:

Q((x, y), w) = max(0,1-yw' x)
Thisleads to the perceptron updaterule:

) 1 0 1 5

Ify. WL-T' x;>1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): Wy, = W, + ry; X,
Here g = -yx
Good to think about the
CIS419/519 Spring "18 case of Boolean examples 24

Summary: Single Layer Network

= Variety of update rules
Multiplicative
= Additive

= Batch and incremental algorithms
= Various convergence and efficiency conditions
= There are other ways to learn linear functions

Linear Programming (general purpose)
Probabilistic Classifiers (some assumption)

= Key algorithms are driven by gradient descent

= However, the representational restriction is limitingin
many applications

CIS419/519 Spring'18 25

Backpropagation Learning Rule

= Since there could be multiple output units, we define the
error as the sum over all the network output units.

1
Err(W) = > YaepZkek (tka = Oka)’ O1---O

= where D isthe set of training examples,
= K istheset of output units

(1,0,1,0,0)
= Thisis used to derive the (global) learning rule which performs
gradient descentin the weight space inan attemptto minimize the
error function.

oF
AWij = _R an] Function 1

CIS419/519 Spring'18 26

Learning with a Multi-Layer
Perceptron

= |t'seasytolearnthe toplayer—it’sjusta linearunit.

= Givenfeedback (truth) atthe toplayer, and the activation at the
layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

= The problemiswhat todo with

activation

the other set of weights —we do .

not get feedbackin the
intermediate layer(s).

CIS419/519 Spring'18

27

Learning with a Multi-Layer
Perceptron

= The problem is what to do with activation
the other set of weights —we do)
not get feedback in the
intermediate layer(s).

= Solution: If all the activation

functions are differentiable, then

the output of the network is also

a differentiable function of the input and weights in the network.

= Define an error function (e.g., sum of squares) that is a differentiable function

of the output, i.e. this error function is also a differentiable function of the
weights.

= We can then evaluate the derivatives of the error with respect to the weights,
and use these derivatives to find weight values that minimize this error
function, using gradient descent (or other optimization methods).

= This results in an algorithm called back-propagation.

CIS419/519 Spring'18 28

Some facts from real analysis

First let’s get the notation right:

The arrow shows functional dependnence ofz ony
i.e. giveny, we can calculate z.

e.g., for example: z(y) = 2y*2 ‘

0z
0y
The derivative of z, with respect to y. Yy

CIS419/519 Spring'18

29

Some facts from real analysis

= Simplechain rule

= |f zisafunctionofy, and y isa function of x
= Then z is a function of x, as well.

) . 0
= Question: howto find £

<
‘ We will use these facts to derive
0z ozinit 0z @ the details of the Backpropagation
Oy ox Oy Ox | algorithm.
y z will be the error (loss) function.
dy - We need to know how to
ox differentiate z

Intermediate nodes use a logistics
X function (or another differentiable

step function).

- We need to know how to

differentiate it.
CIS419/519 Spring'18

30

Some facts from real analysis

= Multiple path chain rule

Oz 0Ys

Oys Ox

CIS419/519 Spring'18

31

Some facts from real analysis

= Multiple path chain rule: general

CIS419/519 Spring'18

32

Key Intuitions Required for BP

= Gradient Descent

= Changethe weightsin the direction of
gradient to minimize the error
function.

= Chain Rule

= Usethe chainrule tocalculatethe
weights of the intermediate weights

= DynamicProgramming(Memoization)

= Memoizethe weight updatesto make
the updates faster.

= The “back” part of “backpropagation”

CIS419/519 Spring'18

Err(w) 4

0E

aWij

Backpropagation: the big picture

» Loop over instances:

1. Theforwardstep
= Given the input, make
predictions layer-by-layer,
starting from the first layer)

2. The backward step 0w,
= Calculate the error in the output

= Update the weights layer-by-
layer, starting from the final layer

CIS419/519 Spring'18

34

Quiz time!

What is the purpose of forward step?

= To make predictions, given aninput.

What is the purpose of backward step?

= To update the weights, given an outputerror.

= Why do we use the chain rule?

= To calculategradientintheintermediate layers.

= Why backpropagation could be efficient?
= Because it can be parallelized.

CIS419/519 Spring'18

35

Deriving the update rules

CIS419/519 Spring'18

Reminder: Model Neuron (Logistic)

Neuron is moc The parameters so far? veighted

links Wij to Otl The set of connective weights: w;;

The threshold vaIue:Tj
W17

X1

X 0.8]
7 o ter | o
X4 oal _ J

X We7

= Use a non-linear, differentiable output function such as the
sigmoid or logisticfunction

= Netinputtoa unitis defined as: net; = Yw;j.x;
1
Oj —
1+ exp(—(netj — Tj))

= Qutputofaunitisdefined as:

CIS419/519 Spring'18 37

Derivatives

= Function 1 (error):

1
- E= EZREK(tk - Ok)z
OF
" a0 —(t; — 0;)
= Function 2 (linear gate):
= netj = ZWij.xi

anetj

= X;
aWij '

= Function 3 (differentiable step function):

1
] 0; =
' 1+exp{-(net;-T)}

do; exp{—(netj-T)} B
dnet; - (1+exp{—(netj—T)})2_0i(1 Oi)

CIS419/519 Spring'18

38

Derivation of Learning Rule

= The weights are updatedincrementally; the erroris
computed for each example and the weight updateis
then derived.

Ea@) =3 Y (e~ o)

keK
= w;jj influencesthe outputonly through net;

1
0i = 1+exp{—(net;-T)}

and netj = Zwij'xi

= Therefore:

dE; O0E; 0oj Onet;

an'j aO] anetj an]

CIS419/519 Spring'18 39

Derivation of Learning Rule (2)

= Weight updates of output units:

= w;; influences the output only through net;

= Therefore:

Owij g 00;) 1 9nety; L 0wy
=T B_T_Iw

00;
Eqw) = > Z (tx — 0x)? dnet; i (i) DWij. X
keEK 1
U717 exp{—(net; — T;)}

CIS419/519 Spring'18 40

Derivation of Learning Rule (3)

= Weights of output units:

= Ww;j ischanged by:

Awij = R(tj = 07)0;(1 = 0j)x;
— R(ijl-

Where we defined:

OE
5 = gmec, = (&5 = 01)01(1 = 0))

CIS419/519 Spring'18

41

Derivation of Learning Rule (4)

= Weights of hidden units:

= w;; Influences the output only through all the units whose direct
inputincludej

——

0E;, 9E, idnet; |

== | 0
an'j 6netj I\QV_VL_]) T k
aEd] netj = Zwij.xi A

= X =
dnet;< -

z OEd Onetk
x.
dnety /dnet; "

keparent(j)

z dnety
x.
, @ dnet;
keparent(j)

CIS419/519 Spring'18 42

Derivation of Learning Rule (5)

= Weights of hidden units:

= w;; influences the output only through all the units whose direct
inputincludej

d0E, dnet,
— —0) —m— x; =
aWi]’] kanetj '
keparent(j)
-
dnet aoj]
, 00; 6net}-
keparent(j) \

[
= z _5k ij [O] (1 — 0])] X
keparent(j)

CIS419/519 Spring'18 43

Derivation of Learning Rule (6)

= Weights of hidden units:

= Ww;j ischanged by:

AWij = R O](l — 0]) z _51(Wik | Xi
keparent(j)
= R5]Xl]
= Where

5] - Oj(l o Oj)'(EkEparent(j) — 0y Wik)

= Firstdeterminethe errorfor the output units.

= Then, backpropagatethiserrorlayer bylayerthrough the network,
changing weights appropriatelyin each layer.

CIS419/519 Spring'18 44

The Backpropagation Algorithm

= Createa fullyconnected three layer network. Initialize weights.

= Untilall examples produce the correct output within € (or other
criteria)

For each examplein the trainingset do:
1. Compute the network output for this example

2. Compute the error between the output and target value
O = (te — 0) 0 (1 — 0y)
1. For each output unit k, compute error term

5 = 0;(1-0). 2 —0k Wik
kedownstream(j)
1. For each hidden unit, compute error term:
AWL']' = R5]xl

1. Update network weights with Awl-j

End epoch

CIS419/519 Spring'18

45

More Hidden Layers

= The same algorithm holds for more hidden layers.

CIS419/519 Spring'18

46

Demo time!

= Link: https://playground.tensorflow.org/

CIS419/519 Spring'18

47

Comments on Training

= No guarantee of convergence; may oscillate or reach a local
minima.

" |n practice, manylarge networks can be trained on large
amounts of data for realistic problem:s.

= Many epochs (tens of thousands) may be needed foradequate
training. Large data sets may require many hours of CPU

= Termination criteria: Number of epochs; Thresholdontraining
set error; No decreasein error; Increased error on a validation
set.

= To avoid local minima: severaltrials with different random
initial weights with majority or voting techniques

CIS419/519 Spring'18 48

Over-training Prevention

" Runningtoo manyepochs may over-train the networkand
result in over-fitting. (improvedresulton training, decreasein
performance on test set)

= Keep an hold-out validation set and test accuracy after every
epoch
" Maintain weights for best performing network on the validation

set and return it when performance decreases significantly
beyond that.

To avoid losing training data to validation:

= Use 10-fold cross-validation to determine the average number of epochs
that optimizes validation performance

= Train on the full data set using this many epochs to produce the final
results

CIS419/519 Spring'18 49

Over-fitting prevention

= Too few hidden units prevent the system from adequately
fitting the data and learning the concept.

= Using too many hidden units leads to over-fitting.

= Similar cross-validation method can be used to determine
an appropriate number of hidden units. (general)

= Another approach to prevent over-fitting is weight-decay:
all weights are multiplied by some fraction in (0,1) after
every epoch.
Encourages smaller weights and less complex hypothesis

Equivalently: change Error functiontoinclude a term for the sum
of the squares of the weights in the network. (general)

CIS419/519 Spring'18 50

Dropout training
" Proposed by (Hinton et al, 2012)

Output

|

XOORXOO

|

Input

= Each time decide whether to delete one hidden unit with
some probabilityp

CIS419/519 Spring'18

Dropout training

46 ¢ Test Error
| — 15 frames 3 Iayers 2000 units
s] —— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units
} — 31 frames 4 layers 4000 units
a2 (l

Classification Error %
w
@

finetuning wiéjt dropout
\ finetuning with dropout
34 -
- A
- S A NI

30

0 50 100 150 200

= Dropout of 50% of the hidden units and 20% of the input units (Hinton

et al, 2012)

CIS419/519 Spring'18

52

Dropout training

= Model averaging effect

= Among 2" models, with shared parameters
= H: number of units in the network

= Onlya few get trained
= Much stronger than the known regularizer

= What about the input space?

= Do the same thing!

CIS419/519 Spring'18

53

Input-Output Coding

Appropriate coding of inputs and outputs can make
learning problem easier and improve generalization.

Encode each binary feature as a separate input unit;

One way to do it, if you start with a collection of sparsely
representation examples, is to use dimensionality reduction
FOr MU methods: L per
| - Your m examples are represented as a m x 10® matrix L :
valuer - Multiple it by a random matrix of size 10° x 300, say. 1onin
fewer L - Random matrix: Normal(0,1)
- New representation: m x 300 dense rows

= Very

) ofthe input
—real valued, dense representation.

For disjoint categorization problem, best to have one
output unit for each category rather than encoding N
categoriesinto log N bits.

CIS419/519 Spring'18

54

Hidden Layer Representation

= Weight tuning procedure sets weights that define
whatever hidden units representation is most effective at
minimizing the error.

= Sometimes Backpropagation will define new hidden layer
features that are not explicitin the inputrepresentation,
but which capture properties of the inputinstances that
are most relevant to learning the target function.

®" Trained hidden units can be seen as newly constructed
features that re-represent the examples so that they are
linearly separable

CIS419/519 Spring'18

55

Gradient Checks are useful!

= Allowyouto know that there are no bugs in your neural
network implementation!

= Implementyourgradient

= Implementa finite difference computation by looping through the
parameters of your network, addingand subtractinga small
epsilon (~107-4) and estimate derivatives

F(0) = 10O 6t=6 te

= Comparethetwo and make sure they are almostthe same

CIS419/519 Spring'18

56

Auto-associative Network

An auto-associative network trained with 8 inputs, 3 hidden units and
8 output nodes, where the output must reproduce the input.

When trained with vectors with only one bit on

INPUT HIDDEN
10000000 .89 .40 0.8
01000000 .97 .99 .71

00000001 .01 .11 .88 1000100 0
Learned the standard 3-bit encodingforthe 8 bit vectors.

lllustrates also datacompressionaspects of learning

CIS419/519 Spring'18 57

Sparse Auto-encoder

= Encoding: y = f(Wx + b)
x=gW'y+b)

= Goal: perfect reconstruction of

= Decoding:

input vector x, by the output X
= Where 8 = {W,W'}

= Minimize an error function I(X, x)
= For example:

(&, x) = I — xII*

= And regularize it
min, Z (R X) + Z W]
X i

= After optimizationdrop the
reconstruction layerand add a new layer

CIS419/519 Spring'18

Features

Output

58

Stacking Auto-encoder

= Add anew layer, and a reconstruction layer for it.

= And try to tune its parameters such that
= And continuethisfor each layer

CIS419/519 Spring'18

59

Beyond supervised learning

= So far what we had was purely supervised.

= |nitialize parameters randomly

= Trainin supervised mode typically, using backprop

= Used in most practical systems (e.g. speech and image recognition)
—> & Unsupervised, layer-wise pre-training + supervised classifier on top

= Traineach layer unsupervised, one after the other

= Traina supervised classifier on top, keeping the other layers fixed

= Good when very few labeled samples are available
—> = Unsupervised, layer-wise pre-training + supervised fine-tuning

= Train each layer unsupervised, one after the other

= Add aclassifier layer, and retrain the whole thing supervised

= Good when label set is poor (e.g. pedestrian detection)

We won't talk about unsupervised pre-
training here. But it’s good to have this in
mind, since it is an active topic of research.

CIS419/519 Spring'18 60

CIS419/519 Spring'18

NN-2

61

Recap: Multi-Layer Perceptrons

= Multi-layer network activation Output
= A globalapproximator 4
= Differentrulesfortrainingit
= The Back-propagation
= Forward step
= Back propagationoferrors

Hidden

Input

= Congrats! Now you know the one of the important
algorithms in neural networks!

= Today:
= Convolutional Neural Networks
= Recurrent Neural Networks

CIS419/519 Spring'18 62

Receptive Fields

= The receptive field of an individual sensory neuron is the particular
region of the sensory space (e.g., the body surface, or the retina)in
which a stimulus will trigger the firing of that neuron.

= |n the auditory system, receptive fields can correspond to volumes in
auditory space

= Designing “proper” receptive fields for the input Neuronsisa
significant challenge.

= Consideratask with imageinputs

= Receptive fields should give expressive features from the raw input to the
system

= How would you design the receptive fields for this problem?

CIS419/519 Spring'18

63

= A fully connected layer:

= Example:
= 100x100 images
= 1000 units in the input
= Problems:
= 1077 edges!
= Spatial correlations lost!
= Variables sized inputs.

CIS419/519 Spring'18

Input layer

64

= Considera task with image inputs:
= Alocally connected layer:

= Example:
= 100x100 images
= 1000 units in the input
= Filter size: 10x10
= Local correlations preserved!

= Problems:
= 1075 edges
= This parameterization is good

when input image is

registered (e.g., face recognition).
= Variable sized inputs, again.

CIS419/519 Spring'18 65

Convolutional Layer

= A solution:

= Filters to capture different patternsintheinput space.

= Share parameters across different locations (assuming input is
stationary)

= Convolutions with learned filters
= Filters will be learned during training.
= The issue of variable-sized inputs will be
resolved with a pooling layer.

So what is a
convolution?

CIS419/519 Spring'18 66

Convolution Operator

= Convolutionoperator: *
= takes two functions and gives another function

= One dimension: (x *) (©) :fx(‘[)h(t — 1)dt

“Convolution” is

very similar _

) y”csross—a © (X g h) [Tl] - Zm x[m]h[n T m]
correlation”,

except that in i X(t) h(t)

convolution one
of the functions

is flipped.
- oo
t t
Fx(t)*h(t) § x(©)
1 : h(t4'1:
o - .
t, tz t H t , 1

CIS419/519 Spring'18

67

Convolution Operator (2)

= Convolutionin two dimension:

= Thesame idea:flip one matrixand slide it on the other matrix

Example: Sharpen kernel:

input image

CIS419/519 Spring'18 68

Convolution Operator (3)

Convolutionin two dimension:

The same idea:flip one matrix and slide it on the other
matrix

CIS419/519 Spring'18

69

Complexity of Convolution

= Complexity of convolution operatoris nlog(n), forn
inputs.

= Uses Fast-Fourier-Transform (FFT)

* For two-dimension, each convolution takes MNlog(MN)
time, where the size of inputis MN.

CIS419/519 Spring'18

70

Convolutional Layer

= The convolution of the input (vector/matrix) with weights
(vector/matrix) results in a response vector/matrix.

We can have multiple filters in each convolutional layer, each
producingan output.

If it is an intermediate layer, it can have multiple inputs!

- Convolutional -
. =

One can add nonlinearity
at the output of
convolutional layer

CIS419/519 Spring'18 71

Pooling Layer

= How to handle variable sized inputs?

= Alayerwhich reduces inputs of different size, to a fixed size.

= Pooling

CIS419/519 Spring'18

72

Pooling Layer

= How to handlevariable sized inputs?
= Alayerwhich reduces inputs of different size, to a fixed size.
= Pooling
= Differentvariations
= Max pooling
h;[n] = max h [i]

IEN(n)
= Average pooling
1 ~ .
Bl =% 3 Rl
IEN(n)
= L2-pooling

h;[n] =1J Y R2[i]

N\ ieNn)

= etc

CIS419/519 Spring'18

Convolutional Nets

= (One stage structure:

Conv. =y Pooling
Fully

Input =) Stage1l =) Stage2 =) Stage3 =) Connected =) Class

Image Layer Label

= Whole system:

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 R

32x32 S2: f. maps

6@14x14

C5:layer pg:jayer OUTPUT

e
W

‘ ‘ Full conAection ‘
Convolutions Subsampling Convolutions Subsampling Full connection

CIS419/519 Spring'18 74

Training a ConvNet

= The same procedure from Back-propagationapplieshere.

= Remember in backprop we started from the error terms in the last stage,
and passed them back to the previous layers, one by one.

= Back-propforthe poolinglayer:
= Consider, for example, the case of “max” pooling.

= This layer only routes the gradient to the input that has the highest value in the
forward pass.

= Hence, during the forward pass of a pooling layer itis common to keep track of the

index of the max activation (sometimes also called the switches) so that gradient
routing is efficient during backpropagation.

= Therefore we have: § = %
dE,
X i 1 . 6last—1ayer = E
i Convol. —) Poohng :> YVlast—layer
dE,
Ofirst—layer = 30—
b ~ ~ first-laye ay first—layer E/;\d
N e e eem mmm mmm s e = ~ - \ /F |
Class
:nput|:> Stage 1l ':> Stage 2 :> Stage 3 I:> Fully Connected Layer I:> Label
mage

CIS419/519 Spring'18 75

Training a ConvNet

|
We derivethe

Back-prop forthe convolutional layer:

updaterules for a m—1 m—1
1D convolution,
but theidea is the y=wxx < y;= z WaXi_q= 2 Wi_aX, <~ The convolution
same for bigger . A A
d- H . ~ = a=
— y=f@ = i — fa(yi) Vi A differentiable nonlinearity
m—[L N m—1
ow, £d oy ow, |9V -
L=
0E; O0E40y;| OE; , _ Now we have everything in
a7 - dy;|09; - dy; @) this layer to update the filter
m-—1 — m-—1
JdE, dE | 0y; N 9Ey We need to pass the gradient
= = — — - W_ .
0x, L 0y;|0x, iéé ay; @ to the previous layer
5 _ 0E
. . - |' last—layer — aylast—layer
Convol. g Pooling
dE,
Sfirst—laver = =————— ‘
- N - e S~ o first—layer ayfirst—layer Ed
______ - N /]\
Input|:> Stage 1 |:> Stage 2 :> Stage 3 I:> Fully Connected Layer I:> Class
Image Label
76

CIS419/519 Spring'18

Convolutional Nets

Stage Stage Stage Fully
| Input =) *EE =T8S =) 75) connected =) Class
* Image Layer Label

LN

Featurevisualization of convolutional net trained on ImageNet
from [Zeiler & Fergus 2013]
CIS419/519 Spring'18 77

Demo (Teachable Machines)

https://teachablemachine.withgoogle.com/

CIS419/519 Spring'18

78

ConvNet roots

= Fukushima, 1980s designed network with same basic structure but
did not train by backpropagation.

= The first successful applications of Convolutional Networks by Yann
LeCun in 1990's (LeNet)
= Was used to read zip codes, digits, etc.
= Many variants nowadays, but the core idea is the same

= Example: a system developed in Google (GooglLeNet)
= Compute different filters
= Compose one big vector from all of them
= Layer this iteratively

S j"

ot

CIS419/519 Spring'18

79

Depth matters

Revolution of Depth 282
{152 layers ’ :

\
\
\
‘ 22 layers ’ ‘ 19 Iayers
Pl

357 I____I ‘ 8 layers H 8 layers ’

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide from [Kaiming He 2015]

CIS419/519 Spring'18

80

Vanishing/exploding gradients

Gradient can become very small or very large quickly, and the locality assumption
of gradient descent breaks down (Vanishing gradient) [Bengio et al 1994]

= Vanishinggradients are quite prevalentand a seriousissue.

= Areal example

= Training a feed-forward network 100 _Speed of learning: 4 hidden layers
ice ; — Hidden layer 1
= y-axis: sum of the gradient norms 5 5 ; Hidden layer 2
. E | I h t ” 101- —— Hidden layer 3 |4
arlier layers have exponentially ; | | itidenilayerd

smaller sum of gradient norms 1020\ e

= This will make training earlier 3
10°

layers much slower.

10 F

105}

10°¢

0 100 200 300 400 500

CIS419/519 Spring'18

Vanishing/exploding gradients

= |n architectures with manylayers(e.g. >10) the gradients can easily
explode orvanish.

= Manymethods proposed forreduce the effect of vanishing gradients;
althoughitis stilla problem

= Introduce shorter path between longconnections

= Abandon stochasticgradientdescentin favor of a much more
sophisticated Hessian-Free (HF) optimization

= Clip gradients with bigger sizes:

Defnne g = aa—‘f/

If ||gl| = threshold then
threshold

llgll

CIS419/519 Spring'18 82

Practical Tips

= Beforelarge scale experiments, teston a small subset of the dataand
check the error should go to zero.

= Qverfitting on small training

= Visualize features (feature maps need to be uncorrelated) and have
high variance

= Bad training: many hidden unitsignore theinput and/or exhibit strong
correlations.

too noisy too correlated lack structure

CIS419/519 Spring'18 83

Debugging

" Trainingdiverges:
= Learning rate may be too large - decrease learning rate
= BackProp is buggy - numerical gradient checking

= Lossis minimized butaccuracy is low

= Check loss function: Is it appropriate for the task you want to solve? Does
it have degenerate solutions?

= NN isunderperforming/under-fitting
= Compute number of parameters - if too small, make network larger
= NNistooslow

= Compute number of parameters - Use distributed framework, use GPU,
make network smaller

Many of these points apply to many machine learning models, no just neural
networks.

CIS419/519 Spring'18

34

CNN for vector inputs

= Let’s study another variant of CNN for language
Example: sentence classification (say spam or not spam)

= Firststep: represent each word with a vector in R%
This spam

0000000 0000000 0000000 0000000 0000000

Concatenate the vectors
0000000 0000000 0000000 OOOOOOO 00OOOOOO

= Now we can assume that the input to the systemis a
vector R%!

= Where the input sentence has length [(I = 5 in our example)
= Eachword vector’s length d (d = 7 in our example)

CIS419/519 Spring'18

85

Convolutional Layer on vectors

= Think about a single convolutional layer

= A bunch of vector filters

« Eachdefined in R4
* Where his the number of the words the filter covers

0000000 O0OOOOOO

* Size of the word vector d

= Findits (modified) convolution with the mput vector

c1 = fW.x169)= f(W.Xp 4 1ConF f(W X g T3f AW - X3 0 4+1:41)
= Result of the convolution with the filter
€ =[Ct,erCnopsr] [

= Convolution with a filter that spans 2 words, is operating ¢ ali ». the bi-
gra ms (vectors of two consecutive word, concatenated): “this is”, “is not”,

“not a”, “a spam”.
= Regardless of whether itis grammatical (not appealing linguistically)

CIS419/519 Spring'18

86

Convolutional Layer on vectors

Get word

This

vectors for /

v

IS

not a spam

J N N

each words
(oNoXoRoNoXoXo) (oNoXoNoNoXoXo) (oNoXoNoNoXoXo) (oNoXoNoNoXoXo) (oNoXoNoNoXoXo)

Concatenate
vectors 0000000 0000000 0000000 0000000 0000000
*
Perform
convolution] :
with each filter l | Filter
0000000 0000000 0000000 bank
How are we going to
handle the variable #of filter Set of
. response
sized response ;
vectors
? — :
ReCLOlE: #words - #length of filter + 1
Pooling!
CIS419/519 Spring'18 87

Convolutional Layer on vectors

Get word
vectors for
each words

Concatenate
vectors

Perform
convolution
with each
filter

Pooling on
filter
responses

This

e

IS

v

not a

J N\

spam

0000000 0000000 000000O0 0000000 000000O0

0000000 0000000 0000000 0000000 0000000

0000000

*

Hof filter

Filter

LI

| bank

S Gaaa

A

—_—
#words - #length of filter + 1

Some choices for
pooling:
k-max, mean, etc

Now we can pass the fixed-sized vector to alogistic unit (softmax), or give it to multi-layer
network (last session)

CIS419/519 Spring'18

88

Recurrent Neural Networks

= Prediction on chain-like input:

= Example: POS tagging words of a sentence

This is a sample sentence
= |ssues:

= Structure in the output: There is connections between labels

= Interdependence between elements of the inputs: The final decision is based
on anintricate interdependence of the words on each other.

= Variable sizeinputs: e.g. sentences differ in size

= How would you go about solving this task?

CIS419/519 Spring'18 89

Recurrent Neural Networks

= |nfinite uses of finite structure

CIS419/519 Spring'18

90

Recurrent Neural Networks

= A chain RNN:

= Has a chain-like structure

= Eachinputisreplaced with its vector representation x;

= Hidden (memory) unit h containinformation about previous

inputs and previous hiddenunits hy_q,hi_», etc

= Computed from the past memory and current word. It summarizes
the sentence up to that time.

Input layer

> | Memory layer

Xt—1 Xt Xt+1
00000 00000 00000
o o o
o o o
—lo —3lo >lo
>0 >0 o
he—y |© h, |° heyq]®

CIS419/519 Spring'18

91

Recurrent Neural Networks

= A popular way of formalizing it:
he = f(Wrhe_q + Wixe)
= Where f is a nonlinear, differentiable (why?) function.
= Qutputs?

= Manyoptions;dependingon problemand computational
resource

Xt—1 Xt Xt+1
00000 00000 00000 Input layer
o o o
o) o) o)
—>0 ——>10 >0
>0 >0 >0 > | Memory layer
hi—1 |[© hy |° heiq|©

CIS419/519 Spring'18

92

Recurrent Neural Networks

= Prediction for x,, with h,: y, = softmax(W, h,)
Xt—1 Xt Xt+1
00000 00000 00000 Input layer
o) o) o)
o o) o
L slo —>10 —>lo
>0 >0 >0 > | Memory layer
he1 O he |9 heyq)©
Ye-1 Vi Ye+1 Output layer

= Some inherent issues with RNNs:

= Recurrent neural nets cannot capture phrases without prefix context

= They often capture too much of last words in final vector
= Aslightly more sophisticated solution: Long Short-Term Memory (LSTM) units

CIS419/519 Spring'18

93

Recurrent Neural Networks

= Multi-layerfeed-forward NN: DAG

= Just computes a fixed sequence of
non-linear learned transformations to convertan input patterinto an
output pattern

= Recurrent Neural Network: Digraph

= Has cycles.
= Cycle can act as a memory;

= The hidden state of a recurrent netcan carry along information
about a “potentially” unbounded number of previous inputs.

= They can model sequential dataina much more natural way.

CIS419/519 Spring'18

94

Equivalence between RNN and Feed-forward NN

Assume that there is a time delay of 1 in usingeach connection.

The recurrent netis just a layered net that keeps reusingthe same
weights.

wl w4

w2 w3

CIS419/519 Spring'18 95

Bi-directional RNN

= One of the issues with RNN:

Hidden variables capture only one side context

= A bi-directional structure

°@

>

>

© 0

RNN

CIS419/519 Spring'18

!

A

T

v o

Bi-directional RNN

96

Stack of bi-directional networks

= Use the same idea and make your model further
complicated:

K e

CIS419/519 Spring'18

97

Training RNNSs

= How to train such model?

Generalize the same ideas from back-propagation

= Total outputerror: E(, L?) =3I E (v, tr)

Reminder:
y, = softmax(W,h,)
t = fWhhe_q + Wixy)

This sometimes is called
“Backpropagation Through Time”,
sincethe gradients are
propagated back through time.

Parameters? 0E ZT 0E;
w,, W;, W, + —_— = —
vectors fgr 4 t=1 aw
input aEt . ET aEt ayt aht aht_k h
oW Lai—1 0y, Ohy|0h,_,| OW
Xt—1 Xt Xt+1
[E | E
> >
—hr3 t t+1
Ve-1 YVt Ve+1

CIS419/519 Spring'18

98

Recurrent Neural Network

J0E ZT OE; 0y,| 0h; | 0h,_ Reminder:
OW ~ Lut=1dy, Oh|oh,_| oW ye = softmax(Woh)

= O O e hy = f(Wphe_q +0Wixt)
d

a; 0 O
aht . = thlag[f (VVh t— 1+ Wxt)] dlag[. an] = [0 E 0]

0 0 a,

aht . 1_[6h 1_[Whdiaglf' Wyhe_1 + Wix,)]

j=t—k+1

j=t—k+1
Xt—1 Xt Xt+1
I | | | | |
SN 5 >
> > S| >
ht_1 h; h;

Ye-1 I Yt l }’HL

CIS419/519 Spring'18 99

Unsupervised RNNs

= What to put here?

= He was locked up after he

Input (context) output
Xt—2 Xt—1 Xt y
00000 00000 00000
o —>° =
o 310 o
: S 1o
o| h,_, Olh, Of Ntiq
Memory layer
= Note that:

= Thisis unsupervised;you can use tons of data to train this.
= Whiletrainingthe model, we train the word representations too.

CIS419/519 Spring'18 100

Unsupervised RNNs

= This wouldresult in word representations
= thatconveyinformationabouttheir co-occurrence
= Or some form of weak “semantic” similarity

Spain \
Italy \Madrid
Germany —_— Rome
man walked Berlin
Q. ’. Turkey \
) e woman .’ Ankara
: JREN . swam :
king . ® ©) ® Russia —————— __ Moscow
A walking > Canada Ottawa
& — Japan T 1okyo
/ O Vietnam Hanoi
swimming China ————— Beijing
Male-Female Verb tense Country-Capital

= Abigpart of progress (past 5-10 years) is partly due to discovering
better ways create unsupervised context-sensitive representations

CIS419/519 Spring'18 101

