CIS 519 Recitation 5



Perceptron Updating

Algorithm Perceptron

Initial weight vector: w; = 0 € R
Boi t —=Ycuvan b
— Receive instance x; € X C R?
~ Predict 7; = sign(w, x;)
— Receive true label y, € {£1}
— Incur loss 1(y # y¢)
— Update: If 7; # vy; then
Wil <& W + Y Xy
else
Wi Wy

e Assume you made a mistake on example x. => y(wTx;) <0
* Vi(Wir1TXt) = yi[ (W + yeXo) TX¢| = yiwIXe + ye2Xe X > yew Xy

* You then see example x again; will you make a mistake on 1t?



Why do we need kernel?

* Data are not linearly separable in one
dimension

* Not separable if you insist on using a specific
class of functions



Why do we need kernel?

* Data are separable in space

x2



Why do we need the kernel trick?

= Prediction with respect to a separating hyper planes (produced by
Perceptron, SVM) can be computed as a function of dot products of
feature based representation of examples.

=  We want to define a dot product in a high dimensional space.

=  Given two examples x = (x4, X, ...x,,) and y = (y,,Y,, ...y,,) we want to
map them to a high dimensional space [example- quadratic]:

DOy, X5 X)) = (LA 2% V2%, X2, X2 250X, . /2, %,)
O(yp, Yo+ Y) = (V251 V250 ¥ - YV 201005+ sV 20 19)
and compute the dot product A = O(x)TD(y) [takes O(n?) time ]
= Instead, in the original space, compute
s B=k(x,y)=[1+ (X;,Xp, . X )T (Y1,Y5) - Yn)]? [takes O(n) time]

= Theorem: A=B



Kernel Examples: Questions

Let K1 : X X X—=R and K2 : & X X—R be two symmetric, positive definite kernel functions, and for
simplicity, assume that each implements dot products in some finite-dimensional space, so that there are
vector mappings ¢; : X—R? and ¢ : XY —R% for some dy,dy € Z, such that

Ki(z,2') = ¢1(2) " ¢1(a"), Ka(z,2') = ¢o(x) ¢o(2) Va2’ € X.

For each of the following functions K : X x X—=R, either find a vector mapping ¢ : X —=R? for some suitable
d € Z such that K(z,2') = ¢(x) T ¢(2') Vo, 2, or explain why such a mapping cannot exist.

1. K(z,z') =¢«Ki(z,z"), where ¢> 0

2. Kilz,o") =Kilzs") + Kolmyz')

3. Kiz,x")=Ki(x,z') — Koz, z')

4. K(x,2") = K1(f(z), f(2")), where f : X—X is any flunction.



Kernel Examples: Solutions

. z) = fe- Ki(z,z")

o= (50

. The difference of two positive definite matrices need not be a positive definite matrix, therefore in this case
this is not a valid kernel, i.e. there does not in general exist a mapping ¢ satisfying the desired property.

. ¢(z) = p1(f(x))



Quiz3-Q4

e You are tasked with learning a new function over 10 Boolean variables; you
believe that this function evaluates to True if and only if a subset of these
variables (you don’t know which, and how many) is 1. Your friend says that
they have a good learning algorithm that can learn linear threshold units and
suggest that you use it. Is this a good choice?

e Yes, since the class of LTUs over 10 variables can express all the
functions you care about

 No, since the class of LTUs over 10 variables cannot express all the
functions you care about. You should use Decision Trees

e Yes, since all Boolean functions can be represented as LTUs.

 No, since only neural networks can express the type of functions you
care about



