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Administration (1)
• Projects:

– Almost all, but all, teams came to discuss the projects. You should all 
come. 

– Posters for the projects will be presented on the day of the last meeting of 
the class, December 9, 9-12:00.

– Final reports will only be due the day of the Final exam,  on December 19
• Short, 3-minute videos, are due on December 18. 
• Specific instructions are on the web page and will be sent also on Piazza.

• HW5: Will be released today.
– It will be much shorter than earlier HWs. 
– Intended to prepare you for the exam.
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Administration (2)
• Exam:

– The exam will take place on the originally assigned date, December 19. 
• Skirkanich Auditorium/Towne 100, 9-11 am
• Structured similarly to the midterm.
• 120 minutes; closed books.

– What is covered:
• Cumulative!
• Slightly more focus on the material covered after the previous mid-term.
• However, notice that the ideas in this class are cumulative!!
• Everything that we present in class and in the homework assignments
• Material that is in the slides but is not discussed in class is not part of the material required for 

the exam.
– Example 1: We talked about Boosting. But not about boosting the confidence.
– Example 2: We talked about multiclass classification: OvA, AvA, but not Error Correcting codes,  and not

about constraint classification (in the slides).
• We will give practice exams. HW5 will also serve as preparation. 
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So far…
• Bayesian Learning

– What does it mean to be Bayesian?
• Naïve Bayes

– Independence assumptions
• EM Algorithm

– Learning with hidden variables
• Today:

– Representing arbitrary probability distributions
– Inference

• Exact inference; Approximate inference
– Learning Representations of Probability Distributions
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Unsupervised Learning
• We get as input (𝑛𝑛 + 1) tuples: (𝑿𝑿1,𝑿𝑿2, … 𝑿𝑿𝑛𝑛,𝑿𝑿𝑛𝑛+1)
• There is no notion of a class variable or a label.
• After seeing a few examples, we would like to know 

something about the domain: 
– correlations between variables,  probability of certain events, etc.

• We want to learn the most likely model that generated the 
data 
– Sometimes called density estimation.
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Simple Distributions 
• In general, the problem is very hard. But, under some assumptions on the 

distribution we have shown that we can do it. (exercise: show it’s the most likely 
distribution) 

• Assumptions:  (conditional independence given 𝑦𝑦)
– 𝑃𝑃(𝑥𝑥𝑖𝑖 | 𝑥𝑥𝑗𝑗, 𝑦𝑦) = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) ∀ 𝑖𝑖, 𝑗𝑗

• Can these (strong) assumptions be relaxed ? 
• Can we learn more general probability distributions ?

– (These are essential in many applications: language, vision.)

𝑃𝑃(𝑥𝑥1|𝑦𝑦)
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

y

𝑥𝑥𝑛𝑛

𝑃𝑃(𝑥𝑥𝑛𝑛|𝑦𝑦)𝑃𝑃(𝑥𝑥2|𝑦𝑦)
𝑃𝑃(𝑦𝑦)
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Simple Distributions 

• Under the assumption 𝑃𝑃 𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 ,𝑦𝑦) = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦) ∀ 𝑖𝑖, 𝑗𝑗 we can compute the joint probability 
distribution on the 𝑛𝑛 + 1 variables

– 𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛 ) = 𝑝𝑝(𝑦𝑦)∏1
𝑛𝑛 𝑃𝑃(𝑥𝑥𝑖𝑖| 𝑦𝑦)

• Therefore, we can compute the probability of any event:
– 𝑃𝑃(𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 1) = ∑ 𝑏𝑏𝑖𝑖∈ 0,1 𝑃𝑃(𝑦𝑦 = 1, 𝑥𝑥1 = 0, 𝑥𝑥2 = 0, 𝑥𝑥3 = 𝑏𝑏3, 𝑥𝑥4 = 𝑏𝑏4, … , 𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛)

• More efficiently (directly from the independence assumption): 
– 𝑃𝑃(𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 1) = 𝑃𝑃(𝑥𝑥1 = 0, 𝑥𝑥2 = 0|𝑦𝑦 = 1) 𝑝𝑝(𝑦𝑦 = 1) =
– = 𝑃𝑃(𝑥𝑥1 = 0|𝑦𝑦 = 1) 𝑃𝑃(𝑥𝑥2 = 0|𝑦𝑦 = 1) 𝑝𝑝(𝑦𝑦 = 1)

• We can compute the probability of any event  or conditional event over  the 𝑛𝑛 + 1 variables. 

𝑃𝑃(𝑥𝑥1|𝑦𝑦)
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

y

𝑥𝑥𝑛𝑛

𝑃𝑃(𝑥𝑥𝑛𝑛|𝑦𝑦)𝑃𝑃(𝑥𝑥2|𝑦𝑦)
𝑃𝑃(𝑦𝑦)
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Representing Probability Distribution
• Goal: To represent all joint probability distributions over a set of random 

variables 𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑛𝑛
• There are many ways to represent distributions. 

– A table, listing the probability of each instance in 0,1 𝑛𝑛

• We will need 2𝑛𝑛 − 1 numbers 
• What can we do? Make Independence Assumptions

• Multi-linear polynomials
– Multinomials over variables

• Bayesian Networks
– Directed acyclic graphs

• Markov Networks
– Undirected graphs
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This is a theorem.  To 
prove it, order the nodes 
from leaves up, and use the 
product rule.
The terms are called CPTs 
(Conditional Probability 
tables) and they completely 
define the probability 
distribution.

• Bayesian Networks represent the joint probability distribution over a set 
of variables. 

• Independence Assumption: ∀ 𝑥𝑥, 𝑥𝑥 is independent of its non-descendants 
given its parents

• With these conventions, the joint probability distribution is given by:

9

Graphical Models of Probability Distributions

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )

𝑥𝑥 is a descendant of 𝑦𝑦

𝑧𝑧 is a parent of 𝑥𝑥𝒀𝒀

𝒁𝒁𝒁𝒁𝟏𝟏 𝒁𝒁𝟐𝟐 𝒁𝒁𝟑𝟑

𝑿𝑿𝟐𝟐𝑿𝑿𝑿𝑿𝟏𝟏𝟏𝟏

• Show that: P(X|Y,Z) = P(X|Y).
• BTW, since independence is 

symmetric, you can also show 
that P(Z|Y,X) = P(Z|Y)
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Bayesian Network
• Semantics of the DAG

– Nodes are random variables
– Edges represent causal influences
– Each node is associated with a conditional probability distribution

• Two equivalent viewpoints
– A data structure that represents the joint distribution compactly
– A representation for a set of conditional independence assumptions 

about a distribution
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Bayesian Network: Example
• The burglar alarm in your house rings when there is a burglary 

or an earthquake. An earthquake will be reported on the 
radio. If an alarm rings and your neighbors hear it, they will 
call you.

• What are the random variables?
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Bayesian Network: Example

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

An alarm can ring  
because of a burglary 
or an earthquake.

If there’s an 
earthquake, you’ll 
probably hear about 
it on the radio.

If your neighbors hear an 
alarm, they will call you.

How many parameters do we 
have? 

How many would we have if 
we had to store the entire 
joint?
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Bayesian Network: Example

𝑃𝑃(𝐸𝐸,𝐵𝐵,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽) = 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐵𝐵,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽 |𝐸𝐸) =
= 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐵𝐵) 𝑃𝑃(𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽 |𝐸𝐸,𝐵𝐵) =

= 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐵𝐵) 𝑃𝑃(𝑅𝑅 | 𝐸𝐸,𝐵𝐵 ) 𝑃𝑃(𝑀𝑀, 𝐽𝐽,𝐴𝐴 | 𝐸𝐸,𝐵𝐵)
= 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐵𝐵) 𝑃𝑃(𝑅𝑅 | 𝐸𝐸) 𝑃𝑃(𝑀𝑀, 𝐽𝐽| 𝐴𝐴,𝐸𝐸,𝐵𝐵) 𝑃𝑃(𝐴𝐴| 𝐸𝐸,𝐵𝐵)
= 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐵𝐵) 𝑃𝑃(𝑅𝑅 | 𝐸𝐸) 𝑃𝑃(𝑀𝑀 |𝐴𝐴) 𝑃𝑃(𝐽𝐽 | 𝐴𝐴) 𝑃𝑃(𝐴𝐴 |𝐸𝐸,𝐵𝐵)

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

P(E)

P(R | E)

P(B)

P(A | E, B)

P(M | A) P( J | A)

With these probabilities, 
(and assumptions, encoded in 
the graph) we can compute 
the probability of any event 
over these variables.
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Computational Problems
• Learning the structure of the Bayes net

– (What would be the guiding principle?)
• Learning the parameters

– Supervised? Unsupervised? 
• Inference: 

– Computing the probability of an event: [#P Complete, Roth’93, ’96]
• Given structure and parameters
• Given an observation (evidence) 𝐸𝐸, what is the probability of assignment 𝑌𝑌? 

– 𝑃𝑃(𝑅𝑅 = 𝑜𝑜𝑜𝑜𝑜𝑜,𝐴𝐴 = 𝑜𝑜𝑜𝑜𝑜𝑜 | 𝐸𝐸 = 𝑃𝑃) =? (𝐸𝐸,𝑌𝑌 are sets of instantiated variables) 
– Most likely explanation (Maximum A Posteriori assignment, MAP, MPE) [NP-Hard; 

Shimony’94]
• Given structure and parameters
• Given an observation (evidence) 𝐸𝐸, what is the most likely assignment to Y?
• 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑦𝑦 𝑃𝑃(𝑌𝑌 = 𝑦𝑦 | 𝐸𝐸 = 𝑃𝑃) (Say, 𝑌𝑌 = (𝑅𝑅,𝐴𝐴))
• (𝐸𝐸,𝑌𝑌 are sets of instantiated variables) 
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Inference
• Inference in Bayesian Networks is generally intractable in the 

worst case
• Two broad approaches for inference

– Exact inference
• Eg. Variable Elimination

– Approximate inference
• Eg. Gibbs sampling
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Tree Dependent Distributions
• Directed Acyclic  graph

– Each node has at most one parent
• Independence Assumption:

– 𝑥𝑥 is independent of its non-descendants 
given its parents

• (𝑥𝑥 is independent of other nodes give 
𝑧𝑧; 𝑣𝑣 is independent of 𝑤𝑤 given 𝑢𝑢;)  

• Need to know two numbers for each 
link: 𝑝𝑝(𝑥𝑥|𝑧𝑧), and a prior for the root 
𝑝𝑝(𝑦𝑦)

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)
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Tree Dependent Distributions
• This is a generalization of naïve Bayes.
• Inference Problem:

– Given the Tree with all the  associated probabilities,  evaluate the 
probability of an event 𝑝𝑝(𝑥𝑥) ?

• 𝑃𝑃(𝑥𝑥 = 1) =
= 𝑃𝑃(𝑥𝑥 = 1|𝑧𝑧 = 1)𝑃𝑃(𝑧𝑧 = 1) + 𝑃𝑃(𝑥𝑥 = 1|𝑧𝑧 = 0)𝑃𝑃(𝑧𝑧 = 0)

• Recursively, go up the tree: 
𝑃𝑃 𝑧𝑧 = 1 =

= 𝑃𝑃 𝑧𝑧 = 1 𝑦𝑦 = 1 𝑃𝑃 𝑦𝑦 = 1 + 𝑃𝑃 𝑧𝑧 = 1 𝑦𝑦 = 0 𝑃𝑃 𝑦𝑦 = 0
𝑃𝑃 𝑧𝑧 = 0 =

= 𝑃𝑃(𝑧𝑧 = 0|𝑦𝑦 = 1)𝑃𝑃(𝑦𝑦 = 1) + 𝑃𝑃(𝑧𝑧 = 0|𝑦𝑦 = 0)𝑃𝑃(𝑦𝑦 = 0)
• Linear Time Algorithm

Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )
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Tree Dependent Distributions
• This is a generalization of naïve Bayes.
• Inference Problem:

– Given the Tree with all the  associated 
probabilities,  evaluate the probability of an 
event 𝑝𝑝(𝑥𝑥,𝑦𝑦) ?

• 𝑃𝑃(𝑥𝑥 = 1,𝑦𝑦 = 0) =
= 𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦 = 0)𝑃𝑃(𝑦𝑦 = 0)

• Recursively, go up the tree along the path from 𝑥𝑥 to 𝑦𝑦: 

𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦 = 0) = �
𝑧𝑧=0,1

𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦 = 0, 𝑧𝑧)𝑃𝑃(𝑧𝑧|𝑦𝑦 = 0)

= ∑𝑧𝑧=0,1𝑃𝑃(𝑥𝑥 = 1|𝑧𝑧)𝑃𝑃(𝑧𝑧|𝑦𝑦 = 0)

Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑺𝑺
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Tree Dependent Distributions
• This is a generalization of naïve Bayes.
• Inference Problem:

– Given the Tree with all the  associated 
probabilities,  evaluate the probability of an 
event 𝑝𝑝(𝑥𝑥,𝑢𝑢) ?

– (No direct path from 𝑥𝑥 to 𝑢𝑢)
• 𝑃𝑃(𝑥𝑥 = 1,𝑢𝑢 = 0) = 𝑃𝑃(𝑥𝑥 = 1|𝑢𝑢 = 0)𝑃𝑃(𝑢𝑢 = 0)
• Let 𝑦𝑦 be a parent of 𝑥𝑥 and 𝑢𝑢 (we always have one)  
𝑃𝑃 𝑥𝑥 = 1 𝑢𝑢 = 0 = ∑𝑦𝑦=0,1 𝑃𝑃(𝑥𝑥 = 1|𝑢𝑢 = 0, 𝑦𝑦)𝑃𝑃(𝑦𝑦|𝑢𝑢 = 0)

= ∑𝑦𝑦=0,1 𝑃𝑃(𝑥𝑥 = 1|𝑦𝑦)𝑃𝑃(𝑦𝑦|𝑢𝑢 = 0)

Now we have 
reduced it to cases 
we have seen  

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)
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Tree Dependent Distributions
– Inference Problem:

• Given the Tree with all the associated 
CPTs, we “showed” that we can  
evaluate the probability of   all events 
efficiently.

• There are more efficient algorithms
• The idea was to show that the inference 

is this case is a simple application of 
Bayes rule and probability theory.

Things are not so simple in the general case, 
due to cycles; there are multiple ways to “get” 
from node A to B, and this has to be 
accounted for in Inference.

Skip Inference

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )
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Graphical Models of Probability Distributions
• For general Bayesian Networks 

– The learning problem is hard 
– The inference problem (given the network, evaluate the probability of a given 

event) is hard (#P Complete)     

𝑷𝑷(𝒚𝒚)

𝑷𝑷(𝒛𝒛𝟑𝟑 | 𝒚𝒚)

𝑷𝑷(𝒙𝒙 | 𝒛𝒛𝟏𝟏, 𝒛𝒛𝟐𝟐 , 𝒛𝒛, 𝒛𝒛𝟑𝟑)

𝒀𝒀

𝒁𝒁𝒁𝒁𝟏𝟏 𝒁𝒁𝟐𝟐 𝒁𝒁𝟑𝟑

𝑿𝑿𝟐𝟐𝑿𝑿𝑿𝑿𝟏𝟏𝟏𝟏

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )
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𝑃𝑃 𝑥𝑥1 = �
𝑥𝑥2

�
𝑥𝑥3

…�
𝑥𝑥𝑛𝑛

�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖 )

𝑃𝑃 𝑥𝑥1 = �
𝑥𝑥2,…,𝑥𝑥𝑛𝑛

𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
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Variable Elimination

• Suppose the query is 𝑃𝑃(𝑋𝑋1)

• Key Intuition: Move irrelevant terms outside summation and cache 
intermediate results

𝑃𝑃 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖 )
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• We want to compute 𝑃𝑃(𝐶𝐶)

• What have we saved with this procedure? 
– How many multiplications and additions did we perform?

Let’s call this 𝑜𝑜𝐴𝐴(𝐵𝐵)= �
𝐵𝐵

𝑃𝑃 𝐶𝐶 𝐵𝐵 �
𝐴𝐴

𝑃𝑃 𝐴𝐴 𝑃𝑃(𝐵𝐵|𝐴𝐴)

24

Variable Elimination: Example 1
A

A B C

𝐴𝐴 has been (instantiated and) 
eliminated

𝑃𝑃 𝐶𝐶 = �
𝐴𝐴

�
𝐵𝐵

𝑃𝑃 𝐴𝐴,𝐵𝐵,𝐶𝐶 = �
𝐴𝐴

�
𝐵𝐵

𝑃𝑃 𝐴𝐴 𝑃𝑃 𝐵𝐵 𝐴𝐴 𝑃𝑃(𝐶𝐶|𝐵𝐵)

= �
𝐵𝐵

𝑃𝑃 𝐶𝐶 𝐵𝐵 𝑜𝑜𝐴𝐴(𝐵𝐵)
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Variable Elimination
• VE is a sequential procedure.
• Given an ordering of variables to eliminate

– For each variable 𝑣𝑣 that is not in the query
• Replace it with a new function 𝑜𝑜𝑣𝑣

– That is, marginalize 𝑣𝑣 out

• The actual computation depends on the order
• What is the domain and range of 𝑜𝑜𝑣𝑣? 

– It need not be a probability distribution
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Variable Elimination: Example 2

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

𝑃𝑃(𝐸𝐸)

𝑃𝑃(𝑅𝑅 | 𝐸𝐸)

𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴 | 𝐸𝐸,𝐵𝐵)

P(M | A) 𝑃𝑃(𝐽𝐽 | 𝐴𝐴)

What is 𝑃𝑃(𝑀𝑀, 𝐽𝐽 | 𝐵𝐵)?
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𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 = �
𝐸𝐸,𝐴𝐴,𝑅𝑅

𝑃𝑃(𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽)

= �
𝐸𝐸,𝐴𝐴,𝑅𝑅

𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝑅𝑅 𝐸𝐸 ⋅ 𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)

Assumptions (graph; 
joint representation) 

27

Variable Elimination: Example 2

It is sufficient to compute the 
numerator and normalize

Elimination order 𝑅𝑅,𝐴𝐴,𝐸𝐸

To eliminate 𝑅𝑅

𝑃𝑃 𝐸𝐸,𝐵𝐵,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽 = 𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 ⋅ 𝑃𝑃 𝑅𝑅 𝐸𝐸 ⋅ 𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)

𝑃𝑃 𝑀𝑀, 𝐽𝐽 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 =
𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃
𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃

𝑜𝑜𝑅𝑅 𝐸𝐸 = �
𝑅𝑅

𝑃𝑃(𝑅𝑅|𝐸𝐸)
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𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 = �
𝐸𝐸,𝐴𝐴,𝑅𝑅

𝑃𝑃(𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽)

= �
𝐸𝐸,𝐴𝐴

𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃 𝐽𝐽 𝐴𝐴 ⋅ 𝑜𝑜𝑅𝑅(𝐸𝐸)
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Variable Elimination: Example 2

It is sufficient to compute the 
numerator and normalize

Elimination order 𝐴𝐴,𝐸𝐸

To eliminate 𝐴𝐴

𝑃𝑃 𝐸𝐸,𝐵𝐵,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽 = 𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 ⋅ 𝑃𝑃 𝑅𝑅 𝐸𝐸 ⋅ 𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)

𝑃𝑃 𝑀𝑀, 𝐽𝐽 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 =
𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃
𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃

𝑜𝑜𝑅𝑅 𝐸𝐸 = �
𝑅𝑅

𝑃𝑃(𝑅𝑅|𝐸𝐸) 𝑜𝑜𝐴𝐴 𝐸𝐸,𝑀𝑀, 𝐽𝐽 = �
𝐴𝐴

𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)
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𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 = �
𝐸𝐸,𝐴𝐴,𝑅𝑅

𝑃𝑃(𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽)

= �
𝐸𝐸

𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑜𝑜𝐴𝐴 𝐸𝐸,𝑀𝑀, 𝐽𝐽 ⋅ 𝑜𝑜𝑅𝑅(𝐸𝐸)
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Variable Elimination: Example 2

It is sufficient to compute the 
numerator and normalize

𝑃𝑃 𝐸𝐸,𝐵𝐵,𝐴𝐴,𝑅𝑅,𝑀𝑀, 𝐽𝐽 = 𝑃𝑃 𝐸𝐸 ⋅ 𝑃𝑃 𝐵𝐵 ⋅ 𝑃𝑃 𝑅𝑅 𝐸𝐸 ⋅ 𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)

𝑃𝑃 𝑀𝑀, 𝐽𝐽 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 =
𝑃𝑃 𝑀𝑀, 𝐽𝐽,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃
𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃

𝑜𝑜𝑅𝑅 𝐸𝐸 = �
𝑅𝑅

𝑃𝑃(𝑅𝑅|𝐸𝐸) 𝑜𝑜𝐴𝐴 𝐸𝐸,𝑀𝑀, 𝐽𝐽 = �
𝐴𝐴

𝑃𝑃 𝐴𝐴 𝐸𝐸,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃 ⋅ 𝑃𝑃 𝑀𝑀 𝐴𝐴 ⋅ 𝑃𝑃(𝐽𝐽|𝐴𝐴)

Finally eliminate 𝐸𝐸

Factors
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Variable Elimination
• The order in which variables are eliminated matters

– In the previous example, what would happen if we eliminate 𝐸𝐸 first?
• The size of the factors would be larger

• Complexity of Variable Elimination
– Exponential in the size of the factors
– What about worst case?

• The worst case is intractable 
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Inference
• Exact Inference in Bayesian Networks is #P-hard

– We can count the number of satisfying assignments for 3-SAT with a 
Bayesian Network

• Approximate inference
– Eg. Gibbs sampling
– Skip
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Approximate Inference
• Basic idea

– If we had access to a set of examples from the joint distribution, we 
could just count.

– For inference, we generate instances from the joint and count
– How do we generate instances?

𝑋𝑋

𝑃𝑃(𝑥𝑥)?

𝐸𝐸 𝑜𝑜 𝑥𝑥 ≈
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

𝑜𝑜(𝑥𝑥(𝑖𝑖))
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Generating instances
• Sampling from the Bayesian Network

– Conditional probabilities, that is, 𝑃𝑃(𝑋𝑋|𝐸𝐸)
– Only generate instances that are consistent with 𝐸𝐸

• Problems?
– How many samples? [Law of large numbers]
– What if the evidence 𝐸𝐸 is a very low probability event?
– Skip
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𝑃𝑃𝑖𝑖𝑗𝑗 : Time independent  
transition probability 

matrix

34

Detour: Markov Chain Review

A B

C
0.1

0.1
0.1

0.3

0.60.3

0.4 0.5

0.6

Generates a sequence of 𝐴𝐴,𝐵𝐵,𝐶𝐶

Defined by initial and transition 
probabilities

𝑃𝑃(𝑋𝑋0) 𝑃𝑃𝑛𝑛𝑎𝑎 𝑃𝑃(𝑋𝑋𝑡𝑡+1 = 𝑖𝑖 | 𝑋𝑋𝑃𝑃 = 𝑗𝑗)

Stationary Distributions: A vector 𝑞𝑞 is called a stationary distribution if 

If we sample from the Markov Chain repeatedly, the distribution over the 
states converges to the stationary distribution

𝑞𝑞𝑖𝑖 : The probability of 
being in state 𝑖𝑖

𝑞𝑞𝑗𝑗 = �
𝑖𝑖

𝑞𝑞𝑖𝑖𝑃𝑃𝑖𝑖𝑗𝑗



CIS 419/519 Fall’19 35

Markov Chain Monte Carlo
• Our goal: To sample from 𝑃𝑃(𝑋𝑋| 𝑃𝑃)
• Overall idea: 

– The next sample is a function of the current sample
– The samples can be thought of as coming from a Markov Chain whose 

stationary distribution is the distribution we want

• Can approximate any distribution
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Gibbs Sampling
• The simplest MCMC method to sample from 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑛𝑛 | 𝑃𝑃)
• Creates a Markov Chain of samples as follows: 

– Initialize 𝑋𝑋 randomly
– At each time step, fix all random variables except one.
– Sample that random variable from the corresponding conditional 

distribution
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Gibbs Sampling
• Algorithm:

– Initialize 𝑋𝑋 randomly
– Iterate:

• Pick a variable 𝑋𝑋𝑖𝑖 uniformly at random
• Sample 𝑥𝑥𝑖𝑖

(𝑡𝑡+1) from 𝑃𝑃 𝑥𝑥𝑖𝑖 𝑥𝑥1
(𝑡𝑡), … , 𝑥𝑥𝑖𝑖−1

(𝑡𝑡) 𝑥𝑥𝑖𝑖+1
(𝑡𝑡) , … , 𝑥𝑥𝑛𝑛

(𝑡𝑡), 𝑃𝑃)
• 𝑋𝑋𝑘𝑘

(𝑡𝑡+1) = 𝑥𝑥𝑘𝑘
(𝑡𝑡+1) for all other 𝑘𝑘

• This is the next sample 

• 𝑋𝑋(1),𝑋𝑋(2), …𝑋𝑋(𝑡𝑡) forms a Markov Chain
• Why is Gibbs Sampling easy for Bayes Nets?

– 𝑃𝑃 𝑥𝑥𝑖𝑖 𝑥𝑥−𝑖𝑖
(𝑡𝑡), 𝑃𝑃) is “local”
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Gibbs Sampling: Big picture
• Given some conditional distribution we wish to compute, 

collect samples from the Markov Chain
• Typically, the chain is allowed to run for some time before 

collecting samples (burn in period)
• So that the chain settles into the stationary distribution

• Using the samples, we approximate the posterior by counting
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Gibbs Sampling Example 1

• We want to compute 𝑃𝑃(𝐶𝐶):
• Suppose, after burn in, the Markov Chain is at 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐵𝐵 = 𝑜𝑜𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃,𝐶𝐶 = 𝑜𝑜𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃

1. Pick a 𝑣𝑣𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑏𝑏𝑓𝑓𝑃𝑃 → 𝐵𝐵
2. Draw the new value of 𝐵𝐵 from 

– 𝑃𝑃(𝐵𝐵 | 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐶𝐶 = 𝑜𝑜𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃) = 𝑃𝑃(𝐵𝐵 | 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃)
– Suppose 𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃

3. Our new sample is 𝐴𝐴 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐵𝐵 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑃𝑃,𝐶𝐶 = 𝑜𝑜𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃
4. Repeat

A B C
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Gibbs Sampling Example 2

• Exercise: 𝑃𝑃(𝑀𝑀, 𝐽𝐽|𝐵𝐵)?

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

𝑃𝑃(𝐸𝐸)

𝑃𝑃(𝑅𝑅 | 𝐸𝐸)

𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴 | 𝐸𝐸,𝐵𝐵)

P(M | A) 𝑃𝑃(𝐽𝐽 | 𝐴𝐴)
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Example: Hidden Markov Model

• A Bayesian Network with a specific structure.
• 𝑋𝑋′s are called the observations and 𝑌𝑌′s are the hidden states

• Useful for sequence tagging tasks – part of speech, modeling 
temporal structure, speech recognition, etc

Y1

X1

Y2

X2

Y3

X3

Y4

X4

Y5

X5

Y6

X6

Transition probabilities Emission probabilities
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HMM: Computational Problems
• Probability of an observation given an HMM

– 𝑃𝑃(𝑋𝑋| 𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃): Dynamic Programming

• Finding the best hidden states for a given sequence 
– 𝑃𝑃(𝑌𝑌 | 𝑋𝑋,𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃): Dynamic Programming

• Learning the parameters from observations
– EM
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Gibbs Sampling for HMM
• Goal:Computing 𝑃𝑃(𝑦𝑦|𝑥𝑥)
• Initialize the 𝑌𝑌′s randomly
• Iterate:

– Pick a random 𝑌𝑌𝑖𝑖
– Draw 𝑌𝑌𝑖𝑖𝑡𝑡 from 𝑃𝑃 𝑌𝑌𝑖𝑖 𝑌𝑌𝑖𝑖−1𝑌𝑌𝑖𝑖+1,𝑋𝑋𝑖𝑖)

• Compute the probability using counts after the burn in period

Only these variables are 
needed because they 
form the Markov 
blanket of 𝑌𝑌𝑖𝑖.

Gibbs sampling allows us to introduce priors on the emission 
and transition probabilities.
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Bayesian Networks
• Bayesian Networks

– Compact representation probability distributions
– Universal: Can represent all distributions

• In the worst case, every random variable will be connected to all others

• Inference
– Inference is hard in the worst case

• Exact inference is #P-hard, approximate inference is NP-hard [Roth93,96]

• Inference for Trees is efficient
• General exact Inference: Variable Elimination

• Learning?
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Tree Dependent Distributions
• Learning Problem:

– Given data (𝑛𝑛 tuples) assumed 
to be sampled from a tree-
dependent distribution

• What does that mean?  
• Generative model

– Find the tree representation of 
the distribution.

• What does that mean?
• Among all trees, find the most likely 

one, given the data:
𝑷𝑷(𝑻𝑻|𝑫𝑫) = 𝑷𝑷(𝑫𝑫|𝑻𝑻) 𝑷𝑷(𝑻𝑻)/𝑷𝑷(𝑫𝑫)

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑃𝑃(𝑦𝑦, 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖) )
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Tree Dependent Distributions
• Learning Problem:

– Given data (𝑛𝑛 tuples) assumed to be sampled 
from a tree-dependent distribution

– Find the tree representation of the 
distribution. 

• Assuming uniform prior on trees, the 
Maximum Likelihood approach is to 
maximize  𝑃𝑃(𝐷𝐷|𝑇𝑇),  

• Now we can see why we had to solve the 
inference problem first; it is required for 
learning.

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑇𝑇𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 𝑃𝑃 𝐷𝐷 𝑇𝑇 = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 �
{𝑥𝑥}
𝑃𝑃𝑇𝑇 (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛)
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Tree Dependent Distributions
• Learning Problem:

– Given data (𝑛𝑛 tuples) assumed to be sampled 
from a tree-dependent distribution

– Find the tree representation of the distribution. 
• Assuming uniform prior on trees, the 

Maximum Likelihood approach is to 
maximize  𝑃𝑃(𝐷𝐷|𝑇𝑇),  

Try this for naïve Bayes

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚) 𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

𝑇𝑇𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 𝑃𝑃(𝐷𝐷|𝑇𝑇) = 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇∏ 𝑥𝑥 𝑃𝑃𝑇𝑇(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) =

= 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 ∏ 𝑥𝑥 𝑃𝑃𝑇𝑇(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖 )
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Example: Learning Distributions
• Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1
0100  0.1 0101 0.1 0110   0.1 0111  0.1
1000  0 1001  0 1010   0 1011  0
1100  0.05 1101  0.05 1110   0.05 1111  0.05

• Probability Distribution 2:

• Probability Distribution 3:

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐𝑿𝑿𝟏𝟏

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐

𝑿𝑿𝟏𝟏

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒) 𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟐𝟐)

• Are these representations 
of the same distribution?

• Given a sample, which of 
these generated it?
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Example: Learning Distributions
• We are given 3 data points: 

1011; 1001; 0100
• Which one is the target 

distribution?
• Probability Distribution 1:

0000  0.1     0001 0.1   0010   0.1     0011  0.1
0100  0.1     0101 0.1   0110   0.1     0111  0.1
1000  0        1001  0      1010   0 1011  0 
1100  0.05  1101  0.05 1110   0.05  1111  0.05

• Probability Distribution 2:

• Probability Distribution 3:

49

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐𝑿𝑿𝟏𝟏

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐

𝑿𝑿𝟏𝟏

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒) 𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟐𝟐)
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Example: Learning Distributions
• Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1
0100  0.1 0101 0.1 0110   0.1 0111  0.1
1000  0   1001  0 1010   0 1011  0
1100  0.05 1101  0.05 1110   0.05 1111  0.05

• What is the likelihood that this table generated the data?
𝑃𝑃(𝑇𝑇|𝐷𝐷) = 𝑃𝑃(𝐷𝐷|𝑇𝑇) 𝑃𝑃(𝑇𝑇)/𝑃𝑃(𝐷𝐷)

• 𝑀𝑀𝑖𝑖𝑘𝑘𝑃𝑃𝑓𝑓𝑖𝑖𝐿𝑜𝑜𝑜𝑜𝑎𝑎(𝑇𝑇) ~ = 𝑃𝑃(𝐷𝐷|𝑇𝑇) ~ = 𝑃𝑃(1011|𝑇𝑇) 𝑃𝑃(1001|𝑇𝑇)𝑃𝑃(0100|𝑇𝑇)
– 𝑃𝑃(1011|𝑇𝑇) = 0
– 𝑃𝑃(1001|𝑇𝑇) = 0.1
– 𝑃𝑃(0100|𝑇𝑇) = 0.1

• 𝑃𝑃(𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃|𝑇𝑇𝑃𝑃𝑏𝑏𝑓𝑓𝑃𝑃) = 0

We are given 3 data 
points: 
1011; 1001; 0100
Which one is the target 
distribution?
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Example: Learning Distributions
• Probability Distribution 2:
• What is the likelihood that the data was 

sampled from Distribution 2? 
• Need to define it: 

– 𝑃𝑃(𝑥𝑥4 = 1) = 1/2
– 𝑝𝑝(𝑥𝑥1 = 1|𝑥𝑥4 = 0) = 1/2 𝑝𝑝(𝑥𝑥1 = 1|𝑥𝑥4 = 1) = 1/2
– 𝑝𝑝(𝑥𝑥2 = 1|𝑥𝑥4 = 0) = 1/3 𝑝𝑝(𝑥𝑥2 = 1|𝑥𝑥4 = 1) = 1/3
– 𝑝𝑝(𝑥𝑥3 = 1|𝑥𝑥4 = 0) = 1/6 𝑝𝑝(𝑥𝑥3 = 1|𝑥𝑥4 = 1) = 5/6

• 𝑀𝑀𝑖𝑖𝑘𝑘𝑃𝑃𝑓𝑓𝑖𝑖𝐿𝑜𝑜𝑜𝑜𝑎𝑎(𝑇𝑇) ~ = 𝑃𝑃(𝐷𝐷|𝑇𝑇) ~ = 𝑃𝑃(1011|𝑇𝑇) 𝑃𝑃(1001|𝑇𝑇)𝑃𝑃(0100|𝑇𝑇)
– 𝑃𝑃 1011 𝑇𝑇 = 𝑝𝑝 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥1 = 1 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥2 = 0 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥3 = 1 𝑥𝑥4 = 1 = 1

2
× 1

2
× 2

3
× 5

6
= 10

72

– 𝑃𝑃 1001 𝑇𝑇 = = 1
2

× 1
2

× 2
3

× 5
6

= 10
72

– 𝑃𝑃(0100|𝑇𝑇) = = 1
2

× 1
2

× 2
3

× 5
6

= 10
72

– 𝑃𝑃(𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃|𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃) = 125/4 ∗ 36

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐𝑿𝑿𝟏𝟏

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒) 𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒) 𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟒𝟒)
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Example: Learning Distributions
• Probability Distribution 3:
• What is the likelihood that the data was 

sampled from Distribution 2? 
• Need to define it: 

– 𝑃𝑃(𝑥𝑥4 = 1) = 2/3
– 𝑝𝑝(𝑥𝑥1 = 1|𝑥𝑥4 = 0) = 1/3 𝑝𝑝(𝑥𝑥1 = 1|𝑥𝑥4 = 1) = 1
– 𝑝𝑝(𝑥𝑥2 = 1|𝑥𝑥4 = 0) = 1 𝑝𝑝(𝑥𝑥2 = 1|𝑥𝑥4 = 1) = 1/2
– 𝑝𝑝(𝑥𝑥3 = 1|𝑥𝑥2 = 0) = 2/3 𝑝𝑝(𝑥𝑥3 = 1|𝑥𝑥2 = 1) = 1/6

• 𝑀𝑀𝑖𝑖𝑘𝑘𝑃𝑃𝑓𝑓𝑖𝑖𝐿𝑜𝑜𝑜𝑜𝑎𝑎(𝑇𝑇) ~ = 𝑃𝑃(𝐷𝐷|𝑇𝑇) ~ = 𝑃𝑃(1011|𝑇𝑇) 𝑃𝑃(1001|𝑇𝑇)𝑃𝑃(0100|𝑇𝑇)
– 𝑃𝑃 1011 𝑇𝑇 = 𝑝𝑝 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥1 = 1 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥2 = 0 𝑥𝑥4 = 1 𝑝𝑝 𝑥𝑥3 = 1 𝑥𝑥2 = 1 = 2

3
× 1 × 1

2
× 2

3
= 2

9

– 𝑃𝑃 1001 𝑇𝑇 = = 1
2

× 1
2

× 2
3

× 1
6

= 1
36

– 𝑃𝑃(0100|𝑇𝑇) = = 1
2

× 1
2

× 1
3

× 5
6

= 5
72

– 𝑃𝑃 𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 = 10/3626

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

𝑿𝑿𝟐𝟐

𝑿𝑿𝟏𝟏

𝑷𝑷(𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟏𝟏|𝒙𝒙𝟒𝟒) 𝑷𝑷(𝒙𝒙𝟐𝟐|𝒙𝒙𝟒𝟒)

𝑷𝑷(𝒙𝒙𝟑𝟑|𝒙𝒙𝟐𝟐)

Distribution 2 is the most likely 
distribution to have produced the data. 
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Example: Summary
• We are now in the same situation we were when we decided 

which of two coins, fair (0.5,0.5) or biased (0.7,0.3) 
generated the data. 

• But, this isn’t the most interesting case. 
• In general, we will not have a small number of possible 

distributions to choose from, but rather a parameterized 
family of distributions.  (analogous to a coin with 𝑝𝑝 ∈ [0,1] )

• We need a systematic way to search this family of 
distributions.
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Example: Summary
• First, let’s make sure we understand what we are after. 
• We have 3 data points that have been generated according to our 

target distribution:  1011; 1001; 0100
• What is the target distribution ?

– We cannot find THE target distribution.
• What is our goal?  

– As before – we are interested in generalization –
– Given Data (e.g., the above 3 data points), we would like to know 
𝑃𝑃(1111) 𝑜𝑜𝑃𝑃 𝑃𝑃(11 ∗∗),𝑃𝑃(∗∗∗ 0) 𝑃𝑃𝑃𝑃𝑒𝑒.

• We could compute it directly from the data, but….
– Assumptions about the distribution are crucial here
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Learning Tree Dependent Distributions
• Learning Problem:

1.  Given data (𝑛𝑛 tuples) assumed to 
be sampled from   a tree-dependent 
distribution
– find the most probable tree 

representation of the distribution. 
2. Given data (𝑛𝑛 tuples) 
– find the tree representation that 

best approximates the distribution 
(without assuming that the data is 
sampled from a tree-dependent 
distribution.)

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚)
𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

Space of all Tree 
Distributions

Target Distribution

Space of all 
Distributions

Target Distribution
Find the Tree closest  

to the target
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Learning Tree Dependent Distributions
• Learning Problem:

1.  Given data (𝑛𝑛 tuples) assumed to be 
sampled from a tree-dependent 
distribution
– find the most probable tree 

representation of the distribution. 
2. Given data (𝑛𝑛 tuples) 
– find the tree representation that best 

approximates the distribution 
(without assuming that the data is 
sampled from a tree-dependent 
distribution.)

𝒀𝒀

𝒁𝒁𝑾𝑾 𝑼𝑼

𝑻𝑻𝑿𝑿𝑽𝑽

𝑺𝑺

𝑷𝑷(𝒚𝒚)
𝑷𝑷(𝒔𝒔|𝒚𝒚)

𝑷𝑷(𝒙𝒙|𝒛𝒛)

The simple minded algorithm for learning a 
tree dependent distribution requires: 
(1) for each tree, compute its likelihood

𝑀𝑀(𝑇𝑇) = 𝑃𝑃(𝐷𝐷|𝑇𝑇) =

= 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 �
𝑥𝑥

𝑃𝑃𝑇𝑇(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) =

= 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑥𝑥𝑇𝑇 ∏ 𝑥𝑥 𝑃𝑃𝑇𝑇(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖 )
(2) Find the maximal one
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1. Distance Measure
• To measure how well a probability distribution 𝑃𝑃 is 

approximated by probability distribution 𝑇𝑇 we use here the 
Kullback-Leibler cross entropy measure (KL-divergence):

• Non negative.
• 𝐷𝐷(𝑃𝑃,𝑇𝑇) = 0 iff 𝑃𝑃 and 𝑇𝑇 are identical
• Non symmetric. Measures how much 𝑃𝑃 differs from 𝑇𝑇.

𝐷𝐷(𝑃𝑃,𝑇𝑇) = �
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥)
𝑇𝑇(𝑥𝑥)
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2. Ranking Dependencies
• Intuitively, the important edges to keep in the tree are edges (𝑥𝑥--𝑦𝑦) for 
𝑥𝑥, 𝑦𝑦 which depend on each other. 

• Given that the distance between the distribution is measured using the 
KL divergence, the corresponding measure of dependence is the mutual 
information between 𝑥𝑥 and 𝑦𝑦, (measuring the information 𝑥𝑥 gives about 
𝑦𝑦) 

• which we can estimate with respect to the empirical distribution (that is, 
the given data).

𝐼𝐼(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥,𝑦𝑦

𝑃𝑃(𝑥𝑥, 𝑦𝑦)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥, 𝑦𝑦)
𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦)
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Learning Tree Dependent Distributions
• The algorithm is given 𝐴𝐴 independent measurements from 𝑃𝑃.
• For each variable 𝑥𝑥, estimate 𝑃𝑃(𝑥𝑥) (Binary variables – 𝑛𝑛 numbers)
• For each pair of variables 𝑥𝑥,𝑦𝑦, estimate 𝑃𝑃(𝑥𝑥,𝑦𝑦) (𝑂𝑂(𝑛𝑛2) numbers)
• For each pair of variables compute  the mutual information
• Build a complete undirected graph with all the variables as vertices. 
• Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) be the weights of the edge (𝑥𝑥,𝑦𝑦)
• Build a maximum weighted spanning tree
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Spanning Tree
• Goal: Find a subset of the edges that forms a tree that includes 

every vertex, where the total weight of all the edges in the tree is 
maximized
– Sort the weights
– Start greedily with the largest one.
– Add the next largest as long as it does not create a loop.
– In case of a loop, discard this weight and move on to the next weight.

• This algorithm will create a tree; 
• It is a spanning tree: it touches all the vertices.
• It is not hard to see that this is the maximum weighted spanning 

tree
• The complexity is 𝑂𝑂(𝑛𝑛2 log(𝑛𝑛))
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Learning Tree Dependent Distributions

• The algorithm is given 𝐴𝐴 independent measurements  from 𝑃𝑃.
• For each variable 𝑥𝑥, estimate 𝑃𝑃(𝑥𝑥) (Binary variables – 𝑛𝑛 numbers)
• For each pair of variables 𝑥𝑥,𝑦𝑦, estimate 𝑃𝑃(𝑥𝑥,𝑦𝑦) (𝑂𝑂(𝑛𝑛2) numbers)
• For each pair of variables compute  the mutual information
• Build a complete undirected graph with all the variables as vertices. 
• Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) be the weights of the edge (𝑥𝑥,𝑦𝑦)
• Build a maximum weighted spanning tree
• Transform the resulting undirected tree to a directed tree. 

– Choose a root variable and set the direction of all the edges away from it.
• Place the corresponding conditional probabilities on the edges. (1)

(3)

(2)
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Correctness (1)
• Place the corresponding conditional probabilities on the edges. 
• Given a tree 𝑃𝑃, defining probability distribution 𝑇𝑇 by forcing the 

conditional probabilities along the edges to coincide with those 
computed from a sample taken from 𝑃𝑃,  gives the best tree 
dependent approximation to 𝑃𝑃

• Let  𝑇𝑇 be the tree-dependent distribution according to the fixed 
tree 𝑃𝑃. 

𝑻𝑻(𝒙𝒙) = ∏ 𝑻𝑻(𝒙𝒙𝒊𝒊|𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝒙𝒙𝒊𝒊)) = ∏𝑷𝑷(𝒙𝒙𝑖𝑖|π (𝒙𝒙𝑖𝑖))
• Recall:

𝐷𝐷(𝑃𝑃,𝑇𝑇) = �
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥)
𝑇𝑇(𝑥𝑥)
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Correctness (1)
• Place the corresponding conditional probabilities on the edges. 
• Given a tree 𝑃𝑃, defining 𝑇𝑇 by forcing the conditional probabilities 

along the edges to coincide with those computed from a sample 
taken from 𝑃𝑃, gives the best t-dependent approximation to 𝑃𝑃

• When is this maximized? 
– That is, how to define 𝑇𝑇(𝑥𝑥𝑖𝑖|π(𝑥𝑥𝑖𝑖))? 

𝐷𝐷(𝑃𝑃,𝑇𝑇) = �
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥)
𝑇𝑇(𝑥𝑥) =

= �
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥) −�
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥) =

= −𝐻𝐻(𝑥𝑥) −�
𝑥𝑥

𝑃𝑃(𝑥𝑥)�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)) =

Slight abuse of 
notation at the root
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Correctness (1)
𝐷𝐷(𝑃𝑃,𝑇𝑇)

= �
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥)
𝑇𝑇(𝑥𝑥)

=�
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥) −�
𝑥𝑥

𝑃𝑃(𝑥𝑥)𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥) =

= −𝐻𝐻(𝑥𝑥) −�
𝑥𝑥

𝑃𝑃(𝑥𝑥)�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑜𝑜𝐴𝐴𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)) =

= −𝐻𝐻(𝑥𝑥) − 𝐸𝐸𝑃𝑃[�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖))] =

= −𝐻𝐻(𝑥𝑥) −�
𝑖𝑖=1

𝑛𝑛

𝐸𝐸𝑃𝑃[𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖))] =

= −𝐻𝐻(𝑥𝑥) −�
𝑖𝑖=1

𝑛𝑛

�
(𝑥𝑥𝑖𝑖,,𝜋𝜋(𝑥𝑥𝑖𝑖))

𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖)) 𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)) =

= −𝐻𝐻(𝑥𝑥) −�
𝑖𝑖=1

𝑛𝑛

�
𝜋𝜋(𝑥𝑥𝑖𝑖)

𝑃𝑃(𝜋𝜋(𝑥𝑥𝑖𝑖))�
𝑥𝑥𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖) 𝑓𝑓𝑜𝑜𝐴𝐴 𝑇𝑇(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖))

Definition of 
expectation: 

∑𝑖𝑖 𝑃𝑃(𝑥𝑥𝑖𝑖|(𝑥𝑥𝑖𝑖) log𝑇𝑇(𝑥𝑥𝑖𝑖|(𝑥𝑥𝑖𝑖)) takes its 
maximal value when we set: 
𝑇𝑇(𝑥𝑥𝑖𝑖|(𝑥𝑥𝑖𝑖)) = 𝑃𝑃(𝑥𝑥𝑖𝑖|(𝑥𝑥𝑖𝑖))
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Correctness (2)
• Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) be the weights of the edge (𝑥𝑥,𝑦𝑦). Maximizing the sum of the 

information gains minimizes the distributional distance.
• We showed that:

• However: 

• This gives:
𝐷𝐷 𝑃𝑃,𝑇𝑇 = −𝐻𝐻 𝑥𝑥 − ∑1

𝑛𝑛 𝐼𝐼(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ) − ∑1
𝑛𝑛∑𝑥𝑥 𝑃𝑃(𝑥𝑥𝑖𝑖) 𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖)

• 1st and 3rd term do not depend on the tree structure. Since the distance is 
non negative, minimizing it is equivalent to maximizing the sum of the edges 
weights 𝐼𝐼(𝑥𝑥,𝑦𝑦) .

𝐷𝐷(𝑃𝑃,𝑇𝑇) = −𝐻𝐻(𝑥𝑥) −�
𝑖𝑖=1

𝑛𝑛

�
(𝑥𝑥𝑖𝑖,,𝜋𝜋(𝑥𝑥𝑖𝑖))

𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖)) 𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖))

𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖))𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)) = 𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖))𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖))
𝑃𝑃(𝑥𝑥𝑖𝑖)𝑃𝑃(𝜋𝜋(𝑥𝑥𝑖𝑖)) + 𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖))𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖)

𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖|𝜋𝜋(𝑥𝑥𝑖𝑖)) = 𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥𝑖𝑖 ,𝜋𝜋(𝑥𝑥𝑖𝑖))
𝑃𝑃(𝑥𝑥𝑖𝑖)𝑃𝑃(𝜋𝜋(𝑥𝑥𝑖𝑖))

+ 𝑓𝑓𝑜𝑜𝐴𝐴 𝑃𝑃(𝑥𝑥𝑖𝑖)
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Correctness (2)
• Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) be the weights of the edge (𝑥𝑥,𝑦𝑦). Maximizing the sum of the 

information gains minimizes the distributional distance.
• We showed that the 𝑇𝑇 is the best tree approximation of 𝑃𝑃 if it is chosen to 

maximize the sum of the edges weights.

𝐷𝐷 𝑃𝑃,𝑇𝑇 = −𝐻𝐻 𝑥𝑥 − ∑1𝑛𝑛 𝐼𝐼 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖 − ∑1𝑛𝑛∑𝑥𝑥 𝑃𝑃(𝑥𝑥𝑖𝑖) log𝑃𝑃(𝑥𝑥𝑖𝑖)

• The minimization problem is solved without the need to exhaustively 
consider all possible trees. 

• This was achieved since we transformed the problem of finding the best 
tree to that of finding the heaviest one, with mutual information on the 
edges. 



CIS 419/519 Fall’19 67

Correctness (3)
• Transform the resulting undirected tree to a directed tree. (Choose a  root variable 

and direct of all the edges away from it.)

– What does it mean that you get the same distribution regardless of the chosen 
root? (Exercise) 

• This algorithm learns the best tree-dependent approximation of a 
distribution 𝐷𝐷.

𝑀𝑀(𝑇𝑇) = 𝑃𝑃(𝐷𝐷|𝑇𝑇) = ∏𝑖𝑖 𝑃𝑃𝑇𝑇 (𝑥𝑥𝒊𝒊|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃(𝑥𝑥𝒊𝒊))
• Given data, this algorithm finds the tree that maximizes the likelihood of 

the data.
• The algorithm is called the Chow-Liu Algorithm. Suggested in 1968 in the 

context of data compression, and adapted by Pearl to Bayesian Networks. 
Invented a couple more times, and generalized since then.
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Example: Learning tree Dependent Distributions
• We have 3 data points that have been generated according to the target distribution:  

1011; 1001; 0100
• We need to estimate some parameters:

• 𝑃𝑃 𝐴𝐴 = 1 = 2
3

, 𝑃𝑃(𝐵𝐵 = 1) = 1
3

, 𝑃𝑃(𝐶𝐶 = 1) = 1
3
), 𝑃𝑃(𝐷𝐷 = 1) = 2

3
• For the values 00, 01, 10, 11 respectively, we have that:

– 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 0; 1/3; 2/3; 0 𝑃𝑃(𝐴𝐴,𝐵𝐵)/𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵) = 0; 3; 3/2; 0 𝐼𝐼(𝐴𝐴,𝐵𝐵) ~ 9/2
– 𝑃𝑃(𝐴𝐴,𝐶𝐶) = 1/3; 0; 1/3; 1/3 𝑃𝑃(𝐴𝐴,𝐶𝐶)/𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐶𝐶) = 3/2; 0; 3/4; 3/2 𝐼𝐼(𝐴𝐴,𝐶𝐶) ~ 15/4
– 𝑃𝑃(𝐴𝐴,𝐷𝐷) = 1/3; 0; 0; 2/3 𝑃𝑃(𝐴𝐴,𝐷𝐷)/𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐷𝐷) = 3; 0; 0; 3/2 𝐼𝐼(𝐴𝐴,𝐷𝐷) ~ 9/2
– 𝑃𝑃(𝐵𝐵,𝐶𝐶) = 1/3; 1/3; 1/3; 0 𝑃𝑃(𝐵𝐵,𝐶𝐶)/𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐶𝐶) = 3/4; 3/2; 3/2; 0 𝐼𝐼(𝐵𝐵,𝐶𝐶) ~ 15/4
– 𝑃𝑃(𝐵𝐵,𝐷𝐷) = 0; 2/3; 1/3; 0 𝑃𝑃(𝐵𝐵,𝐷𝐷)/𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐷𝐷) = 0; 3; 3/2; 0 𝐼𝐼(𝐵𝐵,𝐷𝐷) ~ 9/2
– 𝑃𝑃(𝐶𝐶,𝐷𝐷) = 1/3; 1/3; 0; 1/3 𝑃𝑃(𝐶𝐶,𝐷𝐷)/𝑃𝑃(𝐶𝐶)𝑃𝑃(𝐷𝐷) = 3/2; 3/4; 0; 3/2 𝐼𝐼(𝐶𝐶,𝐷𝐷) ~ 15/4

• Generate the tree; place probabilities. 

𝐼𝐼(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥,𝑦𝑦

𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑓𝑓𝑜𝑜𝐴𝐴
𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦)

B
A C

D
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Learning tree Dependent Distributions

• Chow-Liu algorithm finds the tree that  maximizes the likelihood.  
• In particular, if 𝐷𝐷 is a tree dependent distribution, this algorithm 

learns 𝐷𝐷.  (what does it mean ?)
• Less is known on how many examples are needed in order for it to 

converge.  (what does that mean?)
• Notice that we are taking statistics to estimate the probabilities  of 

some event in order to generate the tree. Then, we intend to  use it 
to evaluate the probability of other events.

• One may ask the question: why do we need this structure ? Why 
can’t  answer the query directly from the data ? 

• (Almost like making prediction directly from the data in the badges 
problem) 
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