
CIS 419/519 Fall’19

On-line Learning, Perceptron, Kernels

Dan Roth
danroth@seas.upenn.edu | http://www.cis.upenn.edu/~danroth/ | 461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for
CIS519/419 at Penn, or from other authors who have made their ML slides available.

CIS 419/519 Fall’19 2

A Guide
• Learning Algorithms

– (Stochastic) Gradient Descent (with LMS)
– Decision Trees

• Importance of hypothesis space (representation)
• How are we doing?

– Quantification in terms of cumulative # of mistakes
– Our algorithms were driven by a different metric than the one we care

about.

*

CIS 419/519 Fall’19 3

A Guide
• Versions of Perceptron

– How to deal better with large features spaces & sparsity?
– Variations of Perceptron

• Dealing with overfitting
– Closing the loop: Back to Gradient Descent
– Dual Representations & Kernels

• Multilayer Perceptron
• Beyond Binary Classification?

– Multi-class classification and Structured Prediction
• More general way to quantify learning performance (PAC)

– New Algorithms (SVM, Boosting)

Today:
Take a more general
perspective and think
more about learning,
learning protocols,
quantifying performance,
etc.
This will motivate some of
the ideas we will see next.

CIS 419/519 Fall’19 4

Quantifying Performance
• We want to be able to say something rigorous about the

performance of our learning algorithm.

• We will concentrate on discussing the number of examples
one needs to see before we can say that our learned
hypothesis is good.

CIS 419/519 Fall’19

Learning Conjunctions

CIS 419/519 Fall’19 6

Learning Conjunctions
• There is a hidden (monotone) conjunction the learner (you) is

to learn
• 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥100 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
• How many examples are needed to learn it ? How ?

– Protocol I: The learner proposes instances as queries to the teacher
– Protocol II: The teacher (who knows 𝑓𝑓) provides training examples
– Protocol III: Some random source (e.g., Nature) provides training

examples; the Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

CIS 419/519 Fall’19 7

Learning Conjunctions (I)
• Protocol I: The learner proposes instances as queries to the teacher
• Since we know we are after a monotone conjunction:
• Is 𝑥𝑥100 in? < (1,1,1 … , 1,0), ? > 𝑓𝑓 𝑥𝑥 = 0 (conclusion: Yes)
• Is 𝑥𝑥99 in? < (1,1, … 1,0,1), ? > 𝑓𝑓 𝑥𝑥 = 1 (conclusion: No)
• Is 𝑥𝑥1 in ? < (0,1, … 1,1,1), ? > 𝑓𝑓 𝑥𝑥 = 1 (conclusion: No)

• A straight forward algorithm requires 𝑛𝑛 = 100 queries, and will
produce as a result the hidden conjunction (exactly).
– ℎ(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥100) = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100 What happens here if the conjunction

is not known to be monotone?
If we know of a positive example,
the same algorithm works.

CIS 419/519 Fall’19 8

Learning Conjunctions(II)
• Protocol II: The teacher (who knows 𝑓𝑓) provides training

examples

CIS 419/519 Fall’19 9

Learning Conjunctions (II)
• Protocol II: The teacher (who knows 𝑓𝑓) provides training

examples
• < (0,1,1,1,1,0, … , 0,1), 1 >

CIS 419/519 Fall’19 10

Learning Conjunctions (II)
• Protocol II: The teacher (who knows 𝑓𝑓) provides training

examples
• < (0,1,1,1,1,0, … , 0,1), 1 > (We learned a superset of the

good variables)

CIS 419/519 Fall’19 11

Learning Conjunctions (II)
• Protocol II: The teacher (who knows 𝑓𝑓) provides training

examples
• < (0,1,1,1,1,0, … , 0,1), 1 > (We learned a superset of the

good variables)
• To show you that all these variables are required…

CIS 419/519 Fall’19 12

Learning Conjunctions (II)
• Protocol II: The teacher (who knows 𝑓𝑓) provides training examples
• < (0,1,1,1,1,0, … , 0,1), 1 > (We learned a superset of the good variables)
• To show you that all these variables are required…

– < (0,0,1,1,1,0, … , 0,1), 0 > need 𝑥𝑥2
– < (0,1,0,1,1,0, … , 0,1), 0 > need 𝑥𝑥3
– …
– < (0,1,1,1,1,0, … , 0,0), 0 > need 𝑥𝑥100

• A straight forward algorithm requires 𝑘𝑘 = 6 examples to produce the
hidden conjunction (exactly).

• ℎ(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥100) = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

Modeling Teaching Is tricky

CIS 419/519 Fall’19 13

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training examples
• Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 >
– < (1,1,1,1,1,0, … 0,1,1), 1 >
– < (1,0,1,1,1,0, … 0,1,1), 0 >
– < (1,1,1,1,1,0, … 0,0,1), 1 >
– < (1,0,1,0,0,0, … 0,1,1), 0 >
– < (1,1,1,1,1,1, … , 0,1), 1 >
– < (0,1,0,1,0,0, … 0,1,1), 0 >

• How should we learn?
• Skip

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 14

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides

training examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 15

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides

training examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 16

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training

examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 17

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training

examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥99 ∧ 𝑥𝑥100

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 18

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training

examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥99 ∧ 𝑥𝑥100
– < (1,0,1,1,0,0, … 0,0,1), 0 > learned nothing
– < (1,1,1,1,1,0, … 0,0,1), 1 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 19

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training

examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: Elimination
– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥99 ∧ 𝑥𝑥100
– < (1,0,1,1,0,0, … 0,0,1), 0 > learned nothing
– < (1,1,1,1,1,0, … 0,0,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 20

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training examples

– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))
• Algorithm: Elimination

– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥99 ∧ 𝑥𝑥100
– < (1,0,1,1,0,0, … 0,0,1), 0 > learned nothing
– < (1,1,1,1,1,0, … 0,0,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
– < (1,0,1,0,0,0, … 0,1,1), 0 >
– < (1,1,1,1,1,1, … , 0,1), 1 >
– < (0,1,0,1,0,0, … 0,1,1), 0 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 21

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training examples

– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))
• Algorithm: Elimination

– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 > learned nothing: ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2, … ,∧ 𝑥𝑥100
– < (1,1,1,1,1,0, … 0,1,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥99 ∧ 𝑥𝑥100
– < (1,0,1,1,0,0, … 0,0,1), 0 > learned nothing
– < (1,1,1,1,1,0, … 0,0,1), 1 > ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
– < (1,0,1,0,0,0, … 0,1,1), 0 >
– < (1,1,1,1,1,1, … , 0,1), 1 >
– < (0,1,0,1,0,0, … 0,1,1), 0 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

• Is it good
• Performance ?
• # of examples ?

Final hypothesis:
ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

CIS 419/519 Fall’19 22

Administration
• Registration
• Hw1 is due next week

– You should have started working on it already…
– Recall that this is an Applied Machine Learning class.
– We are not asking you to simply give us back what you’ve seen in class.
– The HW will try to simulate challenges you might face when you want

to apply ML.
– Allow you to experience various ML scenarios and make observations

that are best experienced when you play with it yourself.
• Hw2 will be out next week

Questions

CIS 419/519 Fall’19 23

Projects
• https://www.seas.upenn.edu/~cis519/fall2019/project.html
• CIS 519 students need to do a team project

– Teams will be of size 3-4
• Projects proposals are due on Friday 10/25/19

– Details will be available on the website
– We will give comments and/or requests to modify / augment/ do a different project.
– There may also be a mechanism for peer comments.

• Please start thinking and working on the project now.
– Your proposal is limited to 1 page, but needs to include references and, ideally, some preliminary

results/ideas. It should look like a paper – use latex, bibtex.
• Any project with a significant Machine Learning component is good.

– Experimental work, theoretical work, a combination of both or a critical survey of results in some
specialized topic.

– The work has to include some reading of the literature .
– Originality is not mandatory but is encouraged.

• Try to make it interesting!

https://www.seas.upenn.edu/%7Ecis519/fall2019/project.html

CIS 419/519 Fall’19

You need to have a “thesis”.
Example: classify internal

organisms; Thesis: can generalize
across gender, other populations.

Just going to Kaggle to
take a dataset and

running algorithms on it
is not enough.

24

Project Examples
• KDD Cup 2013:

– "Author-Paper Identification": given an author and a small set of papers, we are asked to identify which papers are really written
by the author.

• https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge
– “Author Profiling”: given a set of document, profile the author: identification, gender, native language, ….

• File my e-mail to folders better than Apple does
• Caption Control: Is it gibberish? Spam? High quality text?
• Adapt an NLP program to a new domain
• NER that adapts to new entity types
• Work on making learned hypothesis more comprehensible

– Explain the prediction
• Develop a (multi-modal) People Identifier
• Identify contradictions in news stories

– Other relations between claims; opinion vs. facts
• Large scale clustering of documents + name the cluster

– E.g., cluster news documents and give a title to the document
• Spam calls for my phone
• Find interesting data on data.gov

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

CIS 419/519 Fall’19 25

Learning Conjunctions (III)
• Protocol III: Some random source (e.g., Nature) provides training examples

– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))
• Algorithm: Elimination

– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example
– < (1,1,1,1,1,1, … , 1,1), 1 >
– < (1,1,1,0,0,0, … , 0,0), 0 >
– < (1,1,1,1,1,0, … 0,1,1), 1 >
– < (1,0,1,1,0,0, … 0,0,1), 0 >
– < (1,1,1,1,1,0, … 0,0,1), 1 >
– < (1,0,1,0,0,0, … 0,1,1), 0 >
– < (1,1,1,1,1,1, … , 0,1), 1 >
– < (0,1,0,1,0,0, … 0,1,1), 0 >

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

• Is it good
• Performance ?
• # of examples ?

Final hypothesis:
ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

 With the given data, we only learned an
“approximation” to the true concept

 We don’t know how many examples
we need to see to learn exactly. (do we
care?)

 But we know that we can make a limited
of mistakes.

CIS 419/519 Fall’19 26

Two Directions
• Can continue to analyze the probabilistic intuition:

– Never saw 𝑥𝑥1 = 0 in positive examples, maybe we’ll never see it?
– And if we will, it will be with small probability, so the concepts we learn

may be pretty good
– Good: in terms of performance on future data
– PAC framework

• Mistake Driven Learning algorithms/On line algorithms
– Now, we can only reason about #(mistakes), not #(examples)

• any relations?
– Update your hypothesis only when you make mistakes

• Not all on-line algorithms are mistake driven, so performance measure could
be different.

CIS 419/519 Fall’19 27

On-Line Learning
• New learning algorithms
• (all learn a linear function over the feature space)

– Perceptron (+ many variations)
– General Gradient Descent view

• Issues:
– Importance of Representation
– Complexity of Learning
– Idea of Kernel Based Methods
– More about features

CIS 419/519 Fall’19 28

Generic Mistake Bound Algorithms
• Is it clear that we can bound the number of mistakes ?
• Let 𝐶𝐶 be a finite concept class. Learn 𝑓𝑓 ∈ C
• CON algorithm:

– In the ith stage of the algorithm:
• 𝐶𝐶𝑖𝑖: all concepts in 𝐶𝐶 consistent with all 𝑖𝑖 − 1 previously seen examples

– Choose randomly 𝑓𝑓 ∈ 𝐶𝐶𝑖𝑖 and use it to predict the next example
– Clearly, Ci+1 ⊆ 𝐶𝐶𝑖𝑖 and, if a mistake is made on the i-th example, then

𝐶𝐶𝑖𝑖+1 < 𝐶𝐶𝑖𝑖 , so progress is made.
• The CON algorithm makes at most 𝐶𝐶 − 1 mistakes
• Can we do better ? The goal of the following discussion is to think about

hypothesis spaces, and some “optimal” algorithms, as a way to
understand what might be possible.
For this reason, here we think about the class of possible
target functions and the class of hypothesis as the same.

CIS 419/519 Fall’19 29

The Halving Algorithm
• Let 𝐶𝐶 be a finite concept class. Learn 𝑓𝑓 ∈ C
• Halving Algorithm:

– In the ith stage of the algorithm:
• 𝐶𝐶𝑖𝑖: all concepts in 𝐶𝐶 consistent with all 𝑖𝑖 − 1 previously seen examples

– Given an example 𝑒𝑒𝑡𝑡 consider the value 𝑓𝑓𝑗𝑗 𝑒𝑒𝑡𝑡 for all 𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖 and predict by majority.
– Predict 1 iff

• 𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖 ;𝑓𝑓𝑗𝑗 𝑒𝑒𝑖𝑖 = 0 < 𝑓𝑓𝑗𝑗 ∈ 𝐶𝐶𝑖𝑖 ;𝑓𝑓𝑗𝑗 𝑒𝑒𝑖𝑖 = 1

– Clearly, Ci+1 ⊆ 𝐶𝐶𝑖𝑖 and, if a mistake is made on the i-th example, then 𝐶𝐶𝑖𝑖+1 < 1
2
𝐶𝐶𝑖𝑖 ,

so progress is made
• The Halving algorithm makes at most log(|𝐶𝐶|) mistakes

– Of course, this is a theoretical algorithm; can this be achieved with an efficient
algorithm?

CIS 419/519 Fall’19 30

Learning Conjunctions
• There is a hidden conjunctions the learner is to learn
• 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥100 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
• The number of (all; not monotone) conjunctions: C = 3𝑛𝑛

• log 𝐶𝐶 = 𝑛𝑛
• The elimination algorithm makes 𝑛𝑛 mistakes
• …
• k-conjunctions:

– Assume that only k ≪ 𝑛𝑛 attributes occur in the disjunction

• The number of k-conjunctions: C = 𝑛𝑛
𝑘𝑘 2𝑘𝑘

– log 𝐶𝐶 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛
– Can we learn efficiently with this number of mistakes ?

Can this bound
be achieved?

Can mistakes be
bounded in the non-
finite case?

Earlier:
• Talked about various

learning protocols & on
algorithms for conjunctions.

• Discussed the performance
of the algorithms in terms of
bounding the number of
mistakes that algorithm
makes.

• Gave a “theoretical”
algorithm with log |𝐶𝐶|
mistakes.

CIS 419/519 Fall’19 31

Linear Threshold Functions
𝑓𝑓(𝒙𝒙)= sgn 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃}

• Many functions are Linear
– Conjunctions:

• 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥3 ∧ 𝑥𝑥5
• 𝑦𝑦 = sgn 1 · 𝑥𝑥1 + 1 · 𝑥𝑥3 + 1 · 𝑥𝑥5 − 3 𝒘𝒘 = 1, 0, 1, 0, 1 𝜃𝜃 = 3

– At least m of n:
• 𝑦𝑦 = 𝑎𝑎𝑎𝑎 𝑘𝑘𝑒𝑒𝑎𝑎𝑙𝑙𝑎𝑎 2 𝑘𝑘𝑓𝑓 {𝑥𝑥1, 𝑥𝑥3, 𝑥𝑥5}
• 𝑦𝑦 = sgn 1 · 𝑥𝑥1 + 1 · 𝑥𝑥3 + 1 · 𝑥𝑥5 − 2 𝒘𝒘 = 1, 0, 1, 0, 1 𝜃𝜃 = 2

• Many functions are not
– Xor: 𝑦𝑦 = (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (¬𝑥𝑥1 ∧ ¬𝑥𝑥2)
– Non trivial DNF: 𝑦𝑦 = (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (𝑥𝑥3 ∧ 𝑥𝑥4)

• But can be made linear
• Note: all the variables above are Boolean variables

CIS 419/519 Fall’19 32

Linear Threshold Functions
𝑓𝑓(𝒙𝒙)= sgn 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃}

• Many functions are Linear
– Conjunctions:

• 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥3 ∧ 𝑥𝑥5
• 𝑦𝑦 = sgn 1 · 𝑥𝑥1 + 1 · 𝑥𝑥3 + 1 · 𝑥𝑥5 − 3 𝒘𝒘 = 1, 0, 1, 0, 1 𝜃𝜃 = 3

• In our Elimination Algorithm we started with:
– 𝒘𝒘 = (1, 1, 1, 1, 1,𝑛𝑛) and changed 𝑤𝑤𝑖𝑖 from 1 0 following a mistake

• In general, when learning linear functions, we will change 𝑤𝑤𝑖𝑖
more carefully
– 𝑦𝑦 = s𝑘𝑘𝑛𝑛{𝑤𝑤1 · 𝑥𝑥1 + 𝑤𝑤2 · 𝑥𝑥2 + 𝑤𝑤3 · 𝑥𝑥3 + 𝑤𝑤4 · 𝑥𝑥4 + 𝑤𝑤5 · 𝑥𝑥5 − 𝜃𝜃}

CIS 419/519 Fall’19 33

Representation
• Assume that you want to learn conjunctions. Should your hypothesis space be the class

of conjunctions?
– Theorem: Given a sample on 𝑛𝑛 attributes that is consistent with a conjunctive concept, it is NP-hard

to find a pure conjunctive hypothesis that is both consistent with the sample and has the minimum
number of attributes.

• [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning
Framework”]

• Same holds for Disjunctions.
• Intuition: Reduction to minimum set cover problem.

– Given a collection of sets that cover X, define a set of examples so that learning the best
(dis/conj)junction implies a minimal cover.

• Consequently, we cannot learn the concept efficiently as a (dis/con)junction.
• But, we will see that we can do that, if we are willing to learn the concept as a Linear

Threshold function.
• In a more expressive class, the search for a good hypothesis sometimes becomes

combinatorially easier.

CIS 419/519 Fall’19 34

𝒘𝒘𝑇𝑇 𝒙𝒙 = 0

- --- -
-

-
- -

- -

- -
-

-

𝒘𝒘𝑇𝑇 𝒙𝒙 = θ

𝒘𝒘

CIS 419/519 Fall’19 35

Canonical Representation
𝑓𝑓(𝒙𝒙)= sgn 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃}

• Note: sgn 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 = sgn{𝒘𝒘′𝑇𝑇 · 𝒙𝒙𝒙}
– Where 𝒙𝒙′ = (𝒙𝒙,−1) and 𝒘𝒘′ = (𝒘𝒘,𝜃𝜃)

• Moved from an 𝑛𝑛 dimensional representation to an (𝑛𝑛 + 1) dimensional representation, but now
can look for hyperplanes that go through the origin.

• Basically, that means that we learn both 𝒘𝒘 𝑎𝑎𝑛𝑛𝑎𝑎 𝜃𝜃

0x

1x 0x

1x

θ 𝐰𝐰′𝑇𝑇 � 𝐱𝐱’ = 0
𝐰𝐰𝑇𝑇 � 𝐱𝐱 = θ

CIS 419/519 Fall’19

Perceptron
Earlier:
• Talked about various learning

protocols & on algorithms for
conjunctions.

• Measured performance of algorithms in
terms of bounding the number of
mistakes that algorithm makes.

• Showed that in the case of a finite
concept class we will stop making
mistakes at some point (a “theoretical”
algorithm had log |𝐶𝐶| mistakes.

CIS 419/519 Fall’19 37

Perceptron learning rule
• On-line, mistake driven algorithm.
• Rosenblatt (1959) suggested that when a target output value

is provided for a single neuron with fixed input, it can
incrementally change weights and learn to produce the
output using the Perceptron learning rule

• (Perceptron == Linear Threshold Unit)

1
2

6

3
4
5

7

6w

1w

∑
T

y

1x

6x

CIS 419/519 Fall’19 38

Perceptron learning rule
• We learn 𝑓𝑓:𝑿𝑿 → 𝑌𝑌 = −1, +1 represented as 𝑓𝑓 = sgn{𝒘𝒘𝑇𝑇 · 𝒙𝒙}
• Where 𝑿𝑿 = {0, 1}𝑛𝑛 or 𝑿𝑿 = 𝑹𝑹𝑛𝑛 and 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛

• Given Labeled examples: { 𝒙𝒙1,𝑦𝑦1 , 𝒙𝒙2,𝑦𝑦2 , … 𝒙𝒙𝑚𝑚,𝑦𝑦𝑚𝑚 }

1. Initialize 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛

2. Cycle through all examples [multiple times]
a. Predict the label of instance 𝒙𝒙 to be y′ = sgn{𝒘𝒘𝑇𝑇 · 𝒙𝒙}

b. If 𝑦𝑦′ ≠ 𝑦𝑦, update the weight vector:

𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦𝒙𝒙 (𝑟𝑟 - a constant, learning rate)

Otherwise, if 𝑦𝑦′ = 𝑦𝑦, leave weights unchanged.

CIS 419/519 Fall’19 39

Perceptron in action

𝒘𝒘𝑻𝑻𝒙𝒙 = 0
Current
decision
boundary

𝒘𝒘
Current weight

vector

𝒙𝒙 (𝑤𝑤𝑖𝑖𝑎𝑎ℎ 𝑦𝑦 = +1)
next item to be classified

𝒙𝒙 as a vector

𝒙𝒙 as a vector added to 𝒘𝒘

𝒘𝒘𝑻𝑻𝒙𝒙 = 0
New

decision
boundary

𝒘𝒘
New weight vector

(Figures from Bishop 2006)
Positive

Negative

CIS 419/519 Fall’19 40

Perceptron in action

𝒘𝒘𝑻𝑻𝒙𝒙 = 0
Current
decision

boundary

𝒘𝒘
Current weight

vector

𝒙𝒙 (𝑤𝑤𝑖𝑖𝑎𝑎ℎ 𝑦𝑦 = +1)
next item to be

classified
𝒙𝒙 as a vector

𝒙𝒙 as a vector added
to 𝒘𝒘

𝒘𝒘𝑻𝑻𝒙𝒙 = 0
New

decision
boundary

𝒘𝒘
New weight

vector

(Figures from Bishop 2006)
Positive
Negative

CIS 419/519 Fall’19 41

Perceptron learning rule
• If 𝒙𝒙 is Boolean, only weights of active features are updated
• Why is this important?

• 𝒘𝒘𝑇𝑇 · 𝒙𝒙 > 0 is equivalent to: 𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 = 1
1+𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

> 1
2

1. Initialize 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛

2. Cycle through all examples [multiple times]
a. Predict the label of instance 𝒙𝒙 to be y′ = sgn{𝒘𝒘𝑇𝑇 · 𝒙𝒙}

b. If 𝑦𝑦′ ≠ 𝑦𝑦, update the weight vector:

𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦𝒙𝒙 (𝑟𝑟 - a constant, learning rate)

Otherwise, if 𝑦𝑦′ = 𝑦𝑦, leave weights unchanged.

CIS 419/519 Fall’19 42

Perceptron Learnability
• Obviously can’t learn what it can’t represent (???)

– Only linearly separable functions
• Minsky and Papert (1969) wrote an influential book demonstrating

Perceptron’s representational limitations
– Parity functions can’t be learned (XOR)
– In vision, if patterns are represented with local features, can’t represent

symmetry, connectivity
• Research on Neural Networks stopped for years

• Rosenblatt himself (1959) asked,
– “What pattern recognition problems can be transformed so as to become

linearly separable?”

• Perceptron

CIS 419/519 Fall’19 43

(𝑥𝑥1∧ 𝑥𝑥2) ∨ (𝑥𝑥3 ∧ 𝑥𝑥4)

𝑦𝑦1 ∧ 𝑦𝑦2

CIS 419/519 Fall’19 44

Perceptron Convergence
– Perceptron Convergence Theorem:

• If there exist a set of weights that are consistent with the data (i.e., the
data is linearly separable), the perceptron learning algorithm will
converge

• How long would it take to converge ?
– Perceptron Cycling Theorem:

• If the training data is not linearly separable the perceptron learning
algorithm will eventually repeat the same set of weights and therefore
enter an infinite loop.

• How to provide robustness, more expressivity ?

CIS 419/519 Fall’19 45

Perceptron
Input set of examples and their labels

Ζ = 𝒙𝒙1,𝑦𝑦1 , … 𝒙𝒙𝑚𝑚,𝑦𝑦𝑚𝑚 ∈ 𝑹𝑹𝑛𝑛 × −1,1 𝑚𝑚, 𝜂𝜂,𝜃𝜃𝐼𝐼𝑛𝑛𝑖𝑖𝑡𝑡
• Initialize 𝒘𝒘 ← 0 and 𝜃𝜃 ← 𝜃𝜃𝐼𝐼𝑛𝑛𝑖𝑖𝑡𝑡
• For every training epoch:
• for every 𝒙𝒙𝑗𝑗 ∈ 𝑿𝑿:

– �𝑦𝑦 ← 𝑙𝑙𝑖𝑖𝑘𝑘𝑛𝑛 < 𝒘𝒘,𝒙𝒙𝑗𝑗 > −𝜃𝜃
– If �𝑦𝑦 ≠ 𝑦𝑦𝑗𝑗

• 𝒘𝒘 ← 𝒘𝒘 + 𝜂𝜂y𝑗𝑗𝒙𝒙𝑗𝑗
• 𝜃𝜃 ← 𝜃𝜃 + 𝜂𝜂𝑦𝑦𝑗𝑗

Just to make sure we understand
that we learn both 𝒘𝒘 and 𝜃𝜃

CIS 419/519 Fall’19 46

Perceptron: Mistake Bound Theorem
• Maintains a weight vector 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛, 𝒘𝒘0 = (0, … , 0).
• Upon receiving an example 𝒙𝒙 ∈ 𝑹𝑹𝑛𝑛

• Predicts according to the linear threshold function 𝒘𝒘𝑇𝑇 · 𝒙𝒙 ≥ 0.
• Theorem [Novikoff,1963]

– Let (𝒙𝒙1,𝑦𝑦1), … , (𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡) be a sequence of labeled examples with 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑛𝑛,
||𝒙𝒙𝑖𝑖|| ≤ 𝑅𝑅 and yi ∈ {−1, 1} for all i. Let 𝒖𝒖 ∈ 𝑹𝑹𝑛𝑛, 𝛾𝛾 > 0 be such that,
|𝒖𝒖| = 1 and 𝑦𝑦𝑖𝑖𝒖𝒖𝑇𝑇 · 𝒙𝒙𝑖𝑖 ≥ 𝛾𝛾 for all 𝑖𝑖

• Then Perceptron makes at most 𝑅𝑅
2

𝛾𝛾2
mistakes on this example

sequence.
• (see additional notes)

Complexity Parameter

CIS 419/519 Fall’19 47

Perceptron-Mistake Bound

Assumptions

�̅�𝑣1 = 𝟎𝟎
| �𝑢𝑢 | = 𝟏𝟏

𝑦𝑦𝑖𝑖 �𝑢𝑢𝑇𝑇 • �̅�𝑥𝑖𝑖 ≥ γ

𝑘𝑘 < 𝑅𝑅2 / γ 2

1. Note that the bound does not
depend on the dimensionality
nor on the number of examples.

2. Note that we place weight vectors
and examples in the same space.

3. Interpretation of the theorem

CIS 419/519 Fall’19 48

Robustness to Noise
• In the case of non-separable data , the extent to which a data point fails to

have margin 𝛾𝛾 via the hyperplane 𝒘𝒘 can be quantified by a slack variable
𝜉𝜉𝑖𝑖 = max(0, 𝛾𝛾 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖)

• Observe that when 𝜉𝜉𝑖𝑖 = 0, the example 𝒙𝒙𝑖𝑖 has margin at least 𝛾𝛾.
Otherwise, it grows linearly with −𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖

• Denote: 𝐷𝐷2 = [∑{𝜉𝜉𝑖𝑖}2]
1
2

• Theorem:
– The perceptron is guaranteed to make

no more than (𝑅𝑅+𝐷𝐷2
𝛾𝛾

)2 mistakes on
any sequence of examples satisfying ||𝒙𝒙𝑖𝑖||2 < 𝑅𝑅

• Perceptron is expected to have some robustness to noise.

- --- -
-
-- -- -

- -
-

-

CIS 419/519 Fall’19 49

Perceptron for Boolean Functions
• How many mistakes will the Perceptron algorithms make when learning

a 𝑘𝑘-disjunction?
• Try to figure out the bound
• Find a sequence of examples that will cause Perceptron to make 𝑂𝑂(𝑛𝑛)

mistakes on 𝑘𝑘-disjunction on 𝑛𝑛 attributes.
• (Where is 𝑛𝑛 coming from?)
• Recall that halving suggested the possibility of a better bound –
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑛𝑛)

• This can be achieved by Winnow
– A multiplicative update algorithm [Littlestone’88]
– See HW2

CIS 419/519 Fall’19 50

Practical Issues and Extensions
• There are many extensions that can be made to these basic algorithms.
• Some are necessary for them to perform well

– Regularization (next; will be motivated in the next section, COLT)
• Some are for ease of use and tuning

– Converting the output of a Perceptron/Winnow to a conditional probability

𝑃𝑃 𝑦𝑦 = +1 𝒙𝒙 =
1

1 + 𝑒𝑒−𝐴𝐴𝒘𝒘𝑇𝑇𝒙𝒙
– The parameter 𝐴𝐴 can be tuned on a development set

• Multiclass classification (later)
• Key efficiency issue: Infinite attribute domain

– Sparse representation of the input

CIS 419/519 Fall’19 52

Regularization Via Averaged Perceptron
• An Averaged Perceptron Algorithm is motivated by the following considerations:

– In real life, we want [more] guarantees from our learning algorithm
– In the mistake bound model:

• We don’t know when we will make the mistakes.
• In a sequential/on-line scenario, which hypothesis will you choose…??
• Being consistent with more examples is better (why?)

– Ideally, we want to quantify the expected performance as a function of the number of examples seen
and not number of mistakes. (“a global guarantee”; the PAC model does that)

– Every Mistake-Bound Algorithm can be converted efficiently to a PAC algorithm – to yield global
guarantees on performance.

• To convert a given Mistake Bound algorithm (into a global guarantee algorithm):
– Wait for a long stretch w/o mistakes (there must be one)
– Use the hypothesis at the end of this stretch.
– Its PAC behavior is relative to the length of the stretch.

• Averaged Perceptron returns a weighted average of earlier hypotheses; the weights are
a function of the length of no-mistakes stretch.

CIS 419/519 Fall’19

Regularization Via Averaged Perceptron
• Variables:

– 𝑚𝑚: number of examples
– 𝑘𝑘: number of mistakes
– 𝑐𝑐𝑖𝑖: consistency count for hypothesis 𝒗𝒗𝑖𝑖
– 𝑇𝑇: number of epochs

• Input: a labeled training { 𝒙𝒙1,𝑦𝑦1 , 𝒙𝒙2,𝑦𝑦2 , … 𝒙𝒙𝑚𝑚,𝑦𝑦𝑚𝑚 }
• Output: a list of weighted perceptrons { 𝒗𝒗1, 𝑐𝑐1 , … , 𝒗𝒗𝑘𝑘 , 𝑐𝑐𝑘𝑘 }
• Initialize: 𝑘𝑘 = 0,𝒗𝒗1 = 0, 𝑐𝑐1 = 0
• Repeat 𝑇𝑇 times:

– For 𝑖𝑖 = 1, … ,𝑚𝑚;
– Compute prediction 𝑦𝑦′ = sgn(𝒗𝒗𝑘𝑘𝑇𝑇 · 𝒙𝒙𝑖𝑖)
– If 𝑦𝑦′ = 𝑦𝑦, then 𝑐𝑐𝑘𝑘 = 𝑐𝑐𝑘𝑘 + 1

else: 𝒗𝒗𝑘𝑘+1 = 𝒗𝒗𝑘𝑘 + 𝑦𝑦𝑖𝑖𝒙𝒙; 𝑐𝑐𝑘𝑘+1 = 1; 𝑘𝑘 = 𝑘𝑘 + 1
• Prediction:

– Given: a list of weighted perceptrons { 𝒗𝒗𝟏𝟏, 𝑐𝑐1 , … , 𝒗𝒗𝒌𝒌, 𝑐𝑐𝑘𝑘 }; a new example x
– Predict the label (𝑥𝑥) as follows: 𝑦𝑦 𝒙𝒙 = sgn[∑1𝑘𝑘 𝑐𝑐𝑖𝑖(𝒗𝒗𝑖𝑖𝑇𝑇𝒙𝒙)]

• This can be done on top of any online
mistake driven algorithm.

• In HW 2 you will run it over three
different algorithms.

• The implementation requires thinking.

Averaged version of Perceptron/Winnow is as
good as any other linear learning algorithm, if not
better.

CIS 419/519 Fall’19

• Thick Separator (aka as Perceptron with Margin)
(Applies both for Perceptron and Winnow)

• Promote weights if:
– 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 < 𝛾𝛾

• Demote weights if:
– 𝒘𝒘𝑇𝑇 · 𝒙𝒙 − 𝜃𝜃 > 𝛾𝛾

Note: γ is a functional margin. Its effect could disappear as 𝒘𝒘 grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.(Grove & Roth 98,01; Karov et. al 97)

54

Perceptron with Margin

𝒘𝒘𝑇𝑇 · 𝒙𝒙 = 0

- --- -
-
-
- -

- -

- -
-

-

𝒘𝒘𝑇𝑇 · 𝒙𝒙 = 𝜃𝜃

CIS 419/519 Fall’19 55

Other Extensions
• Assume you made a mistake on example 𝒙𝒙.
• You then see example 𝒙𝒙 again; will you make a mistake on it?
• Threshold relative updating (Aggressive Perceptron)
• 𝒘𝒘 ← 𝒘𝒘 + 𝑟𝑟𝒙𝒙

• 𝑟𝑟 = 𝜃𝜃−𝒘𝒘𝑇𝑇 𝒙𝒙

𝒙𝒙 2

• Equivalent to updating on the same example multiple times

CIS 419/519 Fall’19 56

LBJava
• Several of these extensions (and a couple more) are implemented in the

LBJava learning architecture that supports several linear update rules
(Winnow, Perceptron, naïve Bayes)

• Supports
– Regularization(averaged Winnow/Perceptron; Thick Separator)
– Conversion to probabilities
– Automatic parameter tuning
– True multi-class classification
– Feature Extraction and Pruning
– Variable size examples
– Good support for large scale domains in terms of number of examples and number of

features.
– Very efficient
– Many other options

• [Download from: http://cogcomp.org/page/software/]

CIS 419/519 Fall’19 57

Administration
• No class on Wednesday (Yom Kippur)
• I will not have an office hour on Tuesday
• My office hour today is 6-7 (instead of 5-6)

• Hw1: due today
• HW2: will be out tonight

– Started working on it early
– Recall: this is an Applied Machine Learning class.
– The HW will try to simulate challenges you might face when you want to apply ML.
– HW2 will emphasize, in addition to understanding a few algorithms,

• How algorithms differ
• Scaling to realistic problem sizes: the importance of thinking about your implementation
• Adaptation

– Allow you to experience various ML scenarios and make observations that are best experienced
when you play with it yourself.

Questions

CIS 419/519 Fall’19 58

Perceptron learning rule
• If 𝒙𝒙 is Boolean, only weights of active features are updated
• Why is this important?

• 𝒘𝒘𝑇𝑇 · 𝒙𝒙 > 0 is equivalent to: 𝑃𝑃 𝑦𝑦 = +1 𝑥𝑥 = 1
1+𝑒𝑒−𝑤𝑤𝑇𝑇𝑥𝑥

> 1
2

1. Initialize 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛

2. Cycle through all examples [multiple times]
a. Predict the label of instance 𝒙𝒙 to be y′ = sgn{𝒘𝒘𝑇𝑇 · 𝒙𝒙}

b. If 𝑦𝑦′ ≠ 𝑦𝑦, update the weight vector:

𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦𝒙𝒙 (𝑟𝑟 - a constant, learning rate)

Otherwise, if 𝑦𝑦′ = 𝑦𝑦, leave weights unchanged.

CIS 419/519 Fall’19

Regularization Via Averaged Perceptron
• Variables:

– 𝑚𝑚: number of examples
– 𝑘𝑘: number of mistakes
– 𝑐𝑐𝑖𝑖: consistency count for hypothesis 𝒗𝒗𝑖𝑖
– 𝑇𝑇: number of epochs

• Input: a labeled training { 𝒙𝒙1,𝑦𝑦1 , 𝒙𝒙2,𝑦𝑦2 , … 𝒙𝒙𝑚𝑚,𝑦𝑦𝑚𝑚 }
• Output: a list of weighted perceptrons { 𝒗𝒗1, 𝑐𝑐1 , … , 𝒗𝒗𝑘𝑘 , 𝑐𝑐𝑘𝑘 }
• Initialize: 𝑘𝑘 = 0,𝒗𝒗1 = 0, 𝑐𝑐1 = 0
• Repeat 𝑇𝑇 times:

– For 𝑖𝑖 = 1, … ,𝑚𝑚;
– Compute prediction 𝑦𝑦′ = sgn(𝒗𝒗𝑘𝑘𝑇𝑇 · 𝒙𝒙𝑖𝑖)
– If 𝑦𝑦′ = 𝑦𝑦, then 𝑐𝑐𝑘𝑘 = 𝑐𝑐𝑘𝑘 + 1

else: 𝒗𝒗𝑘𝑘+1 = 𝒗𝒗𝑘𝑘 + 𝑦𝑦𝑖𝑖𝒙𝒙; 𝑐𝑐𝑘𝑘+1 = 1; 𝑘𝑘 = 𝑘𝑘 + 1
• Prediction:

– Given: a list of weighted perceptrons { 𝒗𝒗𝟏𝟏, 𝑐𝑐1 , … , 𝒗𝒗𝒌𝒌, 𝑐𝑐𝑘𝑘 }; a new example x
– Predict the label (𝑥𝑥) as follows: 𝑦𝑦 𝒙𝒙 = sgn[∑1𝑘𝑘 𝑐𝑐𝑖𝑖(𝒗𝒗𝑖𝑖𝑇𝑇𝒙𝒙)]

• This can be done on top of any online
mistake driven algorithm.

• In HW 2 you will run it over three
different algorithms.

• The implementation requires thinking.

Averaged version of Perceptron/Winnow is as
good as any other linear learning algorithm, if not
better.

CIS 419/519 Fall’19

The loss Q: a
function of 𝒙𝒙,𝒘𝒘 and 𝑦𝑦

60

General Stochastic Gradient Algorithms

• Given examples 𝑧𝑧 = 𝒙𝒙,𝑦𝑦 1,𝑚𝑚 from a distribution over 𝑋𝑋 × 𝑌𝑌, we
are trying to learn a linear function, parameterized by a weight
vector 𝒘𝒘, so that we minimize the expected risk function

𝐽𝐽 𝒘𝒘 = 𝐸𝐸𝑧𝑧𝑄𝑄(𝒛𝒛,𝒘𝒘)~=~ 1
𝑚𝑚
∑1𝑚𝑚𝑄𝑄(𝒛𝒛𝑖𝑖 ,𝒘𝒘𝑖𝑖)

• In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 − 𝑟𝑟𝑡𝑡𝒈𝒈𝑤𝑤𝑄𝑄 𝒛𝒛𝑡𝑡 ,𝒘𝒘𝑡𝑡 = 𝒘𝒘𝑡𝑡 − 𝑟𝑟𝑡𝑡𝒈𝒈𝑡𝑡
– Where 𝒈𝒈𝑡𝑡 = 𝒈𝒈𝒘𝒘𝑄𝑄 𝒛𝒛𝑡𝑡 ,𝒘𝒘𝑡𝑡 is the gradient with respect to 𝒘𝒘 at time 𝑎𝑎.

• The difference between algorithms now amounts to choosing a
different loss function 𝑄𝑄(𝒛𝒛,𝒘𝒘)

CIS 419/519 Fall’19 61

General Stochastic Gradient Algorithms
𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 – 𝑟𝑟𝑡𝑡 𝒈𝒈𝒘𝒘 𝑄𝑄(𝒙𝒙𝑡𝑡,𝑦𝑦𝑡𝑡 ,𝒘𝒘𝑡𝑡) = 𝒘𝒘𝑡𝑡 – 𝑟𝑟𝑡𝑡 𝒈𝒈𝑡𝑡

– LMS: 𝑄𝑄 𝒙𝒙,𝑦𝑦 ,𝒘𝒘 = 1
2
𝑦𝑦 – 𝒘𝒘𝑇𝑇 𝒙𝒙 2

– Computing the gradient leads to the update rule (Also called Widrow’s Adaline):
𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 + 𝑟𝑟 𝑦𝑦𝑡𝑡 –𝒘𝒘𝑡𝑡

𝑇𝑇𝒙𝒙𝑡𝑡 𝒙𝒙𝑡𝑡
– Here, even though we make binary predictions based on 𝒔𝒔𝒈𝒈𝒔𝒔(𝒘𝒘𝑻𝑻 𝒙𝒙) we do not take the sign of the

dot-product into account in the loss.

– Another common loss function is:
– Hinge loss:

𝑄𝑄((𝒙𝒙,𝑦𝑦),𝒘𝒘) = max(0, 1 − 𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙)
– Computing the gradient leads to the perceptron update rule:
– g = 0 if If 𝑦𝑦𝑖𝑖 � 𝒘𝒘𝑖𝑖

𝑇𝑇 𝒙𝒙𝑖𝑖 > 1 ; otherwise, g = - y 𝒙𝒙

– If 𝑦𝑦𝑖𝑖 � 𝒘𝒘𝑖𝑖
𝑇𝑇 𝒙𝒙𝑖𝑖 > 1 (No mistake, by a margin): No update

– Otherwise, (Mistake, relative to margin): 𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 + 𝑟𝑟 𝑦𝑦𝑡𝑡 𝒙𝒙𝑡𝑡

𝑦𝑦𝒘𝒘𝑇𝑇 𝒙𝒙

The loss Q: a function of 𝒙𝒙,𝒘𝒘 and 𝑦𝑦Learning rate gradient

Here 𝒈𝒈 = −𝑦𝑦𝒙𝒙
Good to think about the
case of Boolean examples

CIS 419/519 Fall’19 62

New Stochastic Gradient Algorithms
𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 – 𝑟𝑟𝑡𝑡 𝒈𝒈𝒘𝒘 𝑄𝑄(𝒛𝒛𝑡𝑡 ,𝒘𝒘𝑡𝑡) = 𝒘𝒘𝑡𝑡 – 𝑟𝑟𝑡𝑡 𝒈𝒈𝑡𝑡

(notice that this is a vector, each coordinate (feature) has its own 𝑤𝑤𝑡𝑡,𝑗𝑗 and 𝑘𝑘𝑡𝑡,𝑗𝑗)

– So far, we used fixed learning rates 𝑟𝑟 = 𝑟𝑟𝑡𝑡, but this can change.
– AdaGrad alters the update to adapt based on historical information

• Frequently occurring features in the gradients get small learning rates and infrequent features get
higher ones.

• The idea is to “learn slowly” from frequent features but “pay attention” to rare but informative
features.

– Define a “per feature” learning rate for the feature 𝑗𝑗, as:
𝑟𝑟𝑡𝑡,𝑗𝑗 = 𝑟𝑟/ 𝐺𝐺𝑡𝑡,𝑗𝑗

1/2

– where 𝐺𝐺𝑡𝑡,𝑗𝑗 = ∑𝑘𝑘=1
𝑡𝑡 𝑘𝑘𝑘𝑘,𝑗𝑗

2 the sum of squares of gradients at feature 𝑗𝑗 until time 𝑎𝑎.
– Overall, the update rule for Adagrad is:

𝑤𝑤𝑡𝑡+1,𝑗𝑗 = 𝑤𝑤𝑡𝑡,𝑗𝑗 − 𝑘𝑘𝑡𝑡,𝑗𝑗 𝑟𝑟/ 𝐺𝐺𝑡𝑡,𝑗𝑗
1/2

– This algorithm is supposed to update weights faster than Perceptron or LMS when needed.

Easy to think about the case of
Perceptron, and on Boolean

examples.

CIS 419/519 Fall’19 63

Preventing Overfitting

h1 h2

CIS 419/519 Fall’19 64

Regularization
• The more general formalism adds a regularization term to the risk function, and minimize:

𝐽𝐽 𝒘𝒘 = 1
𝑚𝑚
∑1
𝑚𝑚 𝑄𝑄(𝒛𝒛𝑖𝑖 ,𝒘𝒘𝑖𝑖) + 𝜆𝜆 𝑅𝑅𝑖𝑖 (𝒘𝒘𝑖𝑖)

• Where 𝑅𝑅 is used to enforce “simplicity” of the learned functions.

• LMS case: 𝑄𝑄((𝒙𝒙,𝑦𝑦),𝒘𝒘) = 𝑦𝑦 – 𝒘𝒘𝑇𝑇 𝒙𝒙 2

– 𝑅𝑅(𝒘𝒘) = 𝒘𝒘 2
2

gives the optimization problem called Ridge Regression.
– 𝑅𝑅(𝒘𝒘) = 𝒘𝒘 1 gives a problem called the LASSO problem

• Hinge Loss case: 𝑄𝑄((𝒙𝒙,𝑦𝑦),𝒘𝒘) = max(0, 1 − 𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙)
– 𝑅𝑅(𝒘𝒘) = 𝒘𝒘 2

2
gives the problem called Support Vector Machines

• Logistics Loss case:𝑄𝑄((𝒙𝒙,𝑦𝑦),𝒘𝒘) = log(1 + exp{−𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙})
– 𝑅𝑅(𝒘𝒘) = 𝒘𝒘 2

2
gives the problem called Logistics Regression

• These are convex optimization problems and, in principle, the same gradient descent mechanism can be used in
all cases.

• We will see later why it makes sense to use the “size” of w as a way to control “simplicity”.

CIS 419/519 Fall’19 65

Algorithmic Approaches
• Focus: Two families of algorithms (one of the on-line

representative)
– Additive update algorithms: Perceptron

• SVM is a close relative of Perceptron
– Multiplicative update algorithms: Winnow

• Close relatives: Boosting, Max entropy/Logistic Regression

CIS 419/519 Fall’19 66

Summary of Algorithms
• Examples: 𝒙𝒙 ∈ 0,1 𝑛𝑛; or 𝒙𝒙 ∈ 𝑹𝑹𝑛𝑛 (indexed by 𝑘𝑘) ; Hypothesis: 𝒘𝒘 ∈ 𝑹𝑹𝑛𝑛
• Prediction: 𝑦𝑦 ∈ {−1, +1}: Predict: 𝑦𝑦 = 1 iff 𝒘𝒘 ⋅ 𝒙𝒙 > 𝜃𝜃
• Update: Mistake Driven
• Additive weight update algorithm: 𝒘𝒘 𝒘𝒘 + 𝑟𝑟 𝑦𝑦𝑘𝑘 𝒙𝒙𝑘𝑘

– (Perceptron, Rosenblatt, 1958. Variations exist)
– In the case of Boolean features:

• Multiplicative weight update algorithm 𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖 𝛼𝛼
𝑦𝑦𝑘𝑘𝑥𝑥𝑖𝑖 (component-wise update)

• (Winnow, Littlestone, 1988. Variations exist)
– Boolean features: (as an example, 𝛼𝛼=2)

𝐼𝐼𝑓𝑓 𝐶𝐶𝑘𝑘𝑎𝑎𝑙𝑙𝑙𝑙 = 1 𝑏𝑏𝑢𝑢𝑎𝑎 𝒘𝒘 ⋅ 𝒙𝒙 ≤ 𝜃𝜃,𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 + 1 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 = 1 𝑝𝑝𝑟𝑟𝑘𝑘𝑚𝑚𝑘𝑘𝑎𝑎𝑖𝑖𝑘𝑘𝑛𝑛
𝐼𝐼𝑓𝑓 𝐶𝐶𝑘𝑘𝑎𝑎𝑙𝑙𝑙𝑙 = 0 𝑏𝑏𝑢𝑢𝑎𝑎 𝒘𝒘 ⋅ 𝒙𝒙 ≥ 𝜃𝜃,𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 − 1 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 = 1 𝑎𝑎𝑒𝑒𝑚𝑚𝑘𝑘𝑎𝑎𝑖𝑖𝑘𝑘𝑛𝑛

𝐼𝐼𝑓𝑓 𝐶𝐶𝑘𝑘𝑎𝑎𝑙𝑙𝑙𝑙 = 1 𝑏𝑏𝑢𝑢𝑎𝑎 𝒘𝒘 ⋅ 𝒙𝒙 ≤ 𝜃𝜃,𝑤𝑤𝑖𝑖 ← 2𝑤𝑤𝑖𝑖 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 = 1 𝑝𝑝𝑟𝑟𝑘𝑘𝑚𝑚𝑘𝑘𝑎𝑎𝑖𝑖𝑘𝑘𝑛𝑛
𝐼𝐼𝑓𝑓 𝐶𝐶𝑘𝑘𝑎𝑎𝑙𝑙𝑙𝑙 = 0 𝑏𝑏𝑢𝑢𝑎𝑎 𝒘𝒘 ⋅ 𝒙𝒙 ≥ 𝜃𝜃,𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖/2 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 = 1 𝑎𝑎𝑒𝑒𝑚𝑚𝑘𝑘𝑎𝑎𝑖𝑖𝑘𝑘𝑛𝑛

CIS 419/519 Fall’19 67

Which algorithm is better? How to Compare?
• Generalization

– Since we deal with linear learning algorithms, we know (???) that they will all
converge eventually to a perfect representation.

• All can represent the data
• So, how do we compare:

– How many examples are needed to get to a given level of accuracy?
– Efficiency: How long does it take to learn a hypothesis and evaluate it (per-

example)?
– Robustness (to noise);
– Adaptation to a new domain, ….

• With (1) being the most fundamental question:
– Compare as a function of what?

• One key issue is the characteristics of the data

CIS 419/519 Fall’19 68

Sentence Representation
𝑆𝑆 = I don’t know whether to laugh or cry

• Define a set of features:
– features are relations that hold in the sentence

• Map a sentence to its feature-based representation
– The feature-based representation will give some of the information in

the sentence

• Use this feature-based representation as an example to your
algorithm

CIS 419/519 Fall’19 69

Sentence Representation
𝑆𝑆 = I don’t know whether to laugh or cry

• Define a set of features:
– features are properties that hold in the sentence

• Conceptually, there are two steps in coming up with a feature-
based representation
– What are the information sources available?

• Sensors: words, order of words, properties (?) of words
– What features to construct based on these?

Why is this distinction needed?

CIS 419/519 Fall’19 70

Blow Up Feature Space

Weather

Whether

New discriminator in functionally simpler

𝑥𝑥1𝑥𝑥2𝑥𝑥3 ∨ 𝑥𝑥1𝑥𝑥4𝑥𝑥3 ∨ 𝑥𝑥3𝑥𝑥2𝑥𝑥5

𝑦𝑦1 ∨ 𝑦𝑦4 ∨ 𝑦𝑦5

CIS 419/519 Fall’19 71

Domain Characteristics
• The number of potential features is very large
• The instance space is sparse
• Decisions depend on a small set of features: the function

space is sparse
• Want to learn from a number of examples that is small

relative to the dimensionality

CIS 419/519 Fall’19 72

Generalization
• Dominated by the sparseness of the function space

– Most features are irrelevant

• # of examples required by multiplicative algorithms depends
mostly on # of relevant features
– (Generalization bounds depend on the target ||𝒖𝒖||)

• # of examples required by additive algorithms depends heavily on
sparseness of features space:
– Advantage to additive. Generalization depend on input ||𝒙𝒙||

• (Kivinen/Warmuth 95).
• Nevertheless, today most people use additive algorithms.

CIS 419/519 Fall’19 73

Which Algorithm to Choose?
• Generalization (in terms of # of mistakes made)

– Multiplicative algorithms:
• Bounds depend on ||𝑢𝑢||, the separating hyperplane; 𝑖𝑖: example #)

• 𝑀𝑀𝑤𝑤 = 2 ln 𝑛𝑛 𝑢𝑢 1
2 max

𝑖𝑖
𝑥𝑥 𝑖𝑖

∞

2
/ min

𝑖𝑖
𝑢𝑢 𝑥𝑥 𝑖𝑖 2

• Do not care much about data; advantage with sparse target 𝑢𝑢

– Additive algorithms:
• Bounds depend on ||𝑥𝑥|| (Kivinen / Warmuth, ‘95)

• 𝑀𝑀𝑝𝑝 = 𝑢𝑢 2
2 max

𝑖𝑖
𝑥𝑥 𝑖𝑖

2

2
/ min

𝑖𝑖
𝑢𝑢 𝑥𝑥 𝑖𝑖 2

• Advantage with few active features per example

The 𝑘𝑘1 norm: 𝑥𝑥 1 = ∑𝑖𝑖 |𝑥𝑥𝑖𝑖| The 𝑘𝑘2 norm: 𝑥𝑥 2(∑1𝑛𝑛 𝑥𝑥𝑖𝑖 2)1/2

The 𝑘𝑘𝑝𝑝 norm: ||𝑥𝑥||𝑝𝑝 = (∑1𝑛𝑛 𝑥𝑥𝑖𝑖 𝑝𝑝)1/𝑝𝑝 The 𝑘𝑘∞ norm: 𝑥𝑥 ∞ = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖
|𝑥𝑥𝑖𝑖|

CIS 419/519 Fall’19 74

Examples
• Extreme Scenario 1: Assume the 𝑢𝑢 has exactly 𝑘𝑘 active features, and the

other 𝑛𝑛 − 𝑘𝑘 are 0. That is, only 𝑘𝑘 input features are relevant to the
prediction. Then:

• 𝑢𝑢 2, = 𝑘𝑘 ; 𝑢𝑢 1, = 𝑘𝑘 ; max 𝑥𝑥 2′ = 𝑛𝑛 ; max 𝑥𝑥 ∞ , = 1

• We get that: 𝑀𝑀𝑝𝑝 = 𝑘𝑘𝑛𝑛; 𝑀𝑀𝑤𝑤 = 2𝑘𝑘2 ln𝑛𝑛
• Therefore, if 𝑘𝑘 << 𝑛𝑛, Winnow behaves much better.

• Extreme Scenario 2: Now assume that 𝑢𝑢 = (1, 1, … .1) and the instances are
very sparse, the rows of an 𝑛𝑛 × 𝑛𝑛 unit matrix. Then:

• 𝑢𝑢 2, = 𝑛𝑛 ; 𝑢𝑢 1, = 𝑛𝑛 ; max 𝑥𝑥 2 , = 1 ; max 𝑥𝑥 ∞ , = 1

• We get that: 𝑀𝑀𝑝𝑝 = 𝑛𝑛; 𝑀𝑀𝑤𝑤 = 2𝑛𝑛2 ln𝑛𝑛
• Therefore, Perceptron has a better bound.

𝑀𝑀𝑤𝑤 = 2 ln𝑛𝑛 𝑢𝑢 1
2

max
𝑖𝑖

𝑥𝑥 𝑖𝑖
∞

2
/ min

𝑖𝑖
𝑢𝑢 𝑥𝑥 𝑖𝑖 2

𝑀𝑀𝑝𝑝 = 𝑢𝑢 2
2

max
𝑖𝑖

𝑥𝑥 𝑖𝑖
2

2
/ min

𝑖𝑖
𝑢𝑢 𝑥𝑥 𝑖𝑖 2

CIS 419/519 Fall’19 75

`

Function: At least 10 out of
fixed 100 variables are active
Dimensionality is 𝑛𝑛

Perceptron,SVMs

𝑛𝑛: Total # of Variables (Dimensionality)

Winnow

Mistakes bounds for 10 of 100 of 𝑛𝑛

of

 m
ist

ak
es

 t
o

co
nv

er
ge

nc
e

HW2

CIS 419/519 Fall’19

A term that forces
simple hypothesis

A term that minimizes error on the
training data

76

Summary

- ---- -
-- -- -

- - -
- 𝑤𝑤𝑇𝑇 𝑥𝑥 = 𝜃𝜃

• Introduced multiple versions of on-line algorithms
• Most turned out to be Stochastic Gradient Algorithms

– For different loss functions
• Some turned out to be mistake driven

• We suggested generic improvements via:
– Regularization via adding a term that forces a “simple hypothesis”
– 𝐽𝐽(𝒘𝒘) = ∑1, 𝑚𝑚

𝑄𝑄(𝑧𝑧𝑖𝑖 ,𝑤𝑤𝑖𝑖) + 𝜆𝜆 𝑅𝑅𝑖𝑖 (𝑤𝑤𝑖𝑖)
– Regularization via the Averaged Trick

• “Stability” of a hypothesis is related to its ability to generalize
– An improved, adaptive, learning rate (Adagrad)

• Dependence on function space and the instance space properties.
• Now:

– A way to deal with non-linear target functions (Kernels)
– Beginning of Learning Theory.

CIS 419/519 Fall’19 77

Efficiency
• Dominated by the size of the feature space
• Most features are functions (e.g. conjunctions) of raw attributes

• Additive algorithms allow the use of Kernels
– No need to explicitly generate complex features

• Could be more efficient since work is done in the original feature
space, but expressivity is a function of the kernel expressivity.

𝑓𝑓 𝒙𝒙 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝐾𝐾(𝒙𝒙, 𝑥𝑥𝑖𝑖)

𝑋𝑋 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑘𝑘 ← 𝑋𝑋 𝜒𝜒1 𝒙𝒙 , 𝜒𝜒2 𝒙𝒙 ,𝜒𝜒3 𝒙𝒙 , … ,𝜒𝜒𝑛𝑛 𝒙𝒙 𝑛𝑛 ≫ 𝑘𝑘

CIS 419/519 Fall’19 78

Administration
• Hw2 is due next week; 10/21.

– You should have started working on it already…

• The midterm is on October 28. In class.
– 4-5 questions
– Covering all the material discussed in class, HWs and quizzes.

• Project proposals are due on October 25th.
– Poster session will probably be on the last day of classes.

• Recall that our Final exam is on the last day of the Finals. Plan accordingly.

Questions

CIS 419/519 Fall’19 79

Projects
• https://www.seas.upenn.edu/~cis519/fall2019/project.html
• CIS 519 students need to do a team project

– Teams will be of size 3-4
• Projects proposals are due on Friday 10/25/19

– Details will be available on the website
– We will give comments and/or requests to modify / augment/ do a different project.
– There may also be a mechanism for peer comments.

• Please start thinking and working on the project now.
– Your proposal is limited to 1 page, but needs to include references and, ideally, some preliminary

results/ideas. It should look like a paper – use latex, bibtex.
• Any project with a significant Machine Learning component is good.

– Experimental work, theoretical work, a combination of both or a critical survey of results in some
specialized topic.

– The work has to include some reading of the literature .
– Originality is not mandatory but is encouraged.

• Try to make it interesting!

https://www.seas.upenn.edu/%7Ecis519/fall2019/project.html

CIS 419/519 Fall’19 80

Functions Can be Made Linear
• Data are not linearly separable in one dimension
• Not separable if you insist on using a specific class of

functions

𝒙𝒙

CIS 419/519 Fall’19 81

Blown Up Feature Space
• Data are separable in < 𝒙𝒙,𝒙𝒙2 > space

𝒙𝒙

𝒙𝒙2

CIS 419/519 Fall’19 82

Making data linearly separable

𝑓𝑓 𝒙𝒙 = 1 iff 𝑥𝑥1
2 + 𝑥𝑥2

2 ≤ 1
𝑥𝑥1

𝑥𝑥2

CIS 419/519 Fall’19 83

Making data linearly separable

Transform data: 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2 → 𝒙𝒙𝒙 = (𝑥𝑥1
2, 𝑥𝑥2

2)
𝑓𝑓(𝒙𝒙𝒙) = 1 iff 𝑥𝑥𝒙1 + 𝑥𝑥𝒙2 ≤ 1

In order to deal with this, we
introduce two new concepts:

Dual Representation
Kernel (& the kernel trick)

𝑥𝑥 2
∗

x 2

𝑥𝑥1 ∗ x1

CIS 419/519 Fall’19 84

Transforming a Feature Space
• Results in a very high dimensional feature space
• Features are functions (e.g. conjunctions) of raw attributes

• However, additive algorithms allow the use of Kernels
– No need to explicitly generate complex features

• Could be more efficient since work is done in the original feature
space, but expressivity is a function of the kernel expressivity.

𝑓𝑓 𝒙𝒙 = �
𝑖𝑖

𝑐𝑐𝑖𝑖𝐾𝐾(𝒙𝒙, 𝑥𝑥𝑖𝑖)

𝑋𝑋 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑘𝑘 → 𝑋𝑋 𝜒𝜒1 𝒙𝒙 , 𝜒𝜒2 𝒙𝒙 ,𝜒𝜒3 𝒙𝒙 , … ,𝜒𝜒𝑛𝑛 𝒙𝒙 𝑛𝑛 ≫ 𝑘𝑘

CIS 419/519 Fall’19 85

Dual Representation

• Let 𝒘𝒘 be an initial weight vector for perceptron. Let (𝒙𝒙1, +), (𝒙𝒙2, +), (𝒙𝒙3,−), (𝒙𝒙4,−) be
examples and assume mistakes are made on 𝒙𝒙1,𝒙𝒙2 and 𝒙𝒙4.

• What is the resulting weight vector?
𝒘𝒘 = 𝒘𝒘 + 𝒙𝒙1 + 𝒙𝒙2 − 𝒙𝒙4

• (here 𝑟𝑟 = 1)
• In general, the weight vector 𝒘𝒘 can be written as a linear combination of examples:

𝒘𝒘 = ∑1
𝑚𝑚 𝑟𝑟 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖

• Where 𝛼𝛼𝑖𝑖 is the number of mistakes made on 𝒙𝒙𝑖𝑖.

Note: We care about the dot
product: 𝑓𝑓(𝒙𝒙) = 𝒘𝒘𝑇𝑇 𝒙𝒙 =

= (∑1𝑚𝑚𝑟𝑟 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖)𝑇𝑇 𝒙𝒙
= ∑1𝑚𝑚 𝑟𝑟 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 (𝒙𝒙𝑖𝑖𝑇𝑇 𝒙𝒙)

Examples 𝒙𝒙 ∈ {0,1}𝑁𝑁 ; Learned hypothesis 𝒘𝒘 ∈ 𝑹𝑹𝑁𝑁

𝑓𝑓(𝒙𝒙) = sgn{𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }

Perceptron Update:

If 𝑦𝑦𝒙≠𝑦𝑦, update: 𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦 𝒙𝒙

CIS 419/519 Fall’19 86

Kernel Based Methods
• Representing the model in the dual space will allow us to use Kernels.
• A method to run Perceptron on a very large feature set, without incurring

the cost of keeping a very large weight vector.
• Computing the dot product can be done in the original feature space.
• Notice: this pertains only to efficiency: The classifier is identical to the one

you get by blowing up the feature space.
• Generalization is still relative to the real dimensionality (or, related

properties).
• Kernels were popularized by SVMs, but many other algorithms can make

use of them (== run in the dual).
– Linear Kernels: no kernels; stay in the original space. A lot of applications actually

use linear kernels.

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 }

CIS 419/519 Fall’19 87

Kernel Base Methods

• Let’s transform the space to an expressive one.
• Let 𝐼𝐼 be the set 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 …of monomials (conjunctions) over

the feature space 𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛.
• Then we can write a linear function over this new feature

space.

Example: 𝑥𝑥1𝑥𝑥2𝑥𝑥4(11010) = 1 𝑥𝑥3𝑥𝑥4(11010) = 0 𝑥𝑥1𝑥𝑥2 (11010) = 1

𝐸𝐸𝑥𝑥𝑎𝑎𝑚𝑚𝑝𝑝𝑘𝑘𝑒𝑒𝑙𝑙 𝒙𝒙 ∈ {0,1}𝑁𝑁 ; 𝐿𝐿𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑒𝑒𝑎𝑎 ℎ𝑦𝑦𝑝𝑝𝑘𝑘𝑎𝑎ℎ𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙 𝒘𝒘 ∈ 𝑹𝑹𝑁𝑁

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 (𝑥𝑥)}

𝑓𝑓(𝒙𝒙) = sgn{𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥)}

CIS 419/519 Fall’19

𝐸𝐸𝑥𝑥𝑎𝑎𝑚𝑚𝑝𝑝𝑘𝑘𝑒𝑒𝑙𝑙 𝒙𝒙 ∈ {0,1}𝑁𝑁 ; 𝐿𝐿𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑒𝑒𝑎𝑎 ℎ𝑦𝑦𝑝𝑝𝑘𝑘𝑎𝑎ℎ𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙 𝒘𝒘 ∈ 𝑹𝑹𝑁𝑁

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥)}

88

Kernel Based Methods

• Great Increase in expressivity
• Can run Perceptron (and Winnow) but the convergence bound may suffer

exponential growth.
• Exponential number of monomials are true in each example.
• Also, will have to keep many weights.

Perceptron Update:

𝐼𝐼𝑓𝑓 𝑦𝑦𝒙≠𝑦𝑦,𝑢𝑢𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒: 𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦 𝒙𝒙

CIS 419/519 Fall’19

Weather

Whether

New discriminator in functionally simpler

Page 89

Embedding

𝑥𝑥1𝑥𝑥2𝑥𝑥3 ∨ 𝑥𝑥1𝑥𝑥4𝑥𝑥3 ∨ 𝑥𝑥3𝑥𝑥2𝑥𝑥5

𝑦𝑦1 ∨ 𝑦𝑦4 ∨ 𝑦𝑦5

CIS 419/519 Fall’19 90

The Kernel Trick(1)

• Consider the value of 𝒘𝒘 used in the prediction.
• Each previous mistake, on example 𝑧𝑧, makes an additive

contribution of +/−1 to some of the coordinates of 𝒘𝒘.
– Note: examples are Boolean, so only coordinates of 𝒘𝒘 that correspond to

ON terms in the example 𝑧𝑧 (𝑎𝑎𝑖𝑖(𝑧𝑧) = 1) are being updated.
• The value of 𝒘𝒘 is determined by the number and type of mistakes.

Perceptron Update:

𝐼𝐼𝑓𝑓 𝑦𝑦𝒙≠𝑦𝑦,𝑢𝑢𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒: 𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦 𝒙𝒙

𝐸𝐸𝑥𝑥𝑎𝑎𝑚𝑚𝑝𝑝𝑘𝑘𝑒𝑒𝑙𝑙 𝒙𝒙 ∈ {0,1}𝑁𝑁 ; 𝐿𝐿𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑒𝑒𝑎𝑎 ℎ𝑦𝑦𝑝𝑝𝑘𝑘𝑎𝑎ℎ𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙 𝒘𝒘 ∈ 𝑹𝑹𝑁𝑁

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥)}

CIS 419/519 Fall’19 91

The Kernel Trick(2)

• 𝑃𝑃 – set of examples on which we Promoted
• 𝐷𝐷 – set of examples on which we Demoted
• 𝑀𝑀 = 𝑃𝑃 ∪ 𝐷𝐷

𝑓𝑓(𝒙𝒙) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝒙𝒙) = ∑𝐼𝐼 ∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 𝑎𝑎𝑖𝑖 (𝒙𝒙) =

= ∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝒙𝒙)]

Perceptron Update:

𝐼𝐼𝑓𝑓 𝑦𝑦𝒙≠𝑦𝑦,𝑢𝑢𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒: 𝒘𝒘 = 𝒘𝒘 + 𝑟𝑟𝑦𝑦 𝒙𝒙

𝐸𝐸𝑥𝑥𝑎𝑎𝑚𝑚𝑝𝑝𝑘𝑘𝑒𝑒𝑙𝑙 𝒙𝒙 ∈ {0,1}𝑁𝑁 ; 𝐿𝐿𝑒𝑒𝑎𝑎𝑟𝑟𝑛𝑛𝑒𝑒𝑎𝑎 ℎ𝑦𝑦𝑝𝑝𝑘𝑘𝑎𝑎ℎ𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙 𝒘𝒘 ∈ 𝑹𝑹𝑁𝑁

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥)}

CIS 419/519 Fall’19 92

The Kernel Trick(3)
𝑓𝑓(𝒙𝒙) = 𝑙𝑙𝑘𝑘𝑛𝑛 {𝒘𝒘𝑇𝑇 � 𝒙𝒙} = sgn{∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥)}

• 𝑃𝑃 – set of examples on which we Promoted
• 𝐷𝐷 – set of examples on which we Demoted
• 𝑀𝑀 = 𝑃𝑃 ∪ 𝐷𝐷

• 𝑓𝑓(𝒙𝒙) = sgn∑𝐼𝐼 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 (𝑥𝑥) = ∑𝐼𝐼 ∑𝑧𝑧∈𝑃𝑃,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 − ∑𝑧𝑧∈𝐷𝐷,𝑡𝑡𝑖𝑖 𝑧𝑧 =11 𝑎𝑎𝑖𝑖 (𝑥𝑥)
• = sgn{∑𝐼𝐼[∑𝑧𝑧∈𝑀𝑀 𝑆𝑆 𝑧𝑧 𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖 𝑥𝑥]}

• Where 𝑆𝑆 𝑧𝑧 = 1 𝑖𝑖𝑓𝑓 𝑧𝑧 ∈ 𝑃𝑃 and 𝑆𝑆 𝑧𝑧 = −1 𝑖𝑖𝑓𝑓 𝑧𝑧 ∈ 𝐷𝐷.
• Reordering:

𝑓𝑓(𝒙𝒙) = sgn{∑𝑧𝑧∈𝑀𝑀 𝑆𝑆(𝑧𝑧)∑𝐼𝐼 𝑎𝑎𝑖𝑖(z)𝑎𝑎𝑖𝑖(𝒙𝒙)}

CIS 419/519 Fall’19 93

The Kernel Trick(4)

• 𝑆𝑆(𝑦𝑦) = 1 if 𝑦𝑦 ∈ 𝑃𝑃 and 𝑆𝑆(𝑦𝑦) = −1 if 𝑦𝑦 ∈ 𝐷𝐷.

• A mistake on 𝑧𝑧 contributes the value +/−1 to all monomials satisfied by 𝑧𝑧.
The total contribution of 𝑧𝑧 to the sum is equal to the number of monomials
that satisfy both 𝑥𝑥 and 𝑧𝑧.

• Define a dot product in the t-space:

• We get the standard notation:

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛�
𝑖𝑖∈𝐼𝐼

𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖(𝑥𝑥)

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾 𝑥𝑥, 𝑧𝑧)

CIS 419/519 Fall’19 94

Kernel Based Methods

• What does this representation give us?

• We can view this Kernel as the distance between 𝑥𝑥, 𝑧𝑧 in the t-space.
• So far, all we did is algebra; as written above I is huge.
• But, 𝐾𝐾(𝑥𝑥, 𝑧𝑧) can be measured in the original space, without

explicitly writing the t-representation of 𝑥𝑥, 𝑧𝑧

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾 𝑥𝑥, 𝑧𝑧)

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

CIS 419/519 Fall’19 95

Kernel Trick

• Consider the space of all 3𝑛𝑛 monomials (allowing both positive and negative literals).
Then,

• Claim:

– Where 𝑙𝑙𝑎𝑎𝑚𝑚𝑒𝑒(𝑥𝑥, 𝑧𝑧) is the number of features that have the same value for both 𝑥𝑥 and 𝑧𝑧.
• We get:

• Example: Take 𝑛𝑛 = 3; 𝑥𝑥 = (001), 𝑧𝑧 = (011), monomials of size 0,1,2,3
• Proof: let 𝑘𝑘 = 𝑙𝑙𝑎𝑎𝑚𝑚𝑒𝑒(𝑥𝑥, 𝑧𝑧); construct a “surviving” monomials by: (1) choosing to

include one of these 𝑘𝑘 literals with the right polarity in the monomial, or (2) choosing to
not include it at all. Monomials with literals outside this set disappear.

𝑥𝑥1𝑥𝑥3 (001) = 𝑥𝑥1𝑥𝑥3 (011) = 1
𝑥𝑥1 (001) = 𝑥𝑥1 (011) = 1 ; 𝑥𝑥3 (001) = 𝑥𝑥3 (011) = 1

Φ (001) = Φ (011) = 1
If any other variables appears in the monomial, it’s

evaluation on 𝑥𝑥, 𝑧𝑧 will be different.

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾 𝑥𝑥, 𝑧𝑧) 𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖 𝑥𝑥 = 2𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒(𝑥𝑥,𝑧𝑧)

𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 (2𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒(𝑥𝑥,𝑧𝑧)))

CIS 419/519 Fall’19 96

Example

• Take 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4}
• 𝐼𝐼 = The space of all 3𝑛𝑛 monomials; | 𝐼𝐼 | = 81
• Consider 𝑥𝑥 = (1100), 𝑧𝑧 = (1101)
• Write down 𝐼𝐼(𝑥𝑥), 𝐼𝐼(𝑧𝑧), the representation of 𝑥𝑥, 𝑧𝑧 in the 𝐼𝐼 space.
• Compute 𝐼𝐼(𝑥𝑥) � 𝐼𝐼(𝑧𝑧).
• Show that:

– 𝐾𝐾(𝑥𝑥, 𝑧𝑧) = 𝐼𝐼(𝑥𝑥) � 𝐼𝐼(𝑧𝑧) = ∑𝐼𝐼 𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥) = 2𝑠𝑠𝑠𝑠𝑚𝑚𝑒𝑒 𝑥𝑥,𝑧𝑧 = 8
• Try to develop another kernel, e.g., where 𝐼𝐼 is the space of all conjunctions

of size 3 (exactly).

𝑓𝑓 𝑥𝑥 = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾(𝑥𝑥, 𝑧𝑧)) 𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

CIS 419/519 Fall’19 97

Implementation: Dual Perceptron

• Simply run Perceptron in an on-line mode, but keep track of the set
𝑀𝑀.

• Keeping the set 𝑀𝑀 allows us to keep track of 𝑆𝑆(𝑧𝑧).
• Rather than remembering the weight vector 𝒘𝒘, remember the set
𝑀𝑀 (𝑃𝑃 and 𝐷𝐷) – all those examples on which we made mistakes.

• Dual Representation

𝑓𝑓 𝑥𝑥 = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾(𝑥𝑥, 𝑧𝑧)) 𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

CIS 419/519 Fall’19 98

Example: Polynomial Kernel
• Prediction with respect to a separating hyper planes w (produced by

Perceptron, SVM) can be computed instead, as a function of dot products
of feature based representation of (some of) the examples.

• We want to define a dot product in a high dimensional space.
• Given two examples 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) and 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑛𝑛) we want

to map them to a high dimensional space [example- quadratic]:
• Φ(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) = (1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑥𝑥12, … , 𝑥𝑥𝑛𝑛2, 𝑥𝑥1𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1𝑥𝑥𝑛𝑛)
• Φ(𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑛𝑛) = (1,𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 ,𝑦𝑦12, … ,𝑦𝑦𝑛𝑛2,𝑦𝑦1𝑦𝑦2, … , 𝑦𝑦𝑛𝑛−1𝑦𝑦𝑛𝑛)

and compute the dot product 𝐴𝐴 = Φ 𝑥𝑥 𝑇𝑇Φ(𝑦𝑦) [takes time]
• Instead, in the original space, compute

– 𝐵𝐵 = 𝑘𝑘(𝑥𝑥 ,𝑦𝑦) = [1 + 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛 𝑇𝑇 𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑛𝑛]2

• Theorem: 𝐴𝐴 = 𝐵𝐵 (Coefficients do not really matter)

Sq(2)

CIS 419/519 Fall’19

Kernel Trick: You want to work with degree 2 polynomial features, Φ(𝑥𝑥). Then, your dot
product will be in a space of dimensionality 𝑛𝑛(𝑛𝑛 + 1)/2. The kernel trick allows you to save
and compute dot products in an 𝑛𝑛 dimensional space.

• Can we use any 𝐾𝐾(. , .)?
– A function 𝐾𝐾(𝑥𝑥, 𝑧𝑧) is a valid kernel if it corresponds to a dot (an inner) product in some (perhaps

infinite dimensional) feature space.
• Take the quadratic kernel: 𝑘𝑘(𝑥𝑥, 𝑧𝑧) = 𝑥𝑥𝑇𝑇𝑧𝑧 2

• Example: Direct construction (2 dimensional, for simplicity):
• 𝐾𝐾(𝑥𝑥, 𝑧𝑧) = 𝑥𝑥1 𝑧𝑧1 + 𝑥𝑥2 𝑧𝑧2 2 = 𝑥𝑥12 𝑧𝑧12 + 2𝑥𝑥1 𝑧𝑧1 𝑥𝑥2 𝑧𝑧2 + 𝑥𝑥22 𝑧𝑧22

= 𝑥𝑥12, 2𝑥𝑥1𝑥𝑥2, 𝑥𝑥22 𝑧𝑧12, 2𝑧𝑧1𝑧𝑧2, 𝑧𝑧22
𝑇𝑇

= Φ 𝑥𝑥 𝑇𝑇 Φ (𝑧𝑧) A dot product in an expanded space.
• It is not necessary to explicitly show the feature function Φ.
• General condition: construct the kernel matrix {𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑗𝑗)} (indices are over the

examples); check that it’s positive semi definite.

We proved that 𝐾𝐾 is a valid kernel by
explicitly showing that it corresponds to a
dot product.

99

Kernels – General Conditions

𝑓𝑓 𝑥𝑥 = 𝑙𝑙𝑘𝑘𝑛𝑛(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝑧𝑧 𝐾𝐾(𝑥𝑥, 𝑧𝑧)) 𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖∈𝐼𝐼

𝑎𝑎𝑖𝑖 𝑧𝑧 𝑎𝑎𝑖𝑖(𝑥𝑥)

CIS 419/519 Fall’19 104

Polynomial kernels
• Linear kernel: 𝑘𝑘(𝒙𝒙, 𝒛𝒛) = 𝒙𝒙𝒛𝒛
• Polynomial kernel of degree 𝑎𝑎: 𝑘𝑘(𝒙𝒙, 𝒛𝒛) = 𝒙𝒙𝒛𝒛 𝑑𝑑

(only d-th-order interactions)
• Polynomial kernel up to degree 𝑎𝑎: 𝑘𝑘(𝒙𝒙, 𝒛𝒛) = 𝒙𝒙𝒛𝒛 + 𝑐𝑐 𝑑𝑑 (𝑐𝑐 > 0)

(all interactions of order 𝑎𝑎 or lower)

CIS 419/519 Fall’19 105

Constructing New Kernels
• You can construct new kernels 𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) from existing ones:

– Multiplying 𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙) by a constant 𝑐𝑐:
𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) = 𝑐𝑐𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙)

– Multiplying 𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙) by a function 𝑓𝑓 applied to 𝒙𝒙 and 𝒙𝒙𝒙:
𝑘𝑘𝒙(𝑥𝑥,𝒙𝒙𝒙) = 𝑓𝑓(𝒙𝒙)𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙)𝑓𝑓(𝒙𝒙𝒙)

– Applying a polynomial (with non-negative coefficients) to 𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙):
𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) = 𝑃𝑃(𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙)) with 𝑃𝑃(𝒛𝒛) = ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝑧𝑧𝑖𝑖 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎𝑖𝑖 ≥ 0

– Exponentiating 𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙):
𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) = exp(𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙))

CIS 419/519 Fall’19 106

Constructing New Kernels (2)
• You can construct 𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) from 𝑘𝑘1(𝒙𝒙,𝒙𝒙𝒙), 𝑘𝑘2(𝒙𝒙,𝒙𝒙𝒙) by:

– Adding 𝑘𝑘1(𝒙𝒙,𝒙𝒙𝒙) and 𝑘𝑘2(𝒙𝒙,𝒙𝒙𝒙):
𝑘𝑘𝒙(𝒙𝒙,𝒙𝒙𝒙) = 𝑘𝑘1(𝒙𝒙,𝒙𝒙𝒙) + 𝑘𝑘2(𝒙𝒙,𝒙𝒙𝒙)

– Multiplying 𝑘𝑘1(𝒙𝒙,𝒙𝒙𝒙)and 𝑘𝑘2(𝒙𝒙,𝒙𝒙𝒙):
𝑘𝑘𝒙(𝑥𝑥, 𝑥𝑥𝒙) = 𝑘𝑘1(𝒙𝒙,𝒙𝒙𝒙)𝑘𝑘2(𝒙𝒙,𝒙𝒙𝒙)

• Also:
– If 𝜙𝜙(𝒙𝒙) ∈ 𝑹𝑹𝑚𝑚 and 𝑘𝑘𝑚𝑚(𝒛𝒛, 𝒛𝒛𝒙) a valid kernel in 𝑹𝑹𝑚𝑚,
𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙) = 𝑘𝑘𝑚𝑚(𝜙𝜙(𝒙𝒙),𝜙𝜙(𝒙𝒙𝒙)) is also a valid kernel

– If 𝐴𝐴 is a symmetric positive semi-definite matrix,
𝑘𝑘(𝒙𝒙,𝒙𝒙𝒙) = 𝒙𝒙𝐴𝐴𝒙𝒙𝒙 is also a valid kernel

• In all cases, it is easy to prove these directly by construction.

CIS 419/519 Fall’19 107

Gaussian Kernel (Radial Basis Function kernel)
• 𝑘𝑘(𝒙𝒙, 𝒛𝒛) exp(− 𝒙𝒙 − 𝒛𝒛 2/𝑐𝑐）

– 𝒙𝒙 − 𝒛𝒛 2: squared Euclidean distance between 𝒙𝒙 and 𝒛𝒛
– 𝑐𝑐 = 2𝜎𝜎2: a free parameter
– very small 𝑐𝑐: K ≈ identity matrix (every item is different)
– very large 𝑐𝑐: K ≈ unit matrix (all items are the same)

– 𝑘𝑘(𝒙𝒙, 𝒛𝒛) ≈ 1 when 𝒙𝒙, 𝒛𝒛 close
– 𝑘𝑘(𝒙𝒙, 𝒛𝒛) ≈ 0 when 𝒙𝒙, 𝒛𝒛 dissimilar

CIS 419/519 Fall’19 108

Gaussian Kernel
• 𝑘𝑘(𝑥𝑥, 𝑧𝑧) = exp(− 𝑥𝑥 − 𝑧𝑧 2/𝑐𝑐）
• Is this a kernel?
• 𝑘𝑘(𝑥𝑥, 𝑧𝑧) = exp(− 𝑥𝑥 − 𝑧𝑧 2/2𝜎𝜎2）

– = exp(−(𝑥𝑥𝑥𝑥 + 𝑧𝑧𝑧𝑧 − 2𝑥𝑥𝑧𝑧)/2𝜎𝜎2）
– = exp(−𝑥𝑥𝑥𝑥/2𝜎𝜎2）exp(𝑥𝑥𝑧𝑧/𝜎𝜎2) exp(−𝑧𝑧𝑧𝑧/2𝜎𝜎2）
– = 𝑓𝑓(𝑥𝑥) exp(𝑥𝑥𝑧𝑧/𝜎𝜎2) 𝑓𝑓(𝑧𝑧)

• exp(𝑥𝑥𝑧𝑧/𝜎𝜎2) is a valid kernel:
– 𝑥𝑥𝑧𝑧 is the linear kernel;
– we can multiply kernels by constants (1/𝜎𝜎2)
– we can exponentiate kernels

• Unlike the discrete kernels discussed earlier, here you cannot easily
explicitly blow up the feature space to get an identical representation.

CIS 419/519 Fall’19 110

Summary – Kernel Based Methods

• A method to run Perceptron on a very large feature set, without
incurring the cost of keeping a very large weight vector.

• Computing the weight vector can be done in the original feature
space.

• Notice: this pertains only to efficiency: the classifier is identical to
the one you get by blowing up the feature space.

• Generalization is still relative to the real dimensionality (or, related
properties).

• Kernels were popularized by SVMs but apply to a range of models,
Perceptron, Gaussian Models, PCAs, etc.

𝑓𝑓 𝒙𝒙 = 𝑇𝑇ℎ𝜃𝜃(�
𝑧𝑧∈𝑀𝑀

𝑆𝑆 𝒛𝒛 𝐾𝐾(𝒙𝒙, 𝒛𝒛))

CIS 419/519 Fall’19 112

Explicit & Implicit Kernels: Complexity
• Is it always worthwhile to define kernels and work in the dual

space?
• Computationally:

– Let 𝑚𝑚 be # of examples, 𝑎𝑎1, 𝑎𝑎2 be the sizes of the (Dual, Primal) feature
spaces, respectively.

– Then, computational cost is:
• Dual space – 𝑎𝑎1 𝑚𝑚2 vs, Primal Space – 𝑎𝑎2 𝑚𝑚

– Typically, 𝑎𝑎1 << 𝑎𝑎2, so it boils down to the number of examples one
needs to consider relative to the growth in dimensionality.

• Rule of thumb: a lot of examples use Primal space
• Most applications today: People use explicit kernels. That is, they

blow up the feature space explicitly.

CIS 419/519 Fall’19 113

Kernels: Generalization
• Do we want to use the most expressive kernels we can?

– (e.g., when you want to add quadratic terms, do you really want to
add all of them?)

• No; this is equivalent to working in a larger feature space, and
will lead to overfitting.

• It’s possible to give simple arguments that show that simply
adding irrelevant features does not help.

CIS 419/519 Fall’19 115

Conclusion- Kernels
• The use of Kernels to learn in the dual space is an important idea

– Different kernels may expand/restrict the hypothesis space in useful ways.
– Need to know the benefits and hazards

• To justify these methods we must embed in a space much larger
than the training set size.
– Can affect generalization

• Expressive structures in the input data could give rise to specific
kernels, designed to exploit these structures.
– E.g., people have developed kernels over parse trees: corresponds to

features that are sub-trees.
– It is always possible to trade these with explicitly generated features, but it

might help one’s thinking about appropriate features.

CIS 419/519 Fall’19 116

Functions Can be Made Linear
• Data are not linearly separable in one dimension
• Not separable if you insist on using a specific class of

functions

𝒙𝒙

CIS 419/519 Fall’19 117

Blown Up Feature Space
• Data are separable in < 𝒙𝒙,𝒙𝒙2 > space

𝒙𝒙

𝒙𝒙2

CIS 419/519 Fall’19 118

Multi-Layer Neural Network
• Multi-layer network were designed to

overcome the computational (expressivity)
limitation of a single threshold element.

• The idea is to stack several layers of
threshold elements, each layer using the
output of the previous layer as input.

• Multi-layer networks can represent
arbitrary functions, but building effective
learning methods for such network was
[thought to be] difficult.

activation

Input

Hidden

Output

CIS 419/519 Fall’19 119

Basic Units
• Linear Unit: Multiple layers of linear functions 𝑘𝑘𝑗𝑗 = 𝒘𝒘 ⋅ 𝒙𝒙 produce

linear functions. We want to represent nonlinear functions.
• Need to do it in a way that

facilitates learning
• Threshold units: 𝑘𝑘𝑗𝑗 = sgn(𝒘𝒘 ⋅ 𝒙𝒙)

are not differentiable, hence
unsuitable for gradient descent.

• The key idea was to notice that the discontinuity of the threshold
element can be represents by a smooth non-linear approximation:

𝑘𝑘𝑗𝑗 = 1 + exp −𝒘𝒘 ⋅ 𝒙𝒙 −1
(Rumelhart, Hinton, Williiam, 1986), (Linnainmaa, 1970) , see: http://people.idsia.ch/~juergen/who-invented-backpropagation.html)

activation

Input

Hidden

Output

𝑤𝑤2
𝑖𝑖𝑗𝑗

𝑤𝑤1
𝑖𝑖𝑗𝑗

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

CIS 419/519 Fall’19 120

Model Neuron (Logistic)
• Use a non-linear, differentiable output function such as the sigmoid

or logistic function

• Net input to a unit is defined as: 𝑛𝑛𝑒𝑒𝑎𝑎𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖
• Output of a unit is defined as: 𝑘𝑘𝑗𝑗 = 1

1+𝑒𝑒−(𝑛𝑛𝑛𝑛𝑡𝑡𝑗𝑗 −𝑇𝑇𝑗𝑗)

jT

1
2

6

3
4
5

7

67w

17w

∑
T

jO

1x

7x

𝑥𝑥1

𝑥𝑥7 𝑇𝑇𝑗𝑗

𝑘𝑘𝑗𝑗

CIS 419/519 Fall’19 121

Learning with a Multi-Layer Perceptron
• It’s easy to learn the top layer – it’s just a

linear unit.
• Given feedback (truth) at the top layer,

and the activation at the layer below it,
you can use the Perceptron update rule
(more generally, gradient descent) to
updated these weights.

• The problem is what to do with the other
set of weights – we do not get feedback
in the intermediate layer(s).

activation

Input

Hidden

Output

𝑤𝑤2
𝑖𝑖𝑗𝑗

𝑤𝑤1
𝑖𝑖𝑗𝑗

CIS 419/519 Fall’19 122

Learning with a Multi-Layer Perceptron
• The problem is what to do with the other set of weights –

we do not get feedback in the intermediate layer(s).
• Solution: If all the activation functions are differentiable,

then the output of the network is also a differentiable
function of the input and weights in the network.

• Define an error function (multiple options) that is a
differentiable function of the output, that this error
function is also a differentiable function of the weights.

• We can then evaluate the derivatives of the error with
respect to the weights, and use these derivatives to find
weight values that minimize this error function. This can
be done, for example, using gradient descent .

• This results in an algorithm called back-propagation.

activation

Input

Hidden

Output

𝑤𝑤2
𝑖𝑖𝑗𝑗

𝑤𝑤1
𝑖𝑖𝑗𝑗

	On-line Learning, Perceptron, Kernels
	A Guide
	A Guide
	Quantifying Performance
	Learning Conjunctions
	Learning Conjunctions
	Learning Conjunctions (I)
	Learning Conjunctions(II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (II)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Learning Conjunctions (III)
	Administration
	Projects
	Project Examples
	Learning Conjunctions (III)
	Two Directions
	On-Line Learning
	Generic Mistake Bound Algorithms
	The Halving Algorithm
	Learning Conjunctions
	Linear Threshold Functions
	Linear Threshold Functions
	Representation
	Slide Number 34
	Canonical Representation
	Perceptron
	Perceptron learning rule
	Perceptron learning rule
	Perceptron in action
	Perceptron in action
	Perceptron learning rule
	Perceptron Learnability
	Slide Number 43
	Perceptron Convergence
	Perceptron
	Perceptron: Mistake Bound Theorem
	Perceptron-Mistake Bound
	Robustness to Noise
	Perceptron for Boolean Functions
	Practical Issues and Extensions
	Regularization Via Averaged Perceptron
	Regularization Via Averaged Perceptron
	 Perceptron with Margin
	Other Extensions
	LBJava
	Administration
	Perceptron learning rule
	Regularization Via Averaged Perceptron
	General Stochastic Gradient Algorithms
	General Stochastic Gradient Algorithms
	New Stochastic Gradient Algorithms
	Preventing Overfitting
	Regularization
	Algorithmic Approaches
	Summary of Algorithms
	Which algorithm is better? How to Compare?
	Sentence Representation
	Sentence Representation
	Blow Up Feature Space
	Domain Characteristics
	Generalization
	Which Algorithm to Choose?
	Examples
	`
	Summary
	Efficiency
	Administration
	Projects
	Functions Can be Made Linear
	Blown Up Feature Space
	Making data linearly separable
	Making data linearly separable
	Transforming a Feature Space
	Dual Representation
	Kernel Based Methods
	Kernel Base Methods
	Kernel Based Methods
	Embedding
	The Kernel Trick(1)
	The Kernel Trick(2)
	The Kernel Trick(3)
	The Kernel Trick(4)
	Kernel Based Methods
	Kernel Trick
	Example
	Implementation: Dual Perceptron
	Example: Polynomial Kernel
	Kernels – General Conditions
	Polynomial kernels
	Constructing New Kernels
	Constructing New Kernels (2)
	Gaussian Kernel (Radial Basis Function kernel)
	Gaussian Kernel
	Summary – Kernel Based Methods
	Explicit & Implicit Kernels: Complexity
	Kernels: Generalization
	Conclusion- Kernels
	Functions Can be Made Linear
	Blown Up Feature Space
	Multi-Layer Neural Network
	Basic Units
	Model Neuron (Logistic)
	Learning with a Multi-Layer Perceptron
	Learning with a Multi-Layer Perceptron

