
CIS519: Applied Machine Learning Fall 2020

Homework 1

Name: Your Name Here Student ID: Your Penn ID Here

Version 1

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include at the top of your
document the list of people you consulted with in the course of working on the homework.

• While we encourage discussion within and outside the class, cheating and copying code is strictly not
allowed. Copied code will result in the entire assignment being discarded at the very least.

• Please use Piazza if you have questions about the homework. Also, please come to the TAs recitations
and to the office hours.

• Handwritten solutions are not allowed. All solutions must be typeset in Latex. Consult the class’
website if you need guidance on using Latex. If you don’t have a lot of experience with Latex (or
even if you do), we recommend using Overleaf (https://www.overleaf.com) to write your solutions.
You will submit your solutions as a single pdf file (in addition to the package with your code; see
instructions in the body of the assignment).

• The homework is due at 11:59 PM on the due date. We will be using Gradescope for collecting the
homework assignments. You should have been automatically added to Gradescope. If not, please ask
a TA for assistance. Please do not hand in a hard copy of your write-up. Post on Piazza and contact
the TAs if you are having technical difficulties in submitting the assignment.

• Here are some resources you will need for this assignment

– A zip that includes the datasets, Latex template, and Python template: https://www.seas.

upenn.edu/~cis519/fall2020/assets/HW/HW1/hw1-materials.zip

– The Student’s t-table: https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW1/

t-table.pdf

Problems

1. Understanding Decision Tree Learning [20 Points]

(a) [7 points] In this problem, you are tasked with determining which feature the ID3
decision tree algorithm will pick to be the root of the decision tree. We will be working
with the dataset presented in Table 1, described below.

Table 1 contains the aggregated statistics from a dataset that recorded whether
a group of school students played outside based on if it was sunny out and if there
was snow on the ground. The dataset has two binary features (Sunny and Snow),
a binary label (Play outside), and the number of times the feature and label pair
appear together in the dataset (Count). Although Table 1 does not list the individual
instances of the dataset (e.g., you cannot determine how many times Play outside

= yes, Sunny = yes, and Snow = no at the same time), it does contain all of the
information necessary to run the ID3 algorithm.

Use the dataset in Table 1 to pick the feature at the root of the decision tree created
by the ID3 algorithm. Recall that the ID3 algorithm will split on the feature that has
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Play outside Sunny Count

yes yes 28
yes no 7
no yes 6
no no 9

Play outside Snow Count

yes yes 16
yes no 19
no yes 2
no no 13

Table 1: The Play Outside data set contains 50 instances, 35 of which are positive (Play
outside = yes), and 15 of which are negative. The Count column marks how many times
each label and feature pair appeared in the datset. For example, it was sunny and the
students did not play outside 6 times.

the largest information gain (or equivalently smallest conditional entropy). Here are
the definitions of entropy and information gain that you may find useful (equations
use the same notation as in the lectures):

Entropy(S) = −p+ log2 p+ − p− log2 p−

Gain(S, a) = Entropy(S)−
∑

v∈values

|Sv|
|S|
· Entropy(Sv)

where Sv is the subset of S for which feature a has value v. Show the calculations you
performed to come up with your answer.

(b) [7 points] Entropy is one of many statistics that can be used to decide which feature
to split on in a decision tree. In this problem, you will use a different statistic to build
a full decision tree on a small dataset presented in Table 2, a modified version of the
Balloons dataset.1

Color Size Act Age Inflated Count
Red Large Stretch Adult F 6
Red Large Stretch Child T 5
Red Large Dip Child F 2
Blue Large Dip Adult T 2
Blue Large Stretch Child F 1
Blue Large Dip Child F 2
Red Small Dip Child F 2
Blue Small Dip Adult T 4

Table 2: The Balloons data set

The Balloons dataset has 4 features (Color, Size, Act, Age) that each can have
two values and a binary label (Inflated). The Count column indicates how many
times that instance appears in the dataset.

Instead of constructing a decision tree using entropy, you will use a new statistic
called the minimum error, defined as:

MinError(S) = min {p−, p+}
1You can learn more about this data set at http://archive.ics.uci.edu/ml/datasets/Balloons
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MinError is computed over all of the instances remaining at the particular node in the
decision tree. For example, if there are 10 instances in the node and 8 are positive,
MinError = min{0.2, 0.8} = 0.2. Like entropy, MinError can be thought of as a way
to quantify how impure a node is.

Then, you will use a version of information gain modified to use MinError to select
which feature to split on at a node in a decision tree.

GainME(S, a) = MinError(S)−
∑

v∈values

|Sv|
|S|
·MinError(Sv)

Using the version of information gain modified to use MinError, compute the full
decision tree using the Balloons dataset.2 You can type your decision tree as a series
of if statements using Latex’s verbatim environment, like below:

if Color = Blue:

if Size = Small:

Inflated = T

if Size = Large:

Inflated = F

if Color = Red:

if Age = Adult:

if Act = Stretch:

Inflated = T

if Act = Dip:

Inflated = F

if Age = Child:

Inflated = T

(c) [6 points] Does ID3 guarantee a globally optimal tree? By globally optimal, we mean
a decision tree that perfectly fits the training data and also has the minimum depth.
Briefly justify your answer.

2. SGD, Decision Trees, and Feature Extraction [80 Points + 10
Points Extra Credit]

This problem involves programming exercises that rely on the Python libraries called NumPy
and scikit-learn. Before you begin, ensure that you are working on a computer with these
packages installed. See Appendix A for how to test you have the necessary software. You’ll
find both the madelon dataset and badges dataset in the top level of the zipped
homework 1 file. These are the two datasets that you will be working with.

(a) Training Classifiers [60 Points]: The goal of this problem is to experiment with
training and evaluating several different binary classifiers (all based on SGD and de-
cision trees) on a small dataset with features that have been extracted for you. For

2If there is a tie between two features, select the feature which comes first in the table. That is, if Color
and Act both have the same information gain, pick Color to split on.

3

https://numpy.org
https://scikit-learn.org/stable/


each of the classifiers below, you will estimate how well it will do on testing data using
cross-validation and then compare that estimate to the results on a real test set.

The dataset that you will be working with is an artificial dataset called Madelon (a
modified version of it) that was created to test different binary classification models.
It has 2,100 training and 200 testing instances, each with 600 features.

Algorithms Below are the details of the different classifiers that you need to train.

(i) SGD: Using the SGDClassifier scikit-learn class, train a SGD classifier on the
training data. The class should be initialized as follows (see Appendix A for a
brief example of how to train and predict labels using a scikit-learn model):3

from sklearn.linear_model import SGDClassifier

model = SGDClassifier(loss=’log’, max_iter=10000)

(ii) Decision Tree: Train a decision tree using the ID3 algorithm with the
DecisionTreeClassifier class from scikit-learn. The model should be initialized
as follows:

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier(criterion=’entropy’)

(iii) Decision Stump of Depth 4: Train a decision stump (a decision tree where the
maximum depth is bounded) of depth 4 using the same DecisionTreeClassifier
class from scikit-learn. The model should be initialized as follows:

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier(criterion=’entropy’, max_depth=4)

(iv) Decision Stumps as Features: This classifier combines many different decision
stump classifiers into one classifier via SGD. At a high level, what you do here
can be viewed as learning over a transformation of the feature space. Rather than
working in the original feature space of the data (of dimensionality 600 in this
case) you will first transform this space to a new feature space, where each feature
is a function of the original features (It will be a learned function). We chose the
new feature space to have dimensionality of 100, and each of the 100 features will
be the output of a decision stump – a DT of depth 4. Once you generate these
100 transformation functions you will convert each of the original examples to an
example in the new space by evaluating each of the 100 decision stumps on each
of the original examples, training and test examples. Once you do that, you have
transformed the original data set to a new one, of dimensionality 100, and you
will run a learning algorithm (SGD) on the new dataset.

For explaining how to build this model, we will denote the training data to be
an Ntrain × k matrix Xtrain, where Ntrain is the number of training examples and

3Directly copying and pasting this code into Python may cause problems because the quotes are the
wrong character
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k is the number features. Similarly, we denote an Neval× k matrix Xeval to be the
dataset that you want to use to evaluate your model (either the held-out data in
cross-validation (see next section) or the test data).

First, you will need to train 100 different decision stumps on the training data.
In order to make sure that the decision stumps are different, each stump should
be trained on a random 50% of the input features. For example, if there are 30
features in the training data, each time you train a new stump, randomly pick 15
of those features and train the stump on only those 15 features.

Each of your trained decision stumps can be used to predict a binary label
for each original k-dimensional instance x. This binary label can be viewed as a
new feature that represents the output of that decision tree. If you repeat this for
all 100 stumps, the k-dimensional x can be converted into a 100-dimensional x′

where each dimension is a label predicted by one of the 100 stumps. This process
can be applied to all Ntrain instances, producing a new Ntrain×100 feature matrix
X′train.

Specifically, the ith row and jth column of X′train is the output from the jth
stump on the ith original training instance

# this is pseudocode

X_prime_train[i, j] = stumps[j].predict(X_train[i])

Using this new feature matrix X′train and the original labels, train a SGD
classifier using the SGDClassifier. This is the final model.

In order to evaluate this model on Xeval, you have to repeat the same process
above to convert Xeval into X′eval. That is, take Xeval, use the same stumps that
were trained on Xtrain and convert it into X′eval. Then, use the SGD model trained
on X′train to predict labels for X′eval.

Evaluation: Cross-Validation In order to evaluate the performance of each of the
above classifiers, you will use 5-fold cross-validation. The purpose of cross-validation
is to estimate how a model will do on the testing data without repeatedly running
the model on the test data. This estimate can be used to select hyperparameters (the
learning rate, decision tree depth, etc.) that perform the best without looking at the
testing data.

To run 5-fold cross-validation, you will partition the training data into 5 equally-
sized disjoint sets (this has already been done for you). Then you will train each model
5 different times, each time training on 4 folds and evaluating on a different held-out
fold. For example, here are the training and evaluation folds for each of the 5 iterations
of cross-validation:

Training Folds Evaluation Fold

-------------- ---------------

1 2 3 4 5

1 2 3 5 4

1 2 4 5 3
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1 3 4 5 2

2 3 4 5 1

To measure the performance of the classifier, you will compute two different accura-
cies on each iteration of cross-validation, then average the accuracies across iterations
at the end. On the ith iteration of cross-validation, you should compute the accuracy
of the classifier when evaluating on the same 4 training folds that were used to train
the model, denoted accitrain, and the accuracy of the classifier when evaluating on the
1 held-out fold, denoted acciheld-out. Finally, the accuracies should be averaged across
iterations:

acctrain =
1

k

k∑
i=1

accitrain

accheld-out =
1

k

k∑
i=1

acciheld-out

accheld-out will be your estimate of how well the model will perform on the true test
data and acctrain is a useful statistic to use for analysis.

Additionally, you should compute a 95% confidence interval for the accuracy esti-
mates using the Student’s t-distribution. Confidence intervals require computing the
standard deviation of the accuracies

σtrain = std
(
[acc1train, acc2train, . . . ]

)
σheld-out = std

(
[acc1held-out, acc2held-out, . . . ]

)
The confidence interval is computed by

x̄± t · S√
n

where x̄ is the sample mean (either acctrain or accheld-out), S is the sample standard
deviation (either σtrain or σheld-out), and n is the number of observations, 5. t is the
critical value, which you can look up using the provided t-table.

Our implementation takes about 2-3 minutes to run the full cross-validation for all
of the models. When you are developing your code, we suggest reducing the number
of training examples that you use, which will speed up training. Then when you
need to generate the final numbers, use all of the provided data. You will find the
cross validation data already separated into 5 parts in the cross validation

folder of the madelon folder.

Evaluation: Testing After you have estimated the accuracy of each model via
cross-validation by computing accheld-out, you should compare your estimate to how
well the classifier actually does on a real test set. For each model, train it once on all
5 training folds and compute the accuracy on the testing data (which was never used
during cross-validation), denoted acctest.
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Then, use the provided Python code to plot acctrain, accheld-out, and acctest with error
bars for the training and held-out values. The plot together with the cross-validation
code is 48 points. You should turn in this plot in addition to your answers to the
following questions.

1. [3 Points] Rank the classifiers by the held-out and testing performances. Is the
order the same? Which did the best? The worst? Was your testing performance
estimate accheld-out similar to the real testing performance acctest? Comment on
your observations.

2. [3 Points] Which classifier had the highest training accuracy? Why?

3. [3 Points] Were the results statistically significant according to the 95% confi-
dence interval?4 If not, what could you change about the experiment to have a
tighter confidence interval?

4. [3 Points] Why is it important to be able to estimate the performance of a
classifier using a technique like cross-validation without repeatedly running that
classifier on the testing data?

Picking the Best Model For Madelon Leaderboard [5 points] After doing your
analysis, you should pick the best model out of the four and generate two predictions
on two unseen sets of Madelon datapoints. Both these sets of datapoints will only have
the X inputs and no corresponding y labels. This is because we want your models to
make a prediction, and we want to evaluate those predicted labels against the true
labels when you submit on gradescope.

The first set of datapoints is the leaderboard data. You will find this
data in the leaderboard folder of the madelon folder. By using the function
generate txt predictions() provided in the jupyter notebook, you will be able to
pass in your trained model and the leaderboard data into this function to generate
your prediction txt file which should be named labels 2a leaderboard.txt. This
text file of predictions will be evaluated, and your model’s accuracy will be displayed
on a leaderboard along with the results of all of your classmates. The performance
of your model on the leaderboard dataset is not graded but is eligible for
extra credit which is explained in more detail below.

The second set of datapoints is the hidden data which will be used to grade
your best model. Your model’s predictions will have to pass a certain undisclosed
threshhold for accuracy. Unlike the leaderboard predictions, you will not know the
accuracy of your model’s predictions after submission. Similar to the leaderboard
predictions, you can use the function generate txt predictions() to create the txt
file. This file should be named labels 2a hidden.txt

You should not be combining the training and testing data into one
larger training dataset in order to beat the leaderboard. We have devised
methods to test for this type of augmentation, and you will receive 0 points
for your work if it is detected.

4https://en.wikipedia.org/wiki/Student%27s_t-test
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(b) Feature Extraction [20 Points]: In the previous problem, you trained several dif-
ferent binary classifiers on a dataset that had features that were computed for you.
In this problem, you will generate the features yourself on a new dataset then run a
subset of the experiments from the previous problem using the features you create.

The dataset you will be working with is (a modified version of) the Badges dataset
from class. There are 1,000 training and 200 testing names. Each name has been given
a 0 or 1 label based on some secret labelling function that you are going to try and
learn with the binary classifiers. Since we only provide you with the names, you need
to convert them into features using the process described below.

For every name, you will generate 260 features (i.e., the final feature matrix should
be of size N × 260). Each feature will be a binary indicator feature which marks
whether the letter at a specific position in the name is equal to a predefined letter.
Specifically, for each of the 5 first letters of the first and last names, there will be 26
different binary features. Exactly one of these 26 features will be 1 for each position
in the name, and that feature is the index of the letter in the alphabet. If a name is
shorter than 5 letters long, all of the corresponding 26 features will be 0.

Concretely, assume there are only 2 letters in the alphabet, {a, b}, you are creating
features for the name ab aa using only the first two letters of the first and last names.
The corresponding features would look like this:

Feature ID: 0 1 2 3 4 5 6 7

Feature Value: 1 0 0 1 1 0 1 0

Feature 0 indicates whether or not the first letter of the first name is an a, feature
1 indicates whether or not the first letter of the first name is a b, feature 2 indicates
whether or not the second letter of the first name is an a, ..., feature 7 indicates whether
or not the second letter of the last name a b.

You should create this N × 260 feature matrix for the Badges data using the first
5 letters of the first and last names and all 26 letters of the alphabet (26 letters in
the alphabet × (5 letters in first name + 5 letters in last name) = 260 features). [18
Points] Implement this in the compute features function and turn it in to Grade-
scope for automatic testing. You should copy this function (and any necessary python
imports) into a file called hw1.py and upload that to Gradescope. Do not try to upload
the Jupyter Notebook.

After you have successfully implemented the featurization, train and test all of the
models from the previous problem on the badges data. You do not have to run the full
cross-validation (of course you can if you want to). You only need to train one model
on all of the training data and test that model on all of the testing data. Report the
accuracies on the training and testing data and answer the following questions:

1. [2 Points] Rank the models by their training and testing accuracies. Is the order
the same? Is the model which performed the best on the Madelon test dataset
the same as the one which performed the best on the Badges test dataset?

Picking the Best Model For Badges Leaderboard [5 points] After doing
your analysis, you should pick the model that you think performed the best out
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of the four. Similar to the instruction in problem 2a, You will use the function
generate txt predictions() to generate your model’s label predictions for both the
leaderboard and hidden datasets. Those prediction files should be respectively named
labels 2b leaderboard.txt and labels 2b hidden.txt. Make sure to submit these
text files in the code submission on Gradescope. This model should not be trained
with any extra features you added per the instructions on the extra credit.

Again, you should not be combining the training and testing data into
one larger training dataset in order to beat the leaderboard.

Extra Credit 1 [10 Points] Finally, for extra credit, come up with new features of
your own in addition to the 260 above for the badges dataset and see how well you
can do on the test set.

Explain your features [5 Points] Explain what features you added and the
impact they had on the model accuracy.

Predictions on leaderboard and hidden dataset [5 Points]
Use your best model and predict the labels on both the leaderboard and

hidden datasets from the badges folder. This model should be trained with
those additional features that you created. Make sure to name your leaderboard
data predictions labels ec leaderboard.txt and your hidden data predictions
labels ec hidden.txt). As with the previous prediction text files, you should use
the generate txt predictions() function to make your file.

If the accuracy for the hidden dataset predictions is above a specific threshold,
the test will pass and you will get extra credit. You will still receive extra credit for
experimenting with new features even if you are unable to pass the accuracy unit test.

Extra Credit 2 [15 Points] The top 5% of models on each leaderboard will receive
a 5 point bonus. So, if you submit three top models (problem 2a, 2b, and extra credit),
you will receive 15 points.

Submission Instructions

We will be using Gradescope to turn in both the Python code and writeup pdfs. You should
have been automatically added to Gradescope. If you do not have access, please ask the TA
staff on Piazza.

For this homework assignment, there are two Gradescope assignments:

– “Homework 1 - Code”: You must name all your files exactly as they appear in this
write up. Otherwise, the autograder will be unable to evaluate your work.

This is the assignment where you should upload your implementation of the
compute features function in a file called hw1.py.

Then, you should upload your leaderboard and hidden dataset predictions. The
leaderboard results are not graded but eligible for extra credit while the
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hidden predictions will be graded.

For problem 2a, you should upload labels 2a leaderboard.txt and
labels 2a hidden.txt.

For problem 2b, you should upload labels 2b leaderboard.txt and
labels 2b hidden.txt

For the extra credit, you should upload labels ec leaderboard.txt and
labels ec hidden.txt

Additionally, you should submit all of your code when you have finished the as-
signment (upload the individual Python files, zip them together, or upload the Jupyter
Notebook as a pdf).

– “Homework 1 - PDF”: This is the assignment where you should upload your writeup
as a PDF.

A Required Software

Before starting the programming exercises, you will need to make certain that you are
working on a computer with the following software:

1. python 3.6 (greater or equal)

2. numpy (http://www.numpy.org/)

3. scikit-lean (http://scikit-learn.org/stable)

To make sure that you have these libraries, run the following code:

from sklearn import tree

X = [[0, 0], [1, 1]]

y = [0, 1]

clf = tree.DecisionTreeClassifier()

clf = clf.fit(X, y)

clf.predict([[2, 2]])

If this code runs without error and gives you the following output:

array([1])

then everything should be configured correctly for this homework.
You can add from sklearn import linear model and substitute the 4th line with

linear model.SGDClassifier(...) for training an SGD model.
Also, (optionally) try to explore the method tree.export graphviz(...) to print the

decision tree graphically.
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