CIS 519 Recitation 5

Perceptron Updating

```
Algorithm Perceptron
Initial weight vector: \(\mathrm{w}_{1}=0 \in \mathbb{R}^{d}\)
For \(t=1, \ldots, T\) :
    - Receive instance \(\mathbf{x}_{t} \in \mathcal{X} \subseteq \mathbb{R}^{d}\)
    - Predict \(\widehat{y}_{t}=\operatorname{sign}\left(\mathbf{w}_{t}^{\top} \mathbf{x}_{t}\right)\)
    - Receive true label \(y_{t} \in\{ \pm 1\}\)
    - Incur loss \(\mathbf{1}\left(\widehat{y}_{t} \neq y_{t}\right)\)
    - Update: If \(\widehat{y}_{t} \neq y_{t}\) then
        \(\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}+y_{t} \mathbf{x}_{t}\)
        else
            \(\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}\)
```

- Assume you made a mistake on example \boldsymbol{x}. $=>\mathrm{y}_{\mathrm{t}}\left(\mathbf{w}_{\mathrm{t}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}\right)<0$
- $\mathrm{y}_{\mathrm{t}}\left(\mathbf{w}_{\mathrm{t}+1}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}\right)=\mathrm{y}_{\mathrm{t}}\left[\left(\mathbf{w}_{\mathrm{t}}+\mathrm{y}_{\mathrm{t}} \mathbf{x}_{\mathrm{t}}\right)^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}\right]=\mathrm{y}_{\mathrm{t}} \mathbf{w}_{\mathrm{t}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}+\mathrm{y}_{\mathrm{t}}{ }^{2} \mathbf{x}_{\mathrm{t}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}>\mathrm{y}_{\mathrm{t}} \mathbf{w}_{\mathrm{t}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{t}}$
- You then see example \boldsymbol{x} again; will you make a mistake on it?

Why do we need kernel?

- Data are not linearly separable in one dimension
- Not separable if you insist on using a specific class of functions

Why do we need kernel?

- Data are separable in space

Why do we need the kernel trick?

- Prediction with respect to a separating hyper planes (produced by Perceptron, SVM) can be computed as a function of dot products of feature based representation of examples.
- We want to define a dot product in a high dimensional space.
- Given two examples $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots y_{n}\right)$ we want to map them to a high dimensional space [example- quadratic]:

$$
\begin{aligned}
& \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{n}, x_{1}^{2}, \ldots, x_{n}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{n-1} x_{n}\right) \\
& \Phi\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(1, \sqrt{2} y_{1}, \ldots, \sqrt{2} y_{n}, y_{1}^{2}, \ldots, y_{n}^{2}, \sqrt{2} y_{1} y_{2}, \ldots, \sqrt{2} y_{n-1} y_{n}\right)
\end{aligned}
$$

and compute the dot product $\mathrm{A}=\Phi(\mathrm{x})^{\top} \Phi(\mathrm{y}) \quad$ [takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time]

- Instead, in the original space, compute
- $B=k(x, y)=\left[1+\left(x_{1}, x_{2}, \ldots x_{n}\right)^{\top}\left(y_{1}, y_{2}, \ldots y_{n}\right)\right]^{2} \quad$ [takes $O(n)$ time $]$
- Theorem: $\mathrm{A}=\mathrm{B}$

Kernel Examples: Questions

Let $K_{1}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ and $K_{2}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be two symmetric, positive definite kernel functions, and for simplicity, assume that each implements dot products in some finite-dimensional space, so that there are vector mappings $\phi_{1}: \mathcal{X} \rightarrow \mathbb{R}^{d_{1}}$ and $\phi_{2}: \mathcal{X} \rightarrow \mathbb{R}^{d_{2}}$ for some $d_{1}, d_{2} \in \mathbb{Z}_{+}$such that

$$
K_{1}\left(x, x^{\prime}\right)=\phi_{1}(x)^{\top} \phi_{1}\left(x^{\prime}\right), \quad K_{2}\left(x, x^{\prime}\right)=\phi_{2}(x)^{\top} \phi_{2}\left(x^{\prime}\right) \quad \forall x, x^{\prime} \in \mathcal{X} .
$$

For each of the following functions $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, either find a vector mapping $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$ for some suitable $d \in \mathbb{Z}_{+}$such that $K\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right) \forall x, x^{\prime}$, or explain why such a mapping cannot exist.

1. $K\left(x, x^{\prime}\right)=c \cdot K_{1}\left(x, x^{\prime}\right)$, where $c>0$
2. $K\left(x, x^{\prime}\right)=K_{1}\left(x, x^{\prime}\right)+K_{2}\left(x, x^{\prime}\right)$
3. $K\left(x, x^{\prime}\right)=K_{1}\left(x, x^{\prime}\right)-K_{2}\left(x, x^{\prime}\right)$
4. $K\left(x, x^{\prime}\right)=K_{1}\left(f(x), f\left(x^{\prime}\right)\right)$, where $f: \mathcal{X} \rightarrow \mathcal{X}$ is any function.

Kernel Examples: Solutions

1. $\phi(x)=\sqrt{c} \cdot K_{1}\left(x, x^{\prime}\right)$
2. $\phi(x)=\binom{\phi_{1}(x)}{\phi_{2}(x)}$
3. The difference of two positive definite matrices need not be a positive definite matrix, therefore in this case this is not a valid kernel, i.e. there does not in general exist a mapping ϕ satisfying the desired property.
4. $\phi(x)=\phi_{1}(f(x))$

Quiz3-Q4

- You are tasked with learning a new function over 10 Boolean variables; you believe that this function evaluates to True if and only if a subset of these variables (you don't know which, and how many) is 1 . Your friend says that they have a good learning algorithm that can learn linear threshold units and suggest that you use it. Is this a good choice?
- Yes, since the class of LTUs over 10 variables can express all the functions you care about
- No, since the class of LTUs over 10 variables cannot express all the functions you care about. You should use Decision Trees
- Yes, since all Boolean functions can be represented as LTUs.
- No, since only neural networks can express the type of functions you care about

