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Course Overview

— Introduction: Basic problems and questions
— A detailed example: Linear classifiers; key algorithmic idea
— Two Basic Paradigms:

»

Discriminative Learning & Generative/Probabilistic Learning

— Learning Protocols:

»

Supervised; Unsupervised; Semi-supervised

— Algorithms

»
»
»
»
»
»
»

Gradient Descent

Decision Trees

Linear Representations: (Perceptron; SVMs; Kernels)
Neural Networks/Deep Learning

Probabilistic Representations (naive Bayes)
Unsupervised /Semi supervised: EM

Clustering; Dimensionality Reduction

— Modeling; Evaluation; Real world challenges
— Ethics
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CIS 419/519: Applied Machine Learning

— Monday, Wednesday: 10:30pm-12:00pm 101 Levine
— Office hours: Mon/Tue 5-6 pm [my office]

— 10 TAs
— Assignments: 5 Problems set (Python Programming)
* Weekly (light) on-line quizzes HWO is mandatory

— Weekly Discussion Sessions
— Mid Term Exam

— [Project] (look at the schedule)

— Final Registration for
Class Move to "CIS-519-Fall18"

Go to the web site

Be on Piazza

— No real textbook:
e Slides/Mitchell/Flach/Other Books/ Lecture notes /Literature

Other Mailbox...
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CIS 519: What have you learned so far?

* What do you need to know: Participate, Ask

Questions
— Some exposure to:

Ask during class, not

* Theory of Computation after class

* Probability Theory

= Applied Machine Learnin
* Linear Algebra PP &

= Applied: mostly in HW
— Programming (Python) Ppiiec:mosty I

* Machine learning: mostly in class, quizzes, exams

* Homework O

— If you could not comfortably deal with 2/3 of this within a few hours,
please take the prerequisites first; come back next semester/year.

CIS 419/519 Fall’19



CIS 519: Policies

— Cheating Class’ Web Page
* No. . _ Note also the Schedule
* We take it very seriously. Page and our Notes
— Homework:

e Collaboration is encouraged
* But, you have to write your own solution/code.
— Late Policy:
* You have a credit of 4 days; That’s it.
— Grading:
» Possible separate for grad/undergrads.
* 40% - homework; 35%-final; 20%-midterm; 5% Quizzes

* [Projects: 20%] A:35-40% ; B: 40% C:20%

— Questions?
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http://l2r.cs.uiuc.edu/%7Edanr/Teaching/CS446-14/info.html
https://www.seas.upenn.edu/%7Ecis519/fall2018/index.html
http://l2r.cs.uiuc.edu/%7Edanr/Teaching/CS446-14/info.html

CIS 519 on the web

e Check our class website:

— Schedule, slides, videos, policies
e http://www.seas.upenn.edu/~cis519/fall2019/

— Sign up, participate in our Piazza forum:

* Announcements and discussions
e http://piazza.com/upenn/fall2019/cis419519

— Check out our team

» Office hours
* [Optional] Discussion Sessions
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http://www.seas.upenn.edu/%7Ecis519/fall2019/
http://piazza.com/upenn/fall2018/cis419519

What is Learning?

— The Badges Game...
* This is an example of the key learning protocol: supervised learning
— First question: Are you sure you got it?
e Why?
— Issues:
* Prediction or Modeling?
* Representation
* Problem setting
* Background Knowledge
 When did learning take place?
e Algorithm
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https://www.seas.upenn.edu/%7Ecis519/fall2019/assets/lectures/lecture-0/game.html

CIS 519 Admin

Registration for Class

— Check our class website:
* Schedule, slides, videos, policies

e Canvas:

CIS 419/519 Fall’19

Check out our team

— http://www.seas.upenn.edu/~cis519/fall2018/

Sign up, participate in our Piazza forum:

— Announcements and discussions
— http://piazza.com/upenn/fall2018/cis419519

We start today

— Office hours

— Notes, homework and videos will be open.

HWO is mandatory!

[Optional] Discussion Sessions:

— Starting this week: Wednesday 4pm, Thursday 5pm: Python Tutorial

— Check the website for the location



http://www.seas.upenn.edu/%7Ecis519/fall2018/
http://piazza.com/upenn/fall2018/cis419519

What is Learning?

* The Badges Game...

— This is an example of the key learning protocol: supervised learning

* First question: Are you sure you got it?
— Why?
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Training data

+ Naoki Abe

- Myriam Abramson
+ David W. Aha

+ Kamal M. Ali

- Eric Allender

+ Dana Angluin

- Chidanand Apte
+ Minoru Asada
+ Lars Asker

+ Javed Aslam

+ Jose L. Balcazar
- Cristina Baroglio

CIS 419/519 Fall’'l9

+ Peter Bartlett

- Eric Baum

+ Welton Becket
- Shai Ben-David
+ George Berg

+ Neil Berkman
+ Malini Bhandaru
+ Bir Bhanu

+ Reinhard Blasig
- Avrim Blum

- Anselm Blumer
+ Justin Boyan

+ Carla E. Brodley
+ Nader Bshouty
- Wray Buntine

- Andrey Burago
+ Tom Bylander
+ Bill Byrne

- Claire Cardie

+ John Case

+ Jason Catlett

- Philip Chan

- Zhixiang Chen
- Chris Darken
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The Badges game

+ Naoki Abe - Eric Baum

* Conference attendees to the 1994 Machine Learning conference
were given name badges labeled with + or -.

 What function was used to assign these labels?
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Raw test data

Shivani Agarwal
Gerald F. Delong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jiarong Hong
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J. R. Quinlan
Priscilla Rasmussen
Dan Roth

Yoram Singer

Lyle H. Ungar
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Labeled test data

? Shivani Agarwal
+ Gerald F. DeJong
- Chris Drummond
+ Yolanda Gil
- Attilio Giordana
+ Jiarong Hong

CIS 419/519 Fall’'l9

- J. R. Quinlan

- Priscilla Rasmussen
+ Dan Roth

+ Yoram Singer

- Lyle H. Ungar
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What is Learning

— The Badges Game...

* Thisis an example of the key learning protocol: supervised learning
— First question: Are you sure you got it?

e Why?
— Issues:

* Which problem was easier?
— Prediction or Modeling?

Move to "CIS-519-Fall18"

* Representation

— Problem setting ke

e Background Knowledge
— When did learning take place?

e Algorithm: can you write a program that takes this data as input and predicts
the label for your name?

CIS 419/519 Fall’'l9

14



Supervised Learning

-

Input

X €E X
An item x

drawn from an
input space X

yeY
An item y
drawn from an

output space Y )

We consider systems that apply a function f()
to input items x and return an output y = f(x).

CIS 419/519 Fall’'l9
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Supervised Learning

g Input W

xe X System

An item x
drawn from an
input space X

yeY
An item y

drawn from an
output space Y )

In (supervised) machine learning, we deal with
systems whose f(x) is learned from examples.
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Why use learning?

* We typically use machine learning when the function f(x) we
want the system to apply is unknown to us, and we cannot
“think” about it. The function could actually be simple.

(ENGLAND, June, 1989) -|Christopher Robin [is alive and well. He lives in

England. He is the same person that you fead about in the book, Winnie the
Pooh. As a boy ived in a pretty home called Cotchfield Farm. When
Chris was three years old, his father wroteapaamabout him. The poem was
printed in a madazine for others to read. |[Mr. Robin]then wrote a book. He
made up a fairy tale land where Chris lived. His friends were animals. There
was a bear called Winnie the Pooh. There was also an owl and a young pig,
called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin
made them come to life with his words. The places in the story were all near
Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to
read about Christopher Robin and his animal friends. Most people don’t know
he is a real person who is grown now. He has written two books of his own.
They tell what it is like to be famous.

CIS 419/519 Fall’19 17



Supervised Learning

4 ™
Input .\ ............ H Output
: Target function -,
el PG
x € X Learned Model \J € Y
y = 9gx) ,
An item x An item y
drawn from an drawn from a
instance space X label space Y

- J - J
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Supervised learning: Training

* Give the learner examples in D tran

Can you suggest other

e The learner returns a model g(x) learning protocols?
" Labeled Training\
Data
D e Learnin HEETCE
(2, ¥1) Al orithi model
(X2, ¥2) > g(x)
Xy, YN)

g(x) is the model we’ll
use in our application

CIS 419/519 Fall’'l9



Supervised learning: Testing

 Reserve some labeled data for testing

CIS 419/519 Fall’'l9

-

\_

~

Labeled
Test Data
D test
(X',y'1)
(x5, ¥2)

CETAN,
y,
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Supervised learning: Testing

CIS 419/519 Fall’'l9

-

Y

-

Labeled
Test Data
D test

(X', Y1)
(X2 Y'2)

X' Y'n)

~

N\

J

Test
Labels
Y test

)

Y1

)

Y2

)

Y um

J
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Supervised learning: Testing

Can the test
* Apply the model to the raw test data d:ta)cl)(::\lerwise?e =

* Evaluate by comparing predicted labels against the test labels

( Raw Test\ ( Predicted\ ( Test )
Data Labels Labels
X test Learned g (X test) Y test
X'y [A model g(x'y) V'
x, T/ 9x) gx';) Vo
X'y gx'y) VM
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Key Issues in Machine Learning

— Modeling

* How to formulate application problems as machine learning problems ? How
to represent the data?

* Learning Protocols (where is the data & labels coming from?)
— Representation

* What functions should we learn (hypothesis spaces) ?

* How to map raw input to an instance space?

* Any rigorous way to find these? Any general approach?
— Algorithms

 What are good algorithms?

 How do we define success?

* Generalization vs. over fitting

* The computational problem

CIS 419/519 Fall’19
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Using supervised learning

— What is our instance space?

* Gloss: What kind of features are we using?
— What is our label space?

* Gloss: What kind of learning task are we dealing with?
— What is our hypothesis space?

* Gloss: What kind of functions (models) are we learning?
— What learning algorithm do we use?

* Gloss: How do we learn the model from the labeled data?

— What is our loss function/evaluation metric?
* Gloss: How do we measure success? What drives learning?

CIS 419/519 Fall’'l9

Move to “CIS-519-Fall18"

Other Mailbox...

Cancel
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1. The instance space X

(

CIS 419/519 Fall’'l9

drawn from an
instance space X

Input 1

Learned
x € X Model

An item x y = g(x)

Designing an appropriate instance space X
is crucial for how well we can predict y.

27



1. The instance space X

 When we apply machine learning to a task, we first need to define the instance
space X.

* Instances x € X are defined by features:
— Boolean features:

» Is there a folder named after the sender?
Does it add anything?

» Does this email contains the word ‘class’?
» Does this email contains the word ‘waiting’? V
» Does this email contains the word ‘class’ and the word ‘waiting’?

— Numerical features:

» How often does ‘learning’ occur in this email?

» What long is email?

» How many emails have | seen from this sender over the last day/week/month?
— Bag of tokens

» Just list all the tokens in the input

CIS 419/519 Fall'|9 28



What'’s X for the Badges game?

— Possible features:

Gender/age/country of the person?

Length of their first or last name?

Does the name contain letter x’?

How many vowels does their name contain?
Is the n-th letter a vowel?

Height;

Shoe size

CIS 419/519 Fall’19
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X as a vector space

« X is an N-dimensional vector space (e.g. RY)

— Each dimension = one feature.

 Each x is a feature vector (hence the boldface x).

* Thinkof x =[x ... xy] asa pointin X :

Xy

CIS 419/519 Fall’19
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Good features are essential

— The choice of features is crucial for how well a task can be learned.

* In many application areas (language, vision, etc.), a lot of work goes into
designing suitable features.

* This requires domain expertise.

— Think about the badges game — what if you were focusing on visual
features?

— We can’t teach you what specific features
to use for your task.

* But we will touch on some general principles

CIS 419/519 Fall’19
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2. The label space Y

8 Input ]

Learned
xeX Model

Anitemx |y = g(x)

drawn from an
instance space X

The label space Y determines what kind of supervised learning
task we are dealing with

CIS 419/519 Fall'|9 33



Supervised learning tasks |

— Output labels y € Y are categorical:
* Binary classification: Two possible labels
* Multiclass classification: k possible labels

* Output labels y € Y are structured objects (sequences of labels, parse
trees, etc.)

e Structure learning

Before
[ . . 1. .
I met with him before leaving for Paris
on Thursday. Be_Included

CIS 419/519 Fall’19 34



Supervised learning tasks Il

* Qutput labels y € Y are numerical:
— Regression (linear/polynomial):
* Labels are continuous-valued
* Learn a linear/polynomial function f(x)
— Ranking:
* Labels are ordinal
* Learn an ordering f(x;) > f(x,) over input

CIS 419/519 Fall’19
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3. The model g(x)

-

Input

)

x e X

Learned
Model

Anitemx |y = g(x)

drawn from an
instance space X

J

Output

yeY
An item y

drawn from a
label space Y

~

s

We need to choose what kind of model
we want to learn

CIS 419/519 Fall’'l9
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A Learning Problem

X, —>
X, — > Unknown _
x, —> function y = f (xp%,%.)
x4
Example x, x, Xx, x,|y
1 0 0 1 00 Can you learn this
2 0 1 0 010 function? What is it?
3 o 0 1 11
4 1 0 0 1 1
5 0 11 010
6 1.0 0 (0
7 0 1 0 110

CIS 419/519 Fall’'l9



Hypothesis Space

Complete Ignorance: _Example *: X, X; X, Y
There are 21® = 65536 possible functions 12 8 8 8 ? Z
over four input features. 00 1 010
There are |Y|IX! possible 0o 0 1 111

functions f(x) from theinstance | 0 1 0 0 |0

We can’t figure out which one is space X to the label space Y. 01 0 110
correct until we've seen every % 11 11 (: 9,
, , , Learners typically consider only o
possible input-output pair. a subset of the functions from X :ll 8 8 '(I) 1
to Y, called the hypothesisspace | ¢ o 1 ¢ |2

| X

After observing seven examples we still i 1S 11 f g g 3
have 2° possibilities for f T 1.0 1|7
1 1 1 0]7?

16 111 11?2

Is Learning Possible?
CIS 419/519 Fall’19 38



Hypothesis Space (2)

Simple Rules: There are only 16 simple conjunctive rules

of the form y = x; A xj A xy

Rule Counterexample
Y =c

X, 1100 0
X, 0100 0
X, 0110 0
X, 0101 1
X, A X, 1100 0
X, AX, 0011 1
X, A X, 0011 1

Rule Counterexample
X, A X, 0011 1
X, A X, 0011 1
X, A X, 1001 1
X, AX,AX, 0011 1
X, AX,AX, 0011 1
X, AX,;AX, 0011 1
X,AX;AX, 0011 1
X, AX,AX;AX, 0011 1

N o g bW IN—

O~ 1O ~|OC|0O | O

_ | = =, O O~ O

OO~ 1O | -

OO | ||O|O

OO~ —~|O|O

No simple rule explains the data. The same is true for simple clauses (disjunctions).

CIS 419/519 Fall’'l9
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Hypothesis Space (3)

m-of-n rules: There are 32 possible rules
= 1 if and only if at least m of

of the form “y
the following n variables are 1”

variables

1-0f 2-of 3-of 4-of

X1}
{X2}
X3}
{Xa}
{X1, X2}
{X1, X3}
{X1, X4}
{X2, X3}

N 2NN —=2DND W

W W W W
1
1

Notation: 2 variables
from the set on the left.
Value: Index of the
counterexample.

variables 1-of 2-of 3-of 4-0f
{xz; X4} 2 3 - -
{X3, X4} 4 4 - -
(X1, X5, X3} 1 3 3 -
(X1, X5, X4} 2 3 3 -
(X1, X3, X4} 1T Gexx )3 -
(X5, X3, X,} 1 5 3 -
(X1, X, X,X,y 1 5 3 3

CIS 419/519 Fall’'l9

Found a consistent hypothesis!

Don’t worry, this function is
actually a neural network...

1]0)0]1]0]0
20|1]0]0]0
31010 1|11
41110011
510 )1]1]0)0
6/11]0]0]0
7]0J1]0]1]0
g
o e

(p S

X ._, e activation
transfer
: : function
x 9
" threshold
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Views of Learning

* Learning is the removal of our remaining uncertainty:

— Suppose we knew that the unknown function was an m-of-n Boolean function, then we

could use the training data to infer which function it is.
* Learning requires guessing a good hypothesis class:

— We can start with a very small class and enlarge it until it contains an hypothesis that fits

the data.
— The hypothesis set selection could also happen due to algorithmic bias
* We could be wrong !

— Our prior knowledge might be wrong:
* y = x4 Aone of {x1,x3}is also consistent
— Our guess of the hypothesis space could be wrong

* |f thisis the unknown function, then we will make errors when we are given
new examples, and are asked to predict the value of the function

CIS 419/519 Fall’19
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General strategies for Machine Learning

— Develop flexible hypothesis spaces:
* Decision trees, neural networks, nested collections.
* Constraining the hypothesis space is done algorithmically

— Develop representation languages for restricted classes of functions:
* Serve to limit the expressivity of the target models

* E.g., Functional representation (n-of-m); Grammars; linear functions;
stochastic models;

» Get flexibility by augmenting the feature space
— In either case:

* Develop algorithms for finding a hypothesis in our hypothesis space, that fits
the data

* And hope that they will generalize well

CIS 419/519 Fall’19
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Administration

— The class is still full.
* All people in category <5 got in. Many in Category 5 too.
* We will support petitions for more people as current students drop.

* We are considering moving to a larger classroom to accommodate others.
Stay tuned.

— You all need to complete HWO!
— 1st quiz is out this week (Thursday night; due on Sunday night)
— HW 1 will be released next week.
— Questions?
* Please ask/comment during class.
— | do not have office hours this week.

CIS 419/519 Fall’19 45



Key Issues in Machine Learning

— Modeling

* How to formulate application problems as machine learning problems ? How
to represent the data?

* Learning Protocols (where is the data & labels coming from?)
— Representation

* What functions should we learn (hypothesis spaces) ?

* How to map raw input to an instance space?

* Any rigorous way to find these? Any general approach?
— Algorithms

 What are good algorithms?

 How do we define success?

* Generalization Vs. over fitting

* The computational problem

CIS 419/519 Fall’19
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An Example: Context Sensitive Spelling

* | don’t know {whether, weather} to laugh or cry
This is the Modeling Step

How can we make this a learning problem?

. . What is the hypothesis space?
« We will look for a function yP P

f: Sentences—> {whether, weather} Input/Instance space?
e We need to define the domain of this function better.

 An option: For each word w in English define a Boolean feature x,, :

[x,, = 1] iff wis in the sentence Learning Protocol?
* This maps a sentence to a point in {0,1}>%000 Supervised? Unsupervised?
* Inthis space: some points are whether points, some are weather points

CIS 419/519 Fall’19 47



Representation Step: What’s Good?

* Learning problem:
— Find a function that

best separates the data
What function?

w

n

T —
=1

L=

Linear = linear in the feature space

X = data representation; W = the
classifier (w, x, column vectors of
dimensionality n)

y = sgn{w'x}

What's best?
(How to find it?)

sgn(z) =0if z<0;
1 otherwise

A possibility: Define the learni

ng problem to be:

— A (linear) function that best separates the data

CIS 419/519 Fall’'l9

Memorizing vs. Learning
» Accuracy vs. Simplicity

How well will you do?
> On what?
Impact on Generalization

48




Expressivity

f(x) =sgn(w’ - x — 0} = sgn{3*, w;x; — 6}

Many functions are Linear

Probabilistic Classifiers as well

— Conjunctions:
s y - x1 N x3 N X5

e y=sgn{l-x;+1-x3+1-xs —3};w=(1,0,1,0,1) 6 =3

— At least m of n:
 y =atleast 2 of {xq,x3,%5}

e y=sgn{l-x;+1-x3+1 x5 —2};w=1(10,1,0,1) 8 =2

Many functions are not

— Xor:y = (x; Axy) V(= XA xy)

— Non trivial DNF:y = (x; Ax3) V(x3 A xy)
But can be made linear

Note: all the variables above are Boolean variables

CIS 419/519 Fall’19




Functions Can be Made Linear

* Data points are not linearly separable in one dimension

* Not separable if you insist on using a specific class of
functions (e.g., linear)

CIS 419/519 Fall’19
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Blown Up Feature Space

* Data are separable in < x, x* > space

> Key issue: Representation: ®
> what features to use.

> Computationally, can be
done implicitly (kernels)

> Not always ideal.

CIS 419/519 Fall’'l9



Exclusive-OR (XOR)

* (X1 Ax) V(=X A )

* In general: a parity function.
 x; €{0,1}

o f(xq,x5,0,x,) =1

iff 2. x; is even

* This function is not linearly separable.

CIS 419/519 Fall’19
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Functions Can be Made Linear

Discrete Case

Y3V Yy VYy
XXy X4V Xy)XyXcVXqXg Xy

New discriminator is
functionally simpler

A real Weather/Whether
example

‘Whether o

1. The instance space X

= When we apply machine learning to a task, we first need
to define the instance space X.

= Instances x € X are defined by features:
= Boolean features
v Is there a folder named after the sender? Does it add anything?
+ Does this email containsthe word ‘class’?
« Does this email contains the word ‘waiting'?
« Does this email contains the word ‘class’ and the word ‘waiting’?

= Mumerical features
eat e r (] + How often does ‘learning’ occur in this email?

« Whatlong s email?
+ How many emalls have | seen from this sender over the last
day/week/month?

= Bag of tokens

[~ ] s+ Just listall the tokens in the input
> C15419/519 Fall '18 23
——
Space: X = X,;,X,, ..., X, .
= |
] = =
Input Transformation = == =

New Space: Y = {y,, ¥, ..} = {X; X;, X}, X; X; X; }53
CIS 419/519 Fall’'l9 .


http://cogcomp.cs.illinois.edu/Data/Spell/

Representation (1)

Feature Types:

(what does the algorithm know about the input):

1,2. relative position (+/-1) has this pos/w

3. Conjunctions of size two

4. word w occurs in (-2,+2) window around target
Note: 4 feature types; many features

The feature resulting from instantiating the
type in the given data

Some statistics (not
part of the learning
process; just for the
understanding of the

problem) —

lp=Det ©.972222 @ 34

lw=the ©.961538 @ 24

-1p=Punc 1p=Pro 0.96 0 23
-1p=V 1lp=Adv ©.96 @ 23

or ©.959184 3 93

1p=Adj ©.957447 1 44

not ©.956522 1 43

-1p=V 1p=Pro ©.956522 @ 21
1p=Det 2p=Ns 0.954545 @ 2@
-1p=V 1p=Det ©.954545 @ 20
lw=he ©.952381 @ 19

-1p=Prep 1p=Pro ©.952381 @ 19
-2w=to -1p=V ©.952381 @ 19
1p=Pro 2p=Vpp 0.947368 @ 17
question ©.947368 @ 17

1lp=Pro ©.946237 4 87

-1lw=, 1lp=Pro ©.944444 0 16
-1p=Punc ©.941176 2 47

should ©.941176 @ 15

lw=they ©.941176 @ 15

-1p=V lw=the ©.941176 @ 15
-1p=Ns 1p=Adj ©.9375 @ 14
1p=Pro 2p=Was ©.9375 @ 14
1p=Pro 2p=Vpt ©.9375 @ 14
-1p=Punc 1lp=Adj 0.9375 @ 14
-2p=Ns -1p=Punc ©.933333 1 27
=Adj 2p=Prep ©.933333 @ 13
1p=N8®2p=Vpp 0.933333 @ 13
-1p=Conj 1p=Pro ©.933333 @ 13
you ©.933333 @ 13

1p=Ns 2p=Was ©.933333 @ 13
lw=it ©.933333 @ 13

-1p=Punc 1p=Prep ©.933333 @ 13
-lw=, 1p=Adj ©.928571 @ 12

CIS 419/519 Fall’'l9

s ©.928571 1 25
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Representation (2)

Extracting features from the
data:

(what does the algorithm
know about the input):

1,2. relative position (+/-

1); pos/w

3. Conjunctions of size two

4. Occurrence of a word in
a window around the target
Note: 2 feature types; many
features
For each feature type, the
data gives rise to multiple
features; you don’t know
which, before you see the
data.

CIS 419/519 Fall’'l9

But << whether >> the murder of El Benefactor in Ciudad Trujillo means freedom for the people of the Caribbean fiefdom is a question that cannot now
be answered .

If Russian pupils have to take these languages , how come American students have a choice << whether >> or not to take a language , but have to face
so many exceptions ? ?

The rescue squad is to be praised immensely for the fine work they do in all kinds of << weather >> .

Besides the lack of an adequate ethical dimension to the Governor's case , one can ask seriously << whether »>> our lead over the Russians in quality
and quantity of nuclear weapons is so slight as to make the tests absolutely necessary .

It is another question << whether >> *° they '' -- or a single general , off in a corner of China , secure for a few ( galvanizing ? ?

And little Zeme North , a Dora with real spirit and verve , was fascinating << whether >> she was singing of her love for Floyd , the cop who becomes
sewer commissioner and then is promoted into garbage , or just dancing to display her exuberant feelings .

A few drops of rain just before midnight , when Sarah Vaughan was in the midst of her first number , scattered the more timid members of the audience
briefly , but at this hour and with Sarah on the stand , most of the listeners didn't care << whether >> they got wet .

Expressed differently : if the price for becoming a faithful follower of Jesus Christ is some form of self-destruction , << whether >> of the body or
of the mind -- sacrificium corporis , sacrificium intellectus -- then there is no alternative but that the price remain unpaid .
Thus , if what is at issue is << whether >> °° All S is P '
case the judgment in question is false .

Thus , if what is at issue is whether *° All S is P '' , it is indifferent << whether >> " Some S is not P '' or °~ No S is P
case the judgment in question is false .

Such efforts almost always find themselves compelled to ask << whether >> Adam was created capable of growing old and then older and then still older
, in short , whether Adam's life was intended to be part of the process of time .

Such efforts almost always find themselves compelled to ask whether Adam was created capable of growing old and then older and then still older , in
short , << whether >> Adam's life was intended to be part of the process of time .

It is idle to ask why we are no longer disturbed if somebody , professing the deepest piety , decides anew that it is of no importance << whether >>
or not Christ transformed the water into wine at eleven A.M. on the third of August , A.D. 32 .

and by deriving legitimate decision backward from whatever may conceivably or possibly or probably result , << whether >> by anyone's doing or by
accident , it finds itself driven to inaction , to non-political action in politics and non-military action in military affairs , and to the not very
surprising discovery that there are now no distinctions on which the defense of justice can possibly be based .

Religion , or the lack of it , will decide << whether >> we use this power to build a brave new world of peace and abundance for all mankind , or
whether we misuse this power to leave a world utterly destroyed .

Religion , or the lack of it , will decide whether we use this power to build a brave new world of peace and abundance for all mankind , or << whether
>> we misuse this power to leave a world utterly destroyed .

He had promised cheaper housing : arbitrarily he cut all rents in half , << whether >> the landlord was a millionaire speculator or a widow whose only
income was the rental of a spare room .

Why it was ever forgotten for even a moment I cannot say because it works perfectly for everyone , no matter << whether >> he has short or long thigh-
bone lengths ! !

We must determine << whether >> missiles can win a war all by themselves .

For prevention of these diseases during periods of stress such as shipping , excessive handling , vaccination , extreme << weather >> conditions : 350
milligrams per head per day for 3@ days only .

, it is indifferent whether *° Some S is not P or "7 No S is P , since in either

, since in either
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Representation (3)

,3,11,48,51,82,87,92,185,176,198,199, 279,327,413 ,439,482, 498,747,963, 964,965,975,1029,1072,1166, 1176:

1141,1172:

7,94,109,112,119,153,305,387,482,759,855,963,964,965,1002, 1050,1068,1142,1207,1226:

,52,60,65,141,197,240,469,497,772,963,964,965,989, 1045,1067,1072:
16,57,69,116,137,153,156,201,213,280, 302,304,322, 325,432, 468,497,830, 986,987, 1658, 1143:
26,32,36,46,119,148,157,239,292,299,322,329,433 474,497, 919,963,964, 978,1001,1645,1061,1671,1116,1131,1209:

,15,17,20,25,57,103,116,224,370,414,458,497,719, 956,963,964, 987, 1068:

,21,27,29,41,58,67,69,155,238,271,304,460,497,963,964,1027,1111:

,54,69,78,91,100,110,115,153,156, 195,250, 283,302, 305, 325,497, 656,753, 756,833,957, 977,986, 1665, 1066 :

N

16,9,37,69,153, 156,302, 305, 325,443, 497,597, 729, 986, 1013, 1048, 1665, 1111, 1116

7,12,32,36,39,89,116,152,154, 157,222,248, 329,827,938,943,963,1645,1188:

121,27,41,67,68,98, 121,133,162, 232, 249, 329,489, 497, 836, 963, 964, 965., 1045 -

16,9,42,43,44,45,47,69,155, 156,157,216, 238,441,497, 757,833,954, 963 964, 966,968, 971,987,995, 1048, 1678, 1086, 1101, 1118, 1143, 1172
,6,7,21,24,27,29,35,38,41,56,58,61,67,87,125,156,157,223,232, 238,455 ,489,497,774,1203:

16.8.17.62,99,116,147, 156,220, 237, 240,275, 276, 284, 298, 322, 326, 486,497 , 499,559, 561, 961, 963, 964,970, 1039:
6,13,17,28,62,98,93,101,103,119,147,158, 161,169,194, 237,240, 275,276, 305,322, 323, 326,482, 487,491,497, 961,963, 978,987, 1029, 1045 :
,2,3,6,11,21,27,41,48,61,67,87,98,121,125,133,162, 204,217,229, 256,305, 322,329, 439,497,517,638,964,965:

16.8,14,17,75,89,103, 116,119,154, 156, 157, 182,229, 296, 497,499, 536, 679, 684, 700, 784, 838,927, 966, 971, 976, 987, 1040, 1058, 1086, 1106, 1143, 1190:
,99,116,117, 205,212,237, 305,322,455,499,601,943,989,999,1068,1071,1691,1127:
119,217,440,487,491,497,743,791,847,938,987,1016,1046,1061,1071,1116,1129,1145,1168,1196:
,305,322,329,482,812,963,964,965,1002,1045,1850,1068,1142,1196,1207:

Here the first
index (0/1) is the
label)

,42,43,44,45,47,73,155,157, 216,226,238, 240,322,441,497,498, 757,829, 971,978, 987,995, 1000, 1047, 1060, 1073, 1077,1078, 1086,1116,1118,1119, 1132, 1138, 11

Each example corresponds to one
target occurrence; all the features
for this target are collected into a
vector, and the label is added.
Here:

- Sparse Representation of the
feature vector. Why?

- Variable size: Why?

0,37,49,127,153,172,201,324,354,490,497,498, 531,689, 908,963, 964,965,966,972,987,994,1000, 1007,1028,1045,1047,1049,1052,1056,1057,1065,1066,1072,1081,1

086,1094,1116,1117,1120,1122,1135,1138,1140,1143,1204:
0,87,198,321,446,497,908,954,963,964,966, 974,987,997, 1001,1015,1645,1052,1672,1116,1120,1140:

1,7,9,57,73,80,157,197, 226,237,240, 295,356, 437,442, 484,493,497, 893,917, 1067,1072,1101,1120:
,57,356,428,453,485,493,497, 893,963,964, 965,1032,1045,1072,1120:

21,24,29,38,61,69,806,87,157,208,211, 238,295,304, 364,419,437,442, 606,628,739, 776,803, 963,964, 965,1220:
7,97,113,238,240,322,327,328,758,751, 809,881, 988:

6,52,54, 69 110, 115 221,264,289,290, 497 963 954 965:

,9,40,84,87,97,107, 113,116,122, 154,229, 238,240, 253,328, 321, 327,328, 357, 385, 415,439, 497, 508, 966, 969, 984, 987, 1899, 1172:
,54,69,72,110,115,119,156, 157,200,236, 238,294, 322,383,430,473,497, 691,755,964, 989,1025,1046, 1055

3,90,101, 119 157, 158 161, 169 184,194, zaz 323,482,486,487,491,497, 963 %4, 967 971, 973 987, 989 998,1001,1029,1045,1070,1109:
3,16,17,34,51,68,69,87,104,118,222,332, 360, 386,482,486, 497,657,658, 731,830,957, 963,964, 965,993, 1004, 1121, 1142:
14,17,18,21,38,41,56,69,133,144,157,160,162,179, 229,233, 240, 295,408,442 497,578,579, 702,737, 738,926,957, 965,101, 1868 :
1,41,61, 87 125 219, 305, 419 488 497, 963 965, 1@46 1110,1209:

CIS 419/519 Fall’'l9

B
>
50,
B
>

>
il
>

1,9
1,6,7,
1,6,8
1,7,1
1,5,6
1,2,6
1,6,8
1,7,1
1,4,6,
1,6,2

B
B
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Administration

— “Easy” Registration Period is over.
e But there will be chances to petition and get in as people drop.

 If you want to switch 419/519, talk with Nicholas Mancuso
nmancuso@seas.upenn.edu

— You all need to complete HWO!
— 1st quiz was due last night.
— HW 1 will be released early next week.

— Questions?
* Please ask/comment during class.

CIS 419/519 Fall’19
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Key Issues in Machine Learning

— Modeling

* How to formulate application problems as machine learning problems ? How
to represent the data?

* Learning Protocols (where is the data & labels coming from?)
— Representation

* What functions should we learn (hypothesis spaces) ?

* How to map raw input to an instance space?

* Any rigorous way to find these? Any general approach?
— Algorithms

 What are good algorithms?

 How do we define success?

* Generalization Vs. over fitting

* The computational problem

CIS 419/519 Fall’19
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Third Step: How to Learn?

— A possibility: Local search
e Start with a linear threshold function.
m) + See how well you are doing.
* Correct A
* Repeat until you converge.
— There are other ways that
do not search directly in the
hypotheses space
* Directly compute the hypothesis

CIS 419/519 Fall’19
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A General Framework for Learning

* @Goal: predict an unobserved output value y € Y based on an
observed input vector x € X

* Estimate a functional relationship y ~ f (x) from a set
{(%,¥)i}i=1n

* Most relevant - Classification: y € {0,1} (ory € {1,2, ..., k})
— (But, within the same framework can also talk about Regression, y € R)

Simple : # of mistakes

. [...] is a indicator function
* What do we want f (x) to satisfy?

— We want to minimize the Risk: L (f()) = Exy([f(x) # ¥])
— Where: Ex y denotes the expectation with respect to the true distribution.
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A General Framework for Learning (1)

*  We want to minimize the Loss: L (f()) = Exy([f(X) # Y])

* Where: Ey y denotes the expectation with respect to the true distribution.
Side note: If the distribution over X XY is known,
predict: y = argmax, P(y|x)

*  We cannot minimize this loss This is the best possible (the optimal Bayes' error).

* Instead, we try to minimize the empirical classification error.

*  For aset of training examples {(x;, ¥;)}i=1m

* Trytominimize: L'(f() = 1/mZ; [f(x)=y;] (m=# of examples)
— (Issue I: why/when is this good enough? Not now)

e This minimization problem is typically NP hard.

e To alleviate this computational problem, minimize a new function —a convex upper bound of
the (real) classification error function:

I(f(x),y) =[f(x) #y] = {1when f(x) # y; 0 otherwise}
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Algorithmic View of Learning: an Optimization Problem

e A Loss Function L(f(x),y) measures the penalty incurred by
a classifier f on example (x, y).

* There are many different loss functions one could define:

— Misclassification Error: A continuous convex loss
function allows a simpler

L(f(x),)/) =0 Iff(X) =Y, 1 otherwise optimization algorithm.

— Squared Loss: ]
LU (2),) = (fF(x) - y)? kj
— Input dependent loss: | f(x) -y

L(f(x),y) =0if f(x) = y; c(x)otherwise.
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LOSS

CIS 419/519 Fall’'l9

sgn(z) = —1if z< 0

+1 otherwise

Here f(x) is the prediction € R

y € {—1,1}is the correct va\ue
0-1Loss  L(y,f(x)) = %2 (1—sgn(yf(x)))
Log Loss 1/In2 log(1 + exp{—yf(x)})
Hinge Loss L(y,f(x)) = max(0,1 — y f(x))
Square Loss L(y,f(x)) = (y — f(x))

0-1 Loss: xaxis = yf(x)

Log Loss: x axis = yf(x)
Hinge Loss: x axis = yf(x)
Square Loss:x axis = (y — f(x)+ 1)

\

I
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Example

Putting it all together:
A Learning Algorithm
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Third Step: How to Learn?

— A possibility: Local search

e Start with a linear threshold function.
=) . See how well you are doing.

* Correct

* Repeat until you converge.
— There are other ways that

do not search directly in the hypotheses space
e Directly compute the hypothesis
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Learning Linear Separators

(LTU=Linear Threshold Unit)

f(x) = sgn{w’ - x-0}= sgn {3, wx,-0}
o xT= (x4,%p..,%,) € {01} °
is the feature based
encoding of the data point
« wh= (w;,w,,..,w,) €R"
is the target function.
0O determines the shift
with respect to the origin

CIS 419/519 Fall’'l9

66



Canonical Representation

f(x) = sgniw! - x- = sgn{3+ wx, -0}

— Note: sgn {(w! - x- 6} =sgn w'! - x'}
— Where:
e x' = (x,—1) andw’ = (w,0)

— Moved from an n dimensional representation to an (n + 1) dimensional
representation, but now can look for hyperplanes that go through the
origin.

— Basically, that means that we learn both w and 6

CIS 419/519 Fall’19 67



General Learning Principle

Our goal is to find a w that | The loss Q:a function of x, w and y
minimizes the expected risk
E(w) = Exy Q(x,y,w)

We cannot do it.

Instead, we approximate E (w)
using a finite training set of
independent samples (x;, y;)
EW) ~=~1/m ¥y 1 Qx;, ¥, W)

To find the minimum, we use a

batch gradient descent algorithm

That is, we successively compute

estimates wt of the optimal parameter vector w:

The Risk (Err) E:
a function of w A

o -

witl = wt —VEW) = wt ——%,, VQ(x;,y,W)

t here is “time” or

CIS 419/519 Fall'9 Lepdoni,

To find a local
minimum of a function
using gradient descent,
we take steps
proportional to the
negative of the
gradient of the
function at the current
point.
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Gradient Descent

* We use gradient descent to determine the weight vector that minimizes
E(w) (= Err (w));
* Fixing the set D of examples, E=Err is a function of w

* At each step, the weight vector is modified in the direction that produces the
steepest descent along Rhe error surface.

E(w) To find a local
minimum of a function
using gradient descent,
we take steps
proportional to the
negative of the
gradient of the
function at the current
point.

wh w3 w2 w!
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LMS: An Optimization Algorithm

* Our Hypothesis Space is the collection of Linear Threshold Units

e Loss function:
— Squared loss: LMS (Least Mean Square, L,)

- Q(x,y,w) = %(WTx_y)Z

CIS 419/519 Fall’19

70



LMS: An Optimization Algorithm

* (i (subscript) —vector component; j (superscript) - time; d — example #)

Assumption: x € R"; u € R" is the target weight vector; the
target (label) is t; = u” - x Noise has been added; so, possibly,
no weight vector is consistent with the data.

Let w/ be the current weight vector we have

Our prediction on the d-th example x is:

0y = w0 x=31, w? x

Let t; be the target value for this example
* The error the current hypothesis makes on the data set is:

Ew) = Err(w/) == ¥ 4ep(tq — 04)?

CIS 419/519 Fall’19
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Gradient Descent

* To find the best direction in the weight space w we compute the gradient of E with respect
to each of the components of

0E OE OF
VE(w) = [awl, Fws’ " T

]

* This vector specifies the direction that produces the steepest increase in E;
*  We want to modify w in the direction of -VE (w)

*  Where (with a fixed step size R):
wt =wt 1t + Aw
Aw =-RVE(w)

CIS 419/519 Fall’19
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Gradient Descent: LMS

* We have: E(w) = Err(w/) = %Zdep(td — 04)*

O = 0N (ta = 0a)? =
dw; (9Wl d = Od

deD

e Therefore:

1 9 )
=~ 2.deD Iw; (tg —04)" =

2(tg —ogq) 9 (t4

=EZdED aWi

=Y e (tg — 04)(—xig)
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Algl: Gradient Descent: LMS

— Weight update rule:
Aw;= R Ygep(ta — 0a)¥iq

— Gradient descent algorithm for training linear units:

 Start with an initial random weight vector

* For every example d with target value t, do:

— Evaluate the linear unit 0; = w7 .x=y" Wl-(j) X;
* Update w by adding Aw, to each component
* Continue until E below some threshold

This algorithm always converges to a local minimum of E (w), for small enough steps. Here (LMS for linear

regression), the surface contains only a single global minimum, so the algorithm converges to a weight vector with
minimum error, regardless of whether the examples are linearly separable.

The surface may have local minimum if the loss function is different.
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Alg 2: Incremental (Stochastic) Gradient Descent: (LMS)

* Weight update rule: Dropped the averaging
operation.
AW- = R t, — 0 X; Instead of averaging the gradient of
! ( d d) td the loss over the complete training
* Gradient descent algorithm for training linear units: set, choose at random a sample
) o ) (x,y) (or a subset of examples) and
— Start with an initial random weight vector update w!

— For every example d with target value t, do:

()

l

» update w by incrementally by adding Aw, to each component (update without summing
over all data)

X

» Evaluate the linear unit O = wT . x = Z?zl w i

— Continue until E below some threshold
* In general - does not converge to global minimum
* But, on-line algorithms are sometimes advantageous...
— Typically, not used as a complete on-line algorithm, but rather run in small batches.
* Decreasing R with time guarantees convergence
CIS 419/519 Fall'l9 &



Learning Rates and Convergence

* In the general (non-separable) case the learning rate R must
decrease to zero to guarantee convergence.

 The learning rate is called the step size. There are more
sophisticated algorithms that choose the step size
automatically and converge faster.

* Choosing a better starting point also has impact.

 The gradient descent and its stochastic version are very simple algorithms,
but almost all the algorithms we will learn in the class — including those for
non-linear hypothesis spaces — can be traced back to gradient descent
algorithms for different loss functions and different hypotheses spaces.
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Computational Issues

— Assume the data is linearly separable.
— Sample complexity:

* Suppose we want to ensure that our LTU has an error rate (on new examples)
of less than € with high probability (at least (1 — §))

* How large does m (the number of examples) must be in order to achieve this?
It can be shown that for n dimensional problems:

m=0C [In(5) + (n+ 1) ())
— Computational complexity: What can be said?

* |t can be shown that there exists a polynomial time algorithm for finding
consistent LTU (by reduction from linear programming).

e [Contrast with the NP hardness for 0-1 loss optimization]
* (On-line algorithms have inverse quadratic dependence on the margin)
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Other Methods for LTUs

Fisher Linear Discriminant:
— A direct computation method

Probabilistic methods (naive Bayes):

— Produces a stochastic classifier that can be viewed as a linear
threshold unit.

* Winnow/Perceptron

— A multiplicative/additive update algorithm with some sparsity
properties in the function space (a large number of irrelevant
attributes) or features space (sparse examples)

* Logistic Regression, SVM...many other algorithms
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