

Evaluation

Dan Roth

danroth@seas.upenn.edu|http://www.cis.upenn.edu/~danroth/|461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides available.

Administration

- HW1 is out. Due on October 7.
 - Please start working on it.
 - Go to office hours and recitations.
- Recall our late policy
 - 4 days
- Piazza
 - Be active on Piazza
 - We will reward highly active students

Metrics Methodologies Statistical Significance

Flow of Batch Machine Learning

Given: labeled training data $X, Y = \{\langle x_i, y_i \rangle\}_{i=1}^n$

• Assumes each $x_i \sim D(X)$ with $y_i = f_{target}(x_i)$

Train the model:

 $model \leftarrow classifier.train(X, Y)$

Apply the model to new data:

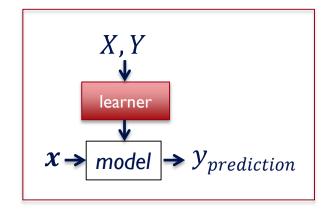
Given: new unlabeled instance *x* ~ *D*(*X*)
 *y*_{prediction} ← model.predict(*x*)

Key questions:

How to determine the quality of the model?

(i) measuring performance

(ii) understanding the significance of the results (is it better the other models?)



Metrics

- We train on our training data Train = $\{x_i, y_i\}_{1,m}$
- We test on Test data.
- We often set aside part of the training data as a development set, especially when the algorithms require tuning.
 - In the HW we asked you to present results also on the Training; why?
- When we deal with binary classification we often measure performance simply using Accuracy:

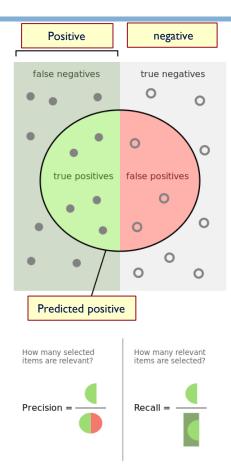
$$accuracy = \frac{\# \text{ correct predictions}}{\# \text{ test instances}}$$

error = 1 - accuracy = $\frac{\# \text{ incorrect predictions}}{\# \text{ test instances}}$
Any possible problems with it?

۲

Alternative Metrics

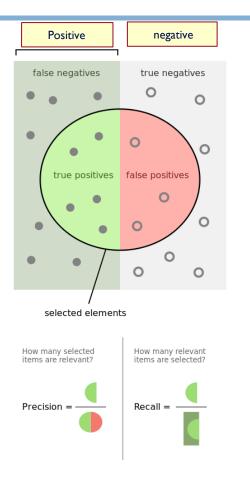
- If the Binary classification problem is biased
 - In many problems most examples are negative
- Or, in multiclass classification
 - The distribution over labels is often non-uniform
- Simple accuracy is not a useful metric.
 - Often we resort to task specific metrics
- However one important example that is being used often involves Recall and Precision
- Recall: # (positive identified = true positives)
 # (all positive)
- Precision: # (positive identified = true positives) # (predicted positive)



Example

- 100 examples, 5% are positive.
- Just say NO: your accuracy is 95%
 - Recall = precision = 0
- Predict 4+, 96-; 2 of the +s are indeed positive
 - Recall:2/5; Precision: 2/4

- Recall: <u># (positive identified = true positives)</u> # (all positive)
- Precision: # (positive identified = true positives) # (predicted positive)



Confusion Matrix

• Given a dataset of P positive instances and N negative instances:

The notion of a confusion matrix can be usefully extended to the multiclass case (i,j) cell indicate how many of the i-labeled examples were predicted to be j

$$accuracy = \frac{TP + TN}{P + N}$$

Imagine using classifier to identify positive cases (i.e., for information retrieval)

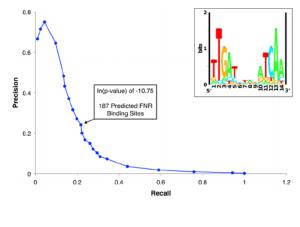
 $precision = \frac{TP}{TP + FP}$

$$\text{recall} = \frac{TP}{TP + FN}$$

Probability that a randomly selected positive prediction is indeed positive Probability that a randomly selected positive is identified

Relevant Metrics

- It makes sense to consider Recall and Precision together or combine them into a single metric.
- Recall-Precision Curve:
- F-Measure:
 - A measure that combines precision and recall is the harmonic mean of precision and recall. $F_{f_{e}} = ($



$$= (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{eta^2 \cdot ext{precision} + ext{recall}}$$

- F1 is the most commonly used metric.

Comparing Classifiers

Say we have two classifiers, *C1* and *C2*, and want to choose the best one to use for future predictions

Can we use training accuracy to choose between them?

• No!

- What about accuracy on test data?
- Yes, but...
 - We basically want to look at more than a single number; gather some statistical evidence.

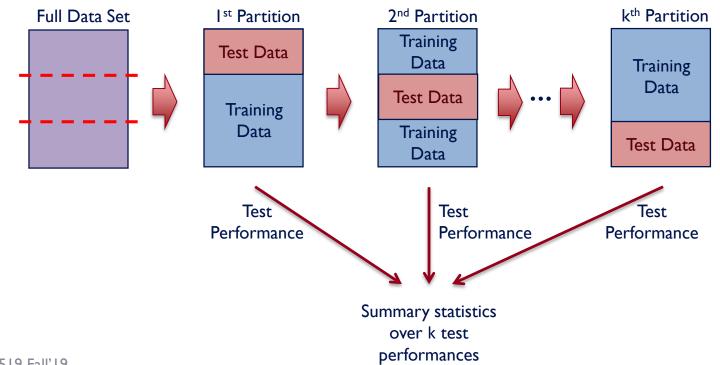
N-fold cross validation

• Instead of a single test-training split:

train test

• Split data into N equal-sized parts

- Train and test N different classifiers
- Report average accuracy and standard deviation of the accuracy



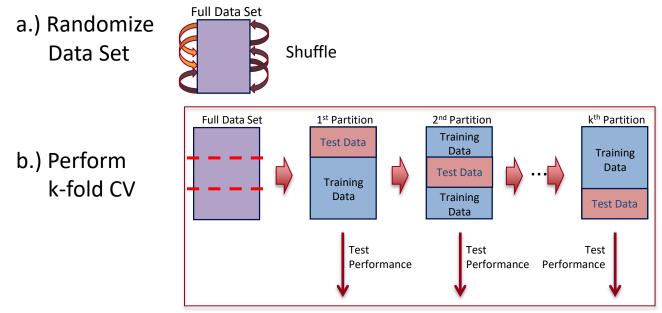
CIS 419/519 Fall'19

More on Cross-Validation

- Cross-validation generates an approximate estimate of how well the classifier will do on "unseen" data
 - As $k \rightarrow n$, the model becomes more accurate (more training data)
 - ...but, CV becomes more computationally expensive
 - Choosing k < n is a compromise. k=5 is often used.
 - k=n is called "leave-one-out";
- Averaging over different partitions is more robust than just a single train/validate partition of the data
- It is an even better idea to do CV repeatedly!

Multiple Trials of k-Fold CV

1.) Loop for *t* trials:

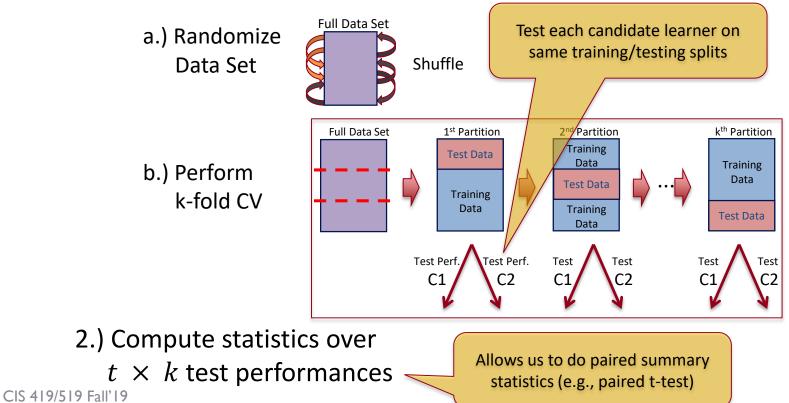


- 2.) Compute statistics over
 - $t \times k$ test performances

CIS 419/519 Fall'19

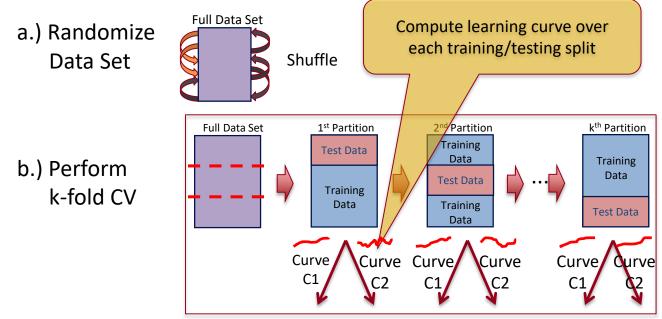
Comparing Multiple Classifiers

1.) Loop for *t* trials:



Building Learning Curves

1.) Loop for *t* trials:



- 2.) Compute statistics over
 - $t \times k$ learning curves

Evaluation: significance tests

- You have two different classifiers, A and B
- You train and test them on the same data set using N-fold cross-validation
- For the n-th fold:

accuracy(A, n), accuracy(B, n) p_n = accuracy(A, n) - accuracy(B, n)

• Is the difference between A and B's accuracies significant?

Hypothesis testing

- [Next we are introducing a methodology for answering the question: can we distinguish two models? Which one is better?]
- You want to show that hypothesis H is true, based on your data
 - (e.g. H = "classifier A and B are different")
- Define a null hypothesis H₀
 - (H₀ is the contrary of what you want to show)
- H_0 defines a distribution $P(m | H_0)$ over some statistic
 - e.g. a distribution over the difference in accuracy between A and B
- Can you refute (reject) H₀?

Rejecting H₀

- H_0 defines a distribution $P(M / H_0)$ over some statistic M
 - (e.g. *M*= the difference in accuracy between A and B)
- Select a significance value S
 - (e.g. 0.05, 0.01, etc.)
 - − You can only reject H_0 if $P(m / H_0) \le S$
- Compute the test statistic *m* from your data
 - e.g. the average difference in accuracy over your N folds
- Compute $P(m / H_0)$
- Refute H_0 with $p \le S$ if $P(m / H_0) \le S$

Paired t-test

• A paired t-test is used to compare two population means where you have two samples in which observations in one sample can be paired with observations in the other sample.

Paired t-test

- Null hypothesis (H₀; to be refuted):
 - There is no difference between A and B, i.e. the expected accuracies of A and B are the same
- That is, the expected difference (over all possible data sets) between their accuracies is 0:
 H₀: E[p₀] = 0
- We don't know the true $E[\rho_D]$
- N-fold cross-validation gives us N samples of p_D

Paired t-test

• Null hypothesis $H_0: E[diff_D] = \mu = 0$

• *m*: our estimate of μ based on *N* samples of $diff_D$

 $m = 1/N \sum_{n} diff_{n}$

• The estimated variance S²:

 $S^2 = 1/(N-1) \sum_{1,N} (diff_n - m)^2$

Accept Null hypothesis at significance level *a* if the following statistic lies in (-t_{a/2, N-1}, +t_{a/2, N-1})

$$\frac{\sqrt{Nm}}{S} \sim t_{N-1}$$

Procedure for carrying out Paired t-test

- Calculate the difference between the two observations on each pair.
- Calculate the mean difference
- Calculate the standard deviation of the differences
- Calculate the error of the mean difference
- Calculate the t-statistic

The test is often used for the situation where one tests for the presence (1) or absence (0) of something and variable A is the state at the first observation (i.e., pretest) and variable B is the state at the second observation (i.e., post-test).

McNemar's Test

- An alternative to Cross Validation, when the test can be run only once, but you have access to predictions on individual examples.
- Divide the sample *S* into a training set *R* and a test set *T*.
- Train algorithms A and B on R, yielding classifiers A, B
- Record how each example in *T* is classified and compute the number of

Examples misclassified by both A and $B N_{00}$	Examples misclassified by A but not B N01
Examples misclassified by	Examples misclassified by neither
<i>B</i> but not <i>A N</i> 10	A nor B N11

where N is the total number of examples in the test set T

$$N_{00} + N_{10} + N_{01} + N_{11} = N$$

CIS 419/519 Fall'19

McNemar's Test

• The hypothesis: the two learning algorithms have the same error rate on a randomly drawn sample. That is, we expect that

$$N_{10} = N_{01}$$

• The statistics we use to measure deviation from the expected counts:

$$\frac{(|N_{01} - N_{10}| - 1)^2}{N_{01} + N_{10}}$$

• This statistics is distributed (approximately) as t-distribution with 1 degree of freedom