## CIS 419/519: Quiz 4

October 4, 2019

1. We have examples in the form of 10 boolean variables, $\left\langle x_{1}, x_{2}, \ldots, x_{10}\right\rangle$, and know the true function $f(X)$ is in the class of monotone conjunctions. Say we have a "teacher" who knows the true function and must teach the true function through a set of examples; the true function is $y(X)=$ $x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{6}$. What is the minimum number of examples that is required to learn this function?
(a) 10
(b) 11
(c) 5
(d) 3

## Solution: (c)

2. Let $C$ be the finite concept class of all monotone conjunctions with up to 3 boolean variables. We are trying to learn $f$ where $f \in C$. Each example in our training set is of the form $(<X>, y)$ where $X=<x_{1}, x_{2}, x_{3}>$ , $x_{i} \in\{1,0\}$ and $y \in\{1,0\}$. Say we want to use the halving algorithm to reduce the size of consistent concepts in $C$; our first data point is:

$$
(<0,1,0>, 1)
$$

Will we make a mistake on this first example? Why?
(a) Yes we will, because more concepts in $C$ predict 1 than 0
(b) Yes we will, because more concepts in $C$ predict 0 than 1
(c) No we won't, because more concepts in $C$ predict 1 than 0
(d) No we won't, because more concepts in $C$ predict 0 than 1

## Solution: (b)

3. Suppose we have a weight vector $w \in R^{2}$ with input vectors $x_{i} \in R^{2}$ and $y_{i} \in\{-1,1\}$, let us initialize our 2-dimensional weight vector to be
$w=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Also, suppose we only have 2 examples in our dataset: $\quad\left(x_{1}=\right.$ $\left.\left[\begin{array}{c}1 \\ -1\end{array}\right], y_{1}=1\right),\left(x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], y_{2}=-1\right)$. After training a model based on the Perceptron algorithm on the above dataset over 1 epoch, which option represents the correct final state of the weight vector if the linear threshold function is $\hat{y}=\operatorname{sgn}\left\{w^{T} \cdot x \geq 0\right\}$ ?
(a) $w^{T}=[-1,-1]$
(b) $w^{T}=[0,-1]$
(c) $w^{T}=[0,0]$
(d) $w^{T}=[0,0]$

## Solution: (b)

4. In a mistake-driven algorithm, if we make a mistake on example $x_{i}$ with label $y_{i}$, we can be sure that when the weights are updated we will never make a mistake on this same example if we see it again.
(a) True
(b) False

## Solution: (b)

5. Suppose we're using the Averaged Perceptron algorithm. The training data consists of $m$ examples. Assume that after training for 1 epoch, we've made k mistakes on the training data. We have accumulated the following weight vectors: $\left\{v_{1}, \ldots v_{k+1}\right\}$ and their respective consistency counts are $\left\{c_{1}, \ldots c_{k+1}\right\}$. Which statement is true?
(a) $k>m$
(b) $c_{1}>c_{2}>\ldots>c_{k+1}$ (decreasing from 1 to $\mathrm{k}+1$ )
(c) $c_{1}<c_{2}<\ldots<c_{k+1}$ (increasing from 1 to $\mathrm{k}+1$ )
(d) None of the above

Solution: (d)

