CIS 419/519: Quiz 10

November 25, 2019

1. Given the joint probability table below:

$\mathrm{P}($ smart, study, prepared $)$	smart\&study	\neg smart\&study	smart\& \neg study	\neg smart\& \neg study
prepared	0.3	0.1	0.05	0.05
\neg prepared	0.2	0.1	0.1	0.1

1) Is "smart" conditionally independent of "prepared", given "study"?
2) Is "study" conditionally independent of "prepared, given "smart"?

Answer: No, No

2. Which of the following statement about Naive Bayes classifiers are correct (multiple answers may be correct)?

Assume V is the set of output labels and each data instance X is represented as $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ using n features.

Answer:

1) To determine the NB prediction $v \in V$ on $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ it is necessary to estimate the conditional probability $P\left(x_{i} \mid v\right)$ for all $i=1 \ldots n$
2) To determine the NB prediction $v \in V$ on $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ it is necessary to estimate the probability $P(v)$ for all $v \in V$
3. Suppose $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d random variables, each having the probability density function:

$$
f_{Y}(y)=\theta y^{\theta-1}, 0<y<1
$$

What is the correct MLE of θ ?
Answer: $\hat{\theta}_{M L E}=-\frac{n}{\sum \log \left(y_{i}\right)}$
Solution: Due to i.i.d assumption, we multiply all n random variables to
get our total probability function. Then, take the derivative w.r.t θ and find the θ that maximizes this function:

$$
\begin{aligned}
\prod_{i=1}^{n} f_{Y}\left(y_{i}\right) & =\theta^{n} \prod_{i=1}^{n} y_{i}^{\theta-1} \\
\log \left(\prod_{i=1}^{n} f_{Y}\left(y_{i}\right)\right) & =n \log (\theta)+(\theta-1) \sum_{i=1}^{n} \log \left(y_{i}\right) \\
\frac{d \log \left(\prod_{i=1}^{n} f_{Y}\left(y_{i}\right)\right)}{d \theta} & =\frac{n}{\theta}+\sum_{i=1}^{n} \log \left(y_{i}\right) \\
0 & =\frac{n}{\theta}+\sum_{i=1}^{n} \log \left(y_{i}\right) \\
\hat{\theta}_{M L E} & =-\frac{n}{\sum_{i=1}^{n} \log \left(y_{i}\right)}
\end{aligned}
$$

4. Suppose $z_{1}, z_{2}, \ldots, z_{n}$ are i.i.d random variables, each having a Poisson distribution with a probability density function:

$$
P_{Z}(z)=\frac{e^{-\lambda} \lambda^{z}}{z!}
$$

What is the correct MLE of λ ?
Answer: $\hat{\lambda}_{M L E}=\frac{\sum z_{i}}{n}$
Solution: Due to i.i.d assumption, we multiply all n random variables to get our total probability function. Then, take the derivative w.r.t λ and find the λ that maximizes this function:

$$
\begin{gathered}
\prod_{i=1}^{n} P_{Z}\left(z_{i}\right)=e^{-n \lambda} \prod_{i=1}^{n} \frac{\lambda^{z_{i}}}{z_{i}!} \\
\log \left(\prod_{i=1}^{n} P_{Z}\left(z_{i}\right)\right)=-n \lambda+\log (\lambda) \sum_{i=1}^{n} z_{i}-\sum_{i=1}^{n} \log \left(z_{i}!\right) \\
\frac{\operatorname{dlog}\left(\prod_{i=1}^{n} P_{Z}\left(z_{i}\right)\right)}{d \lambda}=-n+\frac{1}{\lambda} \sum_{i=1}^{n} z_{i} \\
0=-n+\frac{1}{\lambda} \sum_{i=1}^{n} z_{i} \\
\hat{\lambda}_{M L E}=\frac{\sum_{i=1}^{n} z_{i}}{n}
\end{gathered}
$$

5. Say we have two features A and B and a set of possible labels $v \in V$. If we know that the values of A and B are conditionally independent given the label v, what can you say about the independence of the variable A and B ?

Answer: Not enough information

