
CIS519: Applied Machine Learning Fall 2020

Homework 4

Handed Out: November 17, 2020 Due: December 3, 2020 at 11:59pm

Version 1

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include at the top of your
document the list of people you consulted with in the course of working on the homework.

• While we encourage discussion within and outside the class, cheating and copying code is strictly not
allowed. Copied code will result in the entire assignment being discarded at the very least.

• Please use Piazza if you have questions about the homework. Also, please come to the TAs recitations
and to the office hours.

• Handwritten solutions are not allowed. All solutions must be typeset in Latex. Consult the class’
website if you need guidance on using Latex. If you don’t have a lot of experience with Latex (or
even if you do), we recommend using Overleaf (https://www.overleaf.com) to write your solutions.
You will submit your solutions as a single pdf file (in addition to the package with your code; see
instructions in the body of the assignment).

• The homework is due at 11:59 PM on the due date. We will be using Gradescope for collecting the
homework assignments. You should have been automatically added to Gradescope. If not, please ask
a TA for assistance. Please do not hand in a hard copy of your write-up. Post on Piazza and contact
the TAs if you are having technical difficulties in submitting the assignment.

• Here are some resources you will need for this assignment:

– Notebook on Colab can be found here: https://colab.research.google.com/drive/

1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing You will need to File → Save a copy

in Drive in order to obtain a copy you can modify in your Colab drive.

– Latex template and data can be found here: https://www.seas.upenn.edu/~cis519/

fall2020/assets/HW/HW4/hw4-materials.zip

1 Neural Networks [40 points]

In this problem, you will implement two different neural network architectures to do image
classification with the CIFAR-10 image dataset.1 The goal of this problem is to better
understand how to build different neural network architectures for image data and implement
a multi-class classifier.

1.1 GPU Usage

Neural networks take a notoriously long time to train (even longer than the Perceptron-
based models in Homework 2). The training time can be significantly reduced by using
computation on the GPU rather than the CPU. Luckily, Google Colab allows for limited
free access to a GPU. We strongly suggest you use Google Colab for this assignment to get
access to the GPU.2

1https://www.cs.toronto.edu/~kriz/cifar.html
2For comparison, the FeedForward and Convolutional models take 1 and 2 minutes to train with the

GPU and 5 and 6 minutes on the CPU.

1

https://www.overleaf.com
https://colab.research.google.com/drive/1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing
https://colab.research.google.com/drive/1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing
https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW4/hw4-materials.zip
https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW4/hw4-materials.zip
https://www.cs.toronto.edu/~kriz/cifar.html

To setup a Jupyter Notebook with the GPU access, follow these steps:

1. Create a new notebook at https://colab.research.google.com. This will create a
Jupyter Notebook that is saved on your Google Drive. When you execute a cell on
Colab, the code will be running on a cloud server instead of your local laptop/computer.

2. In the top menu bar, select “Runtime” then “Change runtime type.”

3. Select “Python 3” and then “GPU” from the dropdown menus

Now the notebook is configured to use the GPU, however you will need to ensure that
the PyTorch code also uses the GPU. When you create a tensor, you must move it from the
CPU to the GPU (this has already been done for you in the template code):

X = torch.LongTensor([[1, 2, 3], [4, 5, 6]]) # CPU

X = X.cuda() # Move to GPU

Then you also need to make sure that your model’s parameters are on the GPU, which can
be done like this:

network = FeedForward() # Initialize a model

network.cuda() # Moves the parameters to the GPU

The template code also does this, but you need to make sure you also do this for the code
which you will write.

To obtain a copy of the notebook for this assignment, follow this link: https://colab.

research.google.com/drive/1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing. In
order to take advantage of Google Colab’s GPU access, we will run this homework
on Google Colab.

1.2 Dataset

The CIFAR-10 dataset contains tens of thousands of images that have been classified in ten
different categories, such as “airplane,” “cat”, and “horse.” Each image is 32 × 32 pixels
large and is represented uses the RGB format. Therefore, each image is represented as a
(3 × 32 × 32) matrix where each value is a number between 0 and 255 (inclusive). Each of
the three channels corresponds to the red, green, or blue channels of the image.

The dataset has been prepared for you to download. The Python template automatically
downloads the data and loads it into memory for you, so you only need to execute the
respective cells. The images are stored as a (N×3×32×32) matrix, where N is the number
of images. The respective labels are stored as a vector of size N with an integer in the range
0 to 9 where each integer represents a class label. You will use the DataLoader PyTorch
library to break the data into batches of 64 images. This has already been implemented for
you in the template code.

2

https://colab.research.google.com
https://colab.research.google.com/drive/1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing
https://colab.research.google.com/drive/1AWUhNJGRJpjzfwj9SIJXjaEIQYYTMWGj?usp=sharing

1.3 Experiments [20 points results, 20 points implementation]

You will implement two different neural network architectures and train each of them with
stochastic gradient descent with several different learning rates to find the best one. You
should use the torch.nn.CrossEntropyLoss loss function and train for 200 epochs. For
each network, you should compare each of the learning rates by plotting the following data:

1. The average loss per training instance on each epoch3

2. The average loss per validation instance on each epoch

3. The accuracy on the validation dataset on each epoch

Then for each network, pick the learning rate which had the highest final validation accuracy
and compute the accuracy on the test set for that model. Report this accuracy.

FeedForward [5 points] The first network you will implement is a two-layer feed-forward
neural network with a hidden layer of size 1000. Each layer should be implemented using
the torch.nn.Linear module. The input matrix will be sized (B × 3 × 32 × 32) where B
is the batch size (64 in our case). To pass the data through the Linear module, you need
to reshape the matrix to be size (B × 3072) with the reshape method. Then the data can
be passed through the first layer which will output a (B × 1000) matrix. You should apply
a ReLU activation on this matrix then pass it through the second linear module to get a
(B × 10) matrix which corresponds the model’s score for each of the 10 classes.

In summary, this is the order that the data should be processed:

Layer/Function Hyperparameters
reshape n/a
Linear Input size = 3072, Output size = 1000

torch.relu n/a
Linear Input size = 1000, Output size = 10

You should try learning rates {0.0001, 0.00005, 0.00001}. Your implementation of this net-
work will be unit tested.

Convolutional [15 points] The second network is based on a series of convolution oper-
ations followed by several feed-forward layers. The architecture should be the following:

3There are two ways to compute this. The first is to train for 1 full epoch, then recompute the losses for
every training batch without updating the parameters. The second is to estimate this value by computing
it while you are training. For example, compute the loss for 1 batch, add this loss value to a variable which
will compute the total training loss, backpropagate the loss from the batch, then move on to the next batch.
While the latter method does compute the true training loss exactly, you can choose to implement either
method.

3

Layer/Function Hyperparameters
Conv2d in channels = 3, out channels 7, kernel size 3, stride = 1, padding = 0

MaxPool2d kernel size = 2, stride = 2
Conv2d in channels = 7, out channels = 16, kernel size = 3, stride = 1, padding = 0

torch.relu n/a
reshape n/a
Linear input size = 2704, output size = 130

torch.relu n/a
Linear input size = 130, output size = 72

torch.relu n/a
Linear input size = 72, output size = 10

torch.sigmoid n/a

You should try learning rates {0.01, 0.001, 0.0001}. Your implementation of this network will
be unit tested.

1.4 Extra Credit: Image Normalization [5 points]

Pixel values for images are in the range from 0 to 255. Large input values can sometimes
make neural network training unstable, so pixel values are often normalized before training.

One way to normalize images is as follows. Assume you have your training, validation,
and test images in tensors Xtrain, Xvalid, Xtest, which are of size (Ntrain × 3 × 32 × 32),
(Nvalid × 3 × 32 × 32), and (Ntest × 3 × 32 × 32). Compute the mean and the standard
deviations of the 3 channels on the training data. Then normalize the training, validation,
and testing data based on those values. For example, if mu 0 and std 0 are the means and
standard deviations of the first training channel, you can normalize the first channels of the
train, validation, and test as follows:

X_train[:, 0] = (X_train[:, 0] - mu_0) / std_0

X_valid[:, 0] = (X_valid[:, 0] - mu_0) / std_0

X_test[:, 0] = (X_test[:, 0] - mu_0) / std_0

For extra credit, repeat the above experiments with normalized images. For both the
FeedForward and the Convolutional networks, you may have to try different learning rates
than you used for the non-normalized images. Report what learning rates you used, show
the same plots as in the original experiment, and discuss whether or not you were able to get
improved performance with either the FeedForward or Convolutional models by normalizing
the images.

1.5 What to Report

You should include the following information in your report for each of the two network
architectures

1. The average training loss plot

4

2. The average validation loss plot

3. The validation accuracy plot

4. The final validation accuracy for each learning rate

5. The test accuracy for the best learning rate

2 Document Classification [40 Points]

In this problem, you will develop Naive Bayes-based models to do text classification. The
task of text classification to is label a piece of text with one class out of a predefined set of
classes.

2.1 Dataset

The dataset you will use for the experiments will be a sentiment analysis dataset from
IMDb. Each document is a review of a movie and has been labeled as either a positive
or negative review. We have provided for you training, validation, and testing splits in
data/train.jsonl, data/valid.jsonl, and data/test.jsonl. We have also provided the
Python code to load the documents into memory. Each document has been pre-processed
with tokenization4 and lemmatization.5

2.2 Document Representation [5 points]

You will experiment with three different ways to represent the documents. “Representation”
means how you convert the raw text of a document to a feature vector. Similar to Homework
2, you will use a sparse representation of the feature vectors which is based on a dictionary
that maps from the feature name to the feature value. For each representation, there will
be exactly 1 feature per unique token in the vocabulary, but the value of that feature will
change.

Vocabulary Creation The vocabulary is the set of tokens that you will use to compute
features. There is some nuance to how to select which tokens from the dataset should be
part of the vocabulary. If you use all of the tokens in the training data, there could be a
token that appears for the first time in the test set, and it’s not clear what to do with that
token. A common solution to this problem is to map infrequent words in the training data
to a token called <unk>, compute the features with the <unk> tokens, then map the novel
test words to <unk>. You will do exactly that.

For each of the experiments below, you should create the vocabulary by taking all of the
tokens in the training data which appear more than once plus a special <unk> token. You

4We say “token” instead of “word” because it is more general and covers symbols like punctuation which
we treat as their own tokens separate from the surrounding words. “Tokenization” is splitting raw text into
individual tokens.

5https://en.wikipedia.org/wiki/Lemmatisation

5

https://en.wikipedia.org/wiki/Lemmatisation

should still estimate probabilities for the <unk> token. At test time, any unknown words
should be treated as <unk>s.

Representations We will use fd(v) to denote the value for feature v and document d.
The three ways that you should represent each document (and the corresponding Python

functions to implement) are described below.
Note that we have already implemented the first two, (1) Binary Bag-of-Words and (2)

Count Bag-of-Words for you. It is up to you to implement TF-IDF.

1. Binary Bag-of-Words Each document should be represented with binary features,
one for each token in the vocabulary.

fd(v) =

{
1 if v ∈ d
0 otherwise

(1)

Since you are using a sparse representation, you do not need to remember which
tokens are not present in each document, only those which are present.

2. Count Bag-of-Words Instead of having a binary feature for each token, you should
keep count of how many times the token appears in the document, a quantity known
as term frequency and denoted tf(d, v).

fd(v) = tf(d, v) (2)

3. TF-IDF Model The final representation will use the TF-IDF score of each token.
The TF-IDF score combines how frequently the word appears in the document as well
as how infrequently that word appears in the document collection as a whole. First,
the inverse document frequency (IDF) of a token is defined as

idf(v) = log
|D|

|{d : v ∈ d, d ∈ D}|
(3)

Here, D is the set of documents6 and the denominator is the number of documents
that the token v appears in. Use the numpy.log() function to compute the log. Then,
the TF-IDF feature you should use is

fd(v) = tf(d, v)× idf(v) (4)

2.3 Naive Bayes Experiment [35 Points]

In the first experiment, you will build three Naive Bayes classifiers, each one using one of
the above document representations, and compare their performances on the test dataset.

Recall that the prediction rule for Naive Bayes is

arg max
y
P (d | y) · P (y) (5)

6You should use only the training documents to compute the IDF score. (A previous version of this
assignment said you should use the training, validation, and testing. It is OK if you do either of these two
options.)

6

and so you need to compute those two quantities. The simpler of the two quantities P (y)
can be computed by counting the number of times each label appears divided by the total
number of instances.

P (y) =
|{d : yd = y}|

|D|
(6)

The other quantity can be computed as follows. Under the Naive Bayes assumption,
P (d | y) is defined as

P (d | y) =
∏
v∈d

P (v | y) (7)

For this question, you will use the features to compute P (v | y) as follows:

P (v | y) =

∑
d∈D:yd=y fd(v)∑

w∈V
∑

d∈D:yd=y fd(w)
(8)

The summands in the numerator and inner summand of the denominator are over all of the
documents in the training data that have label y. The outer summand of the denominator
is over all of the words in the vocabulary.

Finally, as you saw in class, you will implement Laplace smoothing on P (v | y) as follows:

P (v | y) =
k +

∑
d∈D:yd=y fd(v)

k · |V|+
∑

w∈V
∑

d∈D:yd=y fd(w)
(9)

where k is a hyperparameter which controls the strength of the smoothing. This is the final
equation which you should implement to build your Naive Bayes classifier.

Implementation Details When you are computing the values for the prediction rule
(Equation 5), you need to multiply many probabilities together, which may result in under-
flow. Instead, you should implement the classifier in log-space. That is, instead of computing
with probabilities P (v | y), you should compute with logP (v | y) and use the following equa-
tion as the prediction rule:

arg max
y
P (d | y) · P (y) =

∏
v∈d

P (v | y) · P (y) (10)

=
∑
v∈d

logP (v | y) + logP (y) (11)

Note that there is a term in the summand for each token in the document, so if a token
appears twice, you will add the corresponding term twice.

What to Report For each of the three document representations, run a hyperparameter
sweep over the smoothing parameter k ∈ {0.001, 0.01, 0.1, 1.0, 10.0} using the training and
validation data. Then, using the best value of k for each representation, report and compare
the test performance. Use accuracy to evaluate the models. Note that the most complicated
document representation may not get the best results.

Answer the following question: As the value of k goes to infinity, what will happen to
P (y | d)? Describe this both in terms of the mathematical equation and in words.

7

3 Theory [20 points]

3.1 Multivariate Exponential näıve Bayes [15 points]

In this question, we consider the problem of classifying piazza posts (Y) into two categories:
student posts (A), and instructor posts (B). For every post, we have two attributes: number
of words (X1), and number of mathematical symbols (X2). We assume that each attribute
(Xi, i = 1, 2) is related to a post category (A/B) via an Exponential distribution7 with a
particular mean (λ−1A;i/λ

−1
B;i). That is

P (Xi = x | Y = A) = e−xλA;iλA;i and P (Xi = x | Y = B) = e−xλB;iλB;i for i = 1, 2

X1 X2 Y
1 4 A
3 9 A
4 6 A
7 3 B
2 6 B
3 0 B
6 5 B

Table 1: Dataset for Exponential näıve Bayes

Assume that the given data in Table 1 is generated by a Exponential näıve Bayes model.
You will use this data to develop a näıve Bayes predictor over the Exponential distribution.

P (Y=A) = P (Y=B) =
λA;1 = λB;1 =
λA;2 = λB;2 =

Table 2: Parameters for Exponential näıve Bayes

1. [5 points] Compute the prior probabilities (P (Y = A) and P (Y = B)). Use maximum
likelihood estimation to find the corresponding λ parameter values. Fill in the results
in Table 2. Please show all the intermediate steps and results.

2. [5 points] Based on the parameter values from Table 2, compute

P (X1=3, X2=5|Y=A)

P (X1=3, X2=5|Y=B)

Write the full expression. You do not need to simplify.

7http://en.wikipedia.org/wiki/Exponential distribution

8

3. [2.5 points] Write the decision rule for the Exponential Naive Bayes predictor based
on the previous equation. The answer we are looking for uses an if statement based
on the value of the previous ratio and an additional probability term.

4. [2.5 points] Using the parameter values you estimated in the previous steps and the
decision rule, what will the classifier predict as the value of Y , given the data point:
X1=3, X2=5?

3.2 Coin Toss [5 points]

Consider the following way to generate a series of Heads and Tails. For each element in the
series, first a coin is tossed. If it comes up as a T , it is shown to the user. On the other
hand, if the coin toss comes up as an H, then the coin is tossed the second time, and the
outcome of this toss is shown to the user.
Assume that the probability of a coin toss coming up as an H is p (and hence, the probability
of it coming up as a T is 1 − p). Suppose you see a sequence TTHTHHTHTT generated
based on the scheme given above. What is the most likely value of p?
(Assume a Bernoulli model to compute probability of the coin toss sequence.)

Submission Instructions

We will be using Gradescope to turn in both the Python code and writeup pdfs. You should
have been automatically added to Gradescope. If you do not have access, please ask the TA
staff on Piazza.

For this homework assignment, there are two Gradescope assignments:

– “Homework 4 - Code”: This is the assignment where you should upload your
a python version of your Jupyter Notebook. Note that for this homework, we
are asking you to submit all of your final code. Submit your implementations
of FeedForward, Convolutional, TFIDFFeaturizer, compute idf, get vocabulary,
train naive bayes, and predict naive bayes for unit testing. Also submit any other
code you used to run experiments, generate plots, and run hyperparameter sweeps,
etc., but comment it out. (The only non-commented-out sections should be the import
statements and functions listed in the previous sentence.) Please name your file hw4.py

– “Homework 4 - PDF”: This is the assignment where you should upload your writeup
as a PDF.

9

	Neural Networks [40 points]
	GPU Usage
	Dataset
	Experiments [20 points results, 20 points implementation]
	Extra Credit: Image Normalization [5 points]
	What to Report

	Document Classification [40 Points]
	Dataset
	Document Representation [5 points]
	Naive Bayes Experiment [35 Points]

	Theory [20 points]
	Multivariate Exponential naïve Bayes [15 points]
	Coin Toss [5 points]

