CIS 419/519: Quiz 6

October 18, 2019

1. Stochastic gradient descent, when used with hinge loss, leads to which update rule?
(a) Widrow's Adaline
(b) Perceptron
(c) Winnow
(d) Adagrad
2. Consider the following 4 data points:
(i) $x_{1}=[2,2,-1]$
(ii) $x_{2}=[3,3,-1]$
(iii) $x_{3}=[1,0,-1]$
(iv) $x_{4}=[-2,-2,-2]$

Assume we have some weight vector and bias:
$w=[1,-2,0], \theta=0$
Recall that the margin of a hyperplane is its distance to the closet point. The distance between a point x and the hyperplane defined by w and θ is: $\frac{w^{T} x+\theta}{\|w\|}$
Which example x has the smallest margin?
(a) x_{1}
(b) x_{2}
(c) x_{3}
(d) x_{4}
3. Given a kernel $k(x, y)=\left(x^{T} \cdot y+3\right)^{2}$ where $x=\left[x_{1}, x_{2}\right]$ and $y=\left[y_{1}, y_{2}\right]$, which of the following is the correct representation of the kernel?
(a) $k(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{6} x_{1} \\ \sqrt{6} x_{2} \\ \sqrt{2} x_{1} x_{2} \\ 3\end{array}\right], \phi(y)=\left[\begin{array}{c}y_{1}^{2} \\ y_{2}^{2} \\ \sqrt{6} y_{1} \\ \sqrt{6} y_{2} \\ \sqrt{2} y_{1} y_{2} \\ 3\end{array}\right]$
(b) $k(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ x_{1} x_{2} \\ x_{1} \\ x_{2} \\ 3\end{array}\right], \phi(y)=\left[\begin{array}{c}y_{1}^{2} \\ y_{2}^{2} \\ y_{1} y_{2} \\ y_{1} \\ y_{2} \\ 3\end{array}\right]$
(c) $k(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ 3\end{array}\right], \phi(y)=\left[\begin{array}{c}y_{1}^{2} \\ y_{2}^{2} \\ 3\end{array}\right]$
(d) None of the above. $k(x, y)$ is not a valid kernel
4. Given a kernel $k(x, y)=\left(x^{T} \cdot y+3\right)^{2}$, what is the correct representation of the following kernel $k^{\prime}(x, y)=3 k(x, y)$?
(a) $k^{\prime}(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}\sqrt{3} x_{1}^{2} \\ \sqrt{3} x_{2}^{2} \\ 3 \sqrt{2} x_{1} \\ 3 \sqrt{2} x_{2} \\ \sqrt{6} x_{1} x_{2} \\ 3^{\frac{3}{2}}\end{array}\right], \phi(y)=\left[\begin{array}{c}\sqrt{3} y_{1}^{2} \\ \sqrt{3} y_{2}^{2} \\ 3 \sqrt{2} y_{1} \\ 3 \sqrt{2} y_{2} \\ \sqrt{6} y_{1} y_{2} \\ 3^{\frac{3}{2}}\end{array}\right]$
(b) $k^{\prime}(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}3 x_{1}^{2} \\ 3 x_{2}^{2} \\ 3 \sqrt{6} x_{1} \\ 3 \sqrt{6} x_{2} \\ 3 \sqrt{2} x_{1} x_{2} \\ 9\end{array}\right], \phi(y)=\left[\begin{array}{c}3 y_{1}^{2} \\ 3 y_{2}^{2} \\ 3 \sqrt{6} y_{1} \\ 3 \sqrt{6} y_{2} \\ 3 \sqrt{2} y_{1} y_{2} \\ 9\end{array}\right]$
(c) $k^{\prime}(x, y)=<\phi(x), \phi(y)>$ where $\phi(x)=\left[\begin{array}{c}3 x_{1}^{2} \\ 3 x_{2}^{2} \\ 9\end{array}\right], \phi(y)=\left[\begin{array}{c}3 y_{1}^{2} \\ 3 y_{2}^{2} \\ 9\end{array}\right]$
(d) None of the above. $k^{\prime}(x, y)$ is not a valid kernel.
5. You are given a set of examples that are linearly inseparable over an original feature set X . Now we train two classifiers: (1) Classifier A is trained on this set of examples using a kernel equivalent to blowing up the feature space to k dimensions (2) Classifier B is trained on this set of examples using a kernel equivalent to blowing up the feature space to n dimensions. If $k<n$, then Classifier B will always have a lower test error than Classifier A.
(a) True
(b) False

