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Administration (12/02/20)
• Remember that all the lectures are available on the website before the class

– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more details, examples and, (when relevant) some code. 

• HW4 is out – NNs and Bayesian Learning
– Due 12/3  12/7 (Next Monday)

• HW5 will be out tomorrow, 12/3. Due 12/10 (last day of the semester).
– It is mostly a summary of the material we covered this semester (with a focus on the second half) and will help you prepare for the exam.
– No programming. 
– We will give an extension until a few days before the exam.

• Next week is the last week of classes – there will be three meetings (Monday, Wednesday, Thursday)

• Projects
– You should have received an email from one of the TAs that will help guide your project
– Progress reports are due today. Check the course’s web site

• The Final is on 12/18; it is scheduled for 9am; we will try to given you a larger window of time. 
• Project Paper and Video Submission: 12/21 

Are we recording? YES!

Available on the web site
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Projects
• CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage

– Teams will be of size 2-4
– We will help grouping if needed

• There will be 3 options for projects. 
– Natural Language Processing (Text)
– Computer Vision (Images)
– Speech (Audio)

• In all cases, we will give you datasets and initial ideas
– The problem will be multiclass classification problems
– You will get annotated data only for some of the labels, but will also have to predict other labels
– 0-zero shot learning; few-shot learning; transfer learning

• A detailed note will come out today. 

• Timeline:
– 11/11 Choose a project and team up
– 11/23 Initial proposal describing what your team plans to do 
– 12/2 Progress report: 1 page. What you have done; plans; problems. 
– 12/21 Final paper + short video

• Try to make it interesting! 

https://www.seas.upenn.edu/%7Ecis519/fall2020/cis519-fall20-projects.pdf
https://www.seas.upenn.edu/%7Ecis519/fall2020/project.html
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From NB to Logistic Regression
• Naïve Bayes and Logistic Regression:

– https://colab.research.google.com/drive/1xWrXz0vs3PpTlBqWbJ9JYxAGui49sOra?usp=sharing#scrollTo=gG9pycPfUOrr

https://colab.research.google.com/drive/1xWrXz0vs3PpTlBqWbJ9JYxAGui49sOra?usp=sharing#scrollTo=gG9pycPfUOrr
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Summary: Basic Probability
• Product Rule:   𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴|𝐵𝐵)𝑃𝑃(𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
• If 𝐴𝐴 and 𝐵𝐵 are independent:   

– 𝑃𝑃(𝐴𝐴,𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵); 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐴𝐴|𝐵𝐵,𝐶𝐶) = 𝑃𝑃 𝐴𝐴 𝐶𝐶
• Sum Rule: 𝑃𝑃(𝐴𝐴∨𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴,𝐵𝐵)
• Bayes Rule: 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴) 𝑃𝑃(𝐴𝐴)/𝑃𝑃(𝐵𝐵)
• Total Probability: 

– If events 𝐴𝐴1,𝐴𝐴2, …𝐴𝐴𝑛𝑛 are mutually exclusive: 𝐴𝐴𝑖𝑖 ∧ 𝐴𝐴𝑗𝑗 𝐴𝐴𝑗𝑗 = Φ,∑𝑖𝑖 𝑃𝑃(𝐴𝐴𝑖𝑖) = 1
– 𝑃𝑃(𝐵𝐵) = ∑ 𝑃𝑃(𝐵𝐵 ,𝐴𝐴𝑖𝑖) = ∑𝑖𝑖 𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖) 𝑃𝑃(𝐴𝐴𝑖𝑖)

• Total Conditional Probability: 
– If events 𝐴𝐴1,𝐴𝐴2, …𝐴𝐴𝑛𝑛 are mutually exclusive: 𝐴𝐴𝑖𝑖 ∧ Aj 𝐴𝐴𝑗𝑗 = Φ, ∑𝑖𝑖 𝑃𝑃(𝐴𝐴𝑖𝑖) = 1
– P 𝐵𝐵 𝐶𝐶 = ∑ 𝑃𝑃 𝐵𝐵 ,𝐴𝐴𝑖𝑖 𝐶𝐶 = ∑𝑖𝑖 𝑃𝑃(𝐵𝐵|𝐴𝐴𝑖𝑖 ,𝐶𝐶) 𝑃𝑃(𝐴𝐴𝑖𝑖|𝐶𝐶)
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Expectation of a Random Variable
• Let 𝑋𝑋 be a random variable with arity 𝑘𝑘 that takes the values  

{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 } with probabilities {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘 }, respectively,
with ∑𝑖𝑖=1𝑘𝑘 𝑝𝑝𝑖𝑖 = 1

• Then, the expectation of the random variable 𝑋𝑋 is:

𝐸𝐸[𝑋𝑋] = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝(𝑋𝑋 = 𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖

– Example: Let X be the outcome of tossing a fair 6-sided dice: E[X] = 3.5
• Important property: 

– Linearity:          𝐸𝐸[𝑋𝑋 + 𝑌𝑌] = 𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑌𝑌]
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Semi-Supervised Learning
• Consider the problem of Prepositional Phrase Attachment. 

– Buy car with money          ; buy car with wheel 

• Predict: noun (n) attachment  or verb (v) attachment
– Car with (n) or Buy with (v)

• There are several ways to generate features. 
– E.g., we can assume that all possible conjunctions of the 4 attributes are 

used. (15 feature in each example).  Assume that we have k features

• Assume that we use naïve Bayes for learning to decide between [𝑛𝑛, 𝑣𝑣]
– Examples are:  (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘, [𝑛𝑛, 𝑣𝑣])
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Using Naïve Bayes
• To use naïve Bayes, we need to use the data to estimate:        

𝑃𝑃(𝑛𝑛) 𝑃𝑃(𝑣𝑣)
𝑃𝑃(𝑥𝑥1|𝑛𝑛) 𝑃𝑃(𝑥𝑥1|𝑣𝑣)
𝑃𝑃(𝑥𝑥2|𝑛𝑛) 𝑃𝑃(𝑥𝑥2|𝑣𝑣)

……
𝑃𝑃(𝑥𝑥𝑘𝑘|𝑛𝑛) 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑣𝑣)

• Then, given an example (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛, ? ), compare:
𝑃𝑃(𝑛𝑛|𝑥𝑥)~ = 𝑃𝑃(𝑛𝑛) 𝑃𝑃(𝑥𝑥1|𝑛𝑛) 𝑃𝑃(𝑥𝑥2|𝑛𝑛) … 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑛𝑛)

and
𝑃𝑃(𝑣𝑣|𝑥𝑥)~ = 𝑃𝑃(𝑣𝑣) 𝑃𝑃(𝑥𝑥1|𝑣𝑣) 𝑃𝑃(𝑥𝑥2|𝑣𝑣) … 𝑃𝑃(𝑥𝑥𝑘𝑘|𝑣𝑣)

Assume we will use naïve Bayes for learning to decide 
between 𝑛𝑛, 𝑣𝑣 ; Examples are:  (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘, [𝑛𝑛, 𝑣𝑣])



CIS 419/519 Fall’20 9

Using Naïve Bayes
• After seeing 10 examples, we have:   
• 𝑃𝑃(𝑛𝑛) = 0.5; 𝑃𝑃(𝑣𝑣) = 0.5

𝑃𝑃(𝑥𝑥1|𝑛𝑛) = 0.75;𝑃𝑃(𝑥𝑥2|𝑛𝑛) = 0.5; 𝑃𝑃(𝑥𝑥3|𝑛𝑛) = 0.5; 𝑃𝑃(𝑥𝑥4|𝑛𝑛) = 0.5
𝑃𝑃(𝑥𝑥1|𝑣𝑣) = 0.25; 𝑃𝑃(𝑥𝑥2|𝑣𝑣) = 0.25;𝑃𝑃(𝑥𝑥3|𝑣𝑣) = 0.75;𝑃𝑃(𝑥𝑥4|𝑣𝑣) = 0.5

• Then, given an example 𝑥𝑥 = (1000), we have:
𝑃𝑃𝑛𝑛(𝑥𝑥)~ = 0.5 × 0.75 × 0.5 × 0.5 × 0.5 = 3/64
𝑃𝑃𝑣𝑣(𝑥𝑥)~ = 0.5 × 0.25 × 0.75 × 0.25 × 0.5 = 3/256

– For x=0101 you will get:     𝑃𝑃𝑛𝑛(𝑥𝑥)~ = 1/64 =8/512        𝑃𝑃𝑣𝑣(𝑥𝑥)~ = 9/512
• Now, assume that in addition to the 10 labeled examples, we also have 

100 unlabeled examples.
• Will that help? 
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Using Naïve Bayes
• For example, what can be done with the example (1000) ?

– We have an estimate for its label…
– But, can we use it to improve the classifier (that is, the estimation of the 

probabilities that we will use in the future)?

• Option 1: We can make predictions, and believe them
– Or some of them (based on what?)

• Option 2: We can assume the example 𝑥𝑥 = (1000) is a 
– An 𝑛𝑛-labeled  example with probability  𝑃𝑃𝑛𝑛 𝑥𝑥

𝑃𝑃𝑛𝑛 𝑥𝑥 + 𝑃𝑃𝑣𝑣 𝑥𝑥

– A 𝑣𝑣-labeled example with probability     𝑃𝑃𝑣𝑣 𝑥𝑥
𝑃𝑃𝑛𝑛 𝑥𝑥 + 𝑃𝑃𝑣𝑣 𝑥𝑥

• Estimation of probabilities does not require working with integers!

What do we do once 
we have these labels? 

We estimate the most likely parameters:  
𝑃𝑃 𝑛𝑛 ,𝑃𝑃 𝑣𝑣 ; 𝑃𝑃 𝑥𝑥𝑖𝑖 𝑛𝑛 ,𝑃𝑃(𝑥𝑥𝑥𝑥|𝑣𝑣)

That is, we run NB again
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Using Unlabeled Data
The discussion suggests several algorithms:

1. Use a threshold. Chose examples labeled with high 
confidence. Label them [𝑛𝑛, 𝑣𝑣]. Retrain.

2. Use fractional examples. Label the examples with fractional 
labels [𝑝𝑝 of 𝑛𝑛, (1 − 𝑝𝑝) of 𝑣𝑣]. Retrain.
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Comments on Unlabeled Data
• Both algorithms suggested can be used iteratively.
• Both algorithms can be used with other classifiers, not  only naïve Bayes. 

The only requirement – a robust confidence measure in the classification.
• There are other approaches to Semi-Supervised learning: 

– Most are conceptually similar: bootstrapping algorithms, self-training
– Some are “graph-based” algorithms: assume “similar” examples have “similar 

labels”.

• What happens if instead of 10 labeled examples we start with 
0 labeled examples?
– Make a Guess; continue as above; a version of EM 
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EM
• EM is a class of algorithms that is used to estimate a 

probability distribution in the presence of missing attributes. 
– Using it requires an assumption on the underlying probability 

distribution.

• The algorithm can be very sensitive to this assumption and to 
the starting point (that is, the initial guess of parameters). 
– In general, known to converge to a local maximum of the maximum 

likelihood function. 
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Three Coin Example
• We observe a series of coin tosses generated in the following 

way: 
• A person has three coins.

– Coin 0: probability of Head is 𝛼𝛼
– Coin 1: probability of Head 𝑝𝑝
– Coin 2: probability of Head 𝑞𝑞

• Consider the following coin-tossing scenarios:
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Estimation Problems
• Scenario I: Toss one of the coins four times.

Observing  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
Question: Which coin is more likely to produce this sequence ? 

• Scenario II: Toss coin 0. If Head – toss coin 1; otherwise – toss coin 2
Observing the sequence  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
produced by Coin 0 , Coin1 and Coin2
Question: Estimate most likely values for 𝑝𝑝, 𝑞𝑞 (the probability of 𝐻𝐻 in each coin) and the probability 

to use each of the coins (α)
– (Mixing the Coin1 and Coin2 distributions) 

• Scenario III: Toss coin 0. If Head – toss coin 1, o/w – toss coin 2
Observing the sequence  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
each 4 consecutive tosses are produced by Coin 1 or Coin 2 
Question: Estimate most likely values for 𝑝𝑝, 𝑞𝑞 and α

– (Coin0 is a hidden (latent) variable) 

There is no known analytical solution to this problem (general setting). 
That is, it is not known how to compute the values of the parameters 
so as to maximize the likelihood of the data.

Coin 0

1st toss
2nd

toss
4th  
toss
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Key Intuition (1)
• If we knew which of the data points (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) came from Coin 1 and which 

from Coin 2, there was no problem.

• Recall that the “simple” estimation is the ML estimation:
• Assume that you toss a (𝑝𝑝, 1 − 𝑝𝑝) coin 𝑚𝑚 times and get 𝑘𝑘 Heads 𝑚𝑚 − 𝑘𝑘 Tails.

log[𝑃𝑃(𝐷𝐷|𝑝𝑝)] = log[𝑝𝑝𝑘𝑘 1 − 𝑝𝑝 𝑚𝑚−𝑘𝑘] = 𝑘𝑘 log 𝑝𝑝 + (𝑚𝑚 − 𝑘𝑘) log(1 − 𝑝𝑝)

• To maximize, set the derivative w.r.t. 𝑝𝑝 equal to 0:

𝑑𝑑
log𝑃𝑃 𝐷𝐷 𝑝𝑝

𝑑𝑑𝑑𝑑
=
𝑘𝑘
𝑝𝑝

–
𝑚𝑚 − 𝑘𝑘
1 − 𝑝𝑝

= 0

• Solving this for 𝑝𝑝, gives:      𝑝𝑝 = 𝑘𝑘
𝑚𝑚
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Key Intuition (2)
• If we knew which of the data points (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) came from Coin 1 and which 

from Coin 2, there was no problem.
• Instead, use an iterative approach for estimating the parameters:

– Guess the probability that a given data point came from Coin 1 or 2;   Generate fictional labels, weighted 
according to this probability.

– Now, compute the most likely value of the parameters. [recall NB example]
– Compute the likelihood of the data given this model.
– Re-estimate the initial parameter setting: set them to maximize  the likelihood of the data.

(Labels Model Parameters) Likelihood of the data
• This process can be iterated and can be shown to converge to a local maximum of the likelihood 

function
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EM Algorithm (Coins) -I

𝑃𝑃1𝑖𝑖 = 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝐷𝐷𝑖𝑖) =
𝑃𝑃(𝐷𝐷𝑖𝑖|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

𝑃𝑃(𝐷𝐷𝑖𝑖)
=

=
�𝛼𝛼 �𝑝𝑝ℎ(1 − �𝑝𝑝)𝑚𝑚−ℎ

�𝛼𝛼 �𝑝𝑝ℎ(1 − �𝑝𝑝)𝑚𝑚−ℎ + (1 − �𝛼𝛼) �𝑞𝑞ℎ(1 − �𝑞𝑞)𝑚𝑚−ℎ

• We will assume (for a minute) that we know the parameters �𝑝𝑝, �𝑞𝑞, �𝛼𝛼 and use it to estimate which Coin it 
is (Problem 1)

• Then, we will use this “label” estimation of the observed tosses, to estimate the most likely parameters 
– and so on...

• Notation: 𝑛𝑛 data points; in each one: m tosses each, ℎ𝑖𝑖 heads in the i-th data point 𝐷𝐷𝑖𝑖

• What is the probability that the i-th data point, 𝐷𝐷𝑖𝑖, came from Coin 1 ?
• STEP 1 (Expectation Step):    (Here ℎ = ℎ𝑖𝑖 )
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EM Algorithm (Coins) - II
• Now, we would like to compute the likelihood of the data, and 

find the parameters that maximize it.
• We will maximize the log likelihood of the data (𝑛𝑛 data points)  

– 𝐿𝐿𝐿𝐿 = ∑1𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷𝑖𝑖|𝑝𝑝, 𝑞𝑞,α)
• But, one of the variables – the coin’s name - is hidden. We can 

marginalize:
– 𝐿𝐿𝐿𝐿 = ∑𝑖𝑖=1

𝑛𝑛 log∑𝑦𝑦=0,1 𝑃𝑃(𝐷𝐷𝑖𝑖 ,𝑦𝑦 | 𝑝𝑝, 𝑞𝑞,α)

• However, the sum is inside the log, making ML solution 
difficult. 



CIS 419/519 Fall’20

LL= ∑𝑖𝑖=1,𝑛𝑛 log ∑𝑦𝑦=0,1 𝑃𝑃(𝐷𝐷𝑖𝑖 ,𝑦𝑦 | 𝑝𝑝, 𝑞𝑞,α) =
= ∑𝑖𝑖=1,𝑛𝑛log∑𝑦𝑦=0,1𝑃𝑃(𝐷𝐷𝑖𝑖|𝑝𝑝, 𝑞𝑞,α )𝑃𝑃(𝑦𝑦|𝐷𝐷𝑖𝑖 ,𝑝𝑝,𝑞𝑞,α)

= ∑𝑖𝑖=1,𝑛𝑛log𝐸𝐸𝑦𝑦 𝑃𝑃(𝐷𝐷𝑖𝑖 |𝑝𝑝, 𝑞𝑞,α) ≥
≥ ∑𝑖𝑖=1,𝑛𝑛𝐸𝐸𝑦𝑦 log𝑃𝑃(𝐷𝐷𝑖𝑖 |𝑝𝑝, 𝑞𝑞,α)

Where the inequality is due to Jensen’s Inequality 
(concave case).
We maximize a lower bound on the Likelihood. 

20

EM Algorithm (Coins) - II
– Instead of maximizing the LL we will maximize 

the expectation of the LL of the data (over the 
coin’s name, 𝑦𝑦). 𝐸𝐸[𝐿𝐿𝐿𝐿] = 𝐸𝐸[∑𝑖𝑖=1

𝑛𝑛 log𝑃𝑃(𝐷𝐷𝑖𝑖| 𝑝𝑝, 𝑞𝑞,α)]
– Explanation:

• Since the variable 𝑦𝑦 is not observed, we cannot 
use the complete-data log likelihood. Instead, we 
use the expectation of the complete-data log 
likelihood under the posterior distribution of 𝑦𝑦 to 
approximate log𝑃𝑃(𝐷𝐷𝑖𝑖| 𝑝𝑝, 𝑞𝑞,𝛼𝛼) [see above]

• We think of the likelihood log𝑃𝑃(𝐷𝐷𝑖𝑖|𝑝𝑝, 𝑞𝑞,α)as a 
random variable that depends on the value y of 
the coin in the i-th toss. Therefore, instead of 
maximizing the LL we will maximize the 
expectation of this random variable (over the 
coin’s name).  [Justified using Jensen’s Inequality] 
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EM Algorithm (Coins) - III
• We maximize the expectation of this random variable (over the coin name).    
• 𝐸𝐸[𝐿𝐿𝐿𝐿] = 𝐸𝐸[∑𝑖𝑖=1𝑛𝑛 log𝑃𝑃(𝐷𝐷𝑖𝑖| 𝑝𝑝, 𝑞𝑞,α)] = ∑𝑖𝑖=1

𝑛𝑛 𝐸𝐸[log𝑃𝑃(𝐷𝐷𝑖𝑖| 𝑝𝑝, 𝑞𝑞,α)] = (some math; see below)     

= ∑𝑖𝑖=1
𝑛𝑛 𝑃𝑃1𝑖𝑖 log𝑃𝑃(𝐷𝐷𝑖𝑖 , 1 | 𝑝𝑝, 𝑞𝑞,α)] + (1 − 𝑃𝑃1𝑖𝑖) log𝑃𝑃(𝐷𝐷𝑖𝑖 , 2 | 𝑝𝑝, 𝑞𝑞,α)]

− 𝑃𝑃1𝑖𝑖 log𝑃𝑃1𝑖𝑖 − (1 − 𝑃𝑃1𝑖𝑖) log(1− 𝑃𝑃1𝑖𝑖 )
(Does not matter when we maximize)

• This is due to the linearity of the expectation and the random variable definition
𝐸𝐸 𝐿𝐿𝐿𝐿 = 𝐸𝐸[�

𝑖𝑖=1

1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷𝑖𝑖|𝑝𝑝,𝑞𝑞,𝛼𝛼)]

= �
𝑖𝑖=1

1

𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷𝑖𝑖|𝑝𝑝,𝑞𝑞,𝛼𝛼)]

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝1𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖 𝑝𝑝,𝑞𝑞,𝛼𝛼 + (1 − 𝑝𝑝1𝑖𝑖 )𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖 𝑝𝑝,𝑞𝑞,𝛼𝛼

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝1𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖 , 1 𝑝𝑝,𝑞𝑞,𝛼𝛼

𝑃𝑃 1 𝑝𝑝,𝑞𝑞,𝛼𝛼
+ (1 − 𝑝𝑝1𝑖𝑖 )

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖, 0 𝑝𝑝,𝑞𝑞,𝛼𝛼
𝑃𝑃 0 𝑝𝑝,𝑞𝑞,𝛼𝛼

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝1𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖 , 1 𝑝𝑝,𝑞𝑞,𝛼𝛼

𝑃𝑃 1 𝑝𝑝,𝑞𝑞,𝛼𝛼
+ (1 − 𝑝𝑝1𝑖𝑖 )

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖, 0 𝑝𝑝,𝑞𝑞,𝛼𝛼
𝑃𝑃 0 𝑝𝑝,𝑞𝑞,𝛼𝛼

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝1𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖 , 1 𝑝𝑝,𝑞𝑞,𝛼𝛼

𝑝𝑝1𝑖𝑖
+ (1 − 𝑝𝑝1𝑖𝑖 )

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖, 0 𝑝𝑝,𝑞𝑞,𝛼𝛼
(1 − 𝑝𝑝1𝑖𝑖 )

= �
𝑖𝑖=1

𝑛𝑛

𝑝𝑝1𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖, 1 𝑝𝑝,𝑞𝑞,𝛼𝛼 − 𝑝𝑝1𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝1𝑖𝑖 + (1 − 𝑝𝑝1𝑖𝑖 )𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝑖𝑖, 0 𝑝𝑝, 𝑞𝑞,𝛼𝛼 − 1 − 𝑝𝑝1𝑖𝑖 log(1 − 𝑝𝑝1𝑖𝑖 )
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EM Algorithm (Coins) - IV
• Explicitly, we get:

𝐸𝐸 ∑𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝐷𝐷𝑖𝑖| �𝑝𝑝, �𝑞𝑞 , �𝛼𝛼 ≃
≃ ∑𝑖𝑖 𝑃𝑃1𝑖𝑖log𝑃𝑃(1,𝐷𝐷𝑖𝑖| �𝑝𝑝, �𝑞𝑞 , �𝛼𝛼 ) +∑𝑖𝑖 (1 − 𝑃𝑃1𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(0,𝐷𝐷𝑖𝑖| �𝑝𝑝, �𝑞𝑞 , �𝛼𝛼 ) =   

= ∑𝑖𝑖 𝑃𝑃1𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 �𝛼𝛼 𝑝𝑝ℎ𝑖𝑖 (1 − 𝑝𝑝)𝑚𝑚−ℎ𝑖𝑖 +∑𝑖𝑖 (1 − 𝑃𝑃1𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 (1 − �𝛼𝛼 )𝑞𝑞ℎ𝑖𝑖 (1 − 𝑞𝑞)𝑚𝑚−ℎ𝑖𝑖= 

= ∑𝑖𝑖 𝑃𝑃1𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙 �𝛼𝛼 + ℎ𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + (𝑚𝑚 − ℎ𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝) ) 

+∑𝑖𝑖 (1 − 𝑃𝑃1𝑖𝑖)(𝑙𝑙𝑙𝑙𝑙𝑙 (1 − �𝛼𝛼) + ℎ𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + (𝑚𝑚− ℎ𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑞𝑞) )
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EM Algorithm (Coins) - V
• Finally, to find the most likely parameters, we maximize the derivatives 

with respect to �𝑝𝑝, �𝑞𝑞, �𝛼𝛼 : 
• STEP 2: Maximization Step
• (Sanity check: Think of the weighted fictional points)

𝑑𝑑𝑑𝑑
𝑑𝑑 �𝛼𝛼 = �

𝑖𝑖=1

𝑛𝑛
𝑃𝑃1𝑖𝑖

�𝛼𝛼 −
1 − 𝑃𝑃1𝑖𝑖

1 − �𝛼𝛼 = 0 ⇒ �𝛼𝛼 =
∑𝑃𝑃1𝑖𝑖

𝑛𝑛

𝑑𝑑𝑑𝑑
𝑑𝑑 �𝑝𝑝 = �

𝑖𝑖=1

𝑛𝑛

𝑃𝑃1𝑖𝑖(
ℎ𝑖𝑖
�𝑝𝑝 −

𝑚𝑚 − ℎ𝑖𝑖
1 − �𝑝𝑝 ) = 0 ⇒ �𝑝𝑝 =

∑𝑃𝑃1𝑖𝑖
ℎ𝑖𝑖
𝑚𝑚

∑𝑃𝑃1𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑 �𝑞𝑞

= �
𝑖𝑖=1

𝑛𝑛

(1 − 𝑃𝑃1𝑖𝑖)(
ℎ𝑖𝑖
�𝑞𝑞
−
𝑚𝑚 − ℎ𝑖𝑖
1 − �𝑞𝑞

) = 0 ⇒ �𝑞𝑞 =
∑(1 − 𝑃𝑃1𝑖𝑖)

ℎ𝑖𝑖
𝑚𝑚

∑(1 − 𝑃𝑃1𝑖𝑖)

When computing the 
derivatives, notice 𝑃𝑃1𝑖𝑖 here 

is a constant; it was 
computed using the 

current parameters in the 
E step

Given old parameters we 
labeled the data. Now we 

compute the likelihood of the 
complete data (with the 

labels; as in the previous slide) 
and next we will find the new 

set of parameters that 
maximizes this likelihood.
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• We will assume (for a minute) that we know the parameters �𝑝𝑝, �𝑞𝑞, �𝛼𝛼 and use it to estimate which Coin it 
STEP 1 (Expectation Step):    (Here ℎ = ℎ𝑖𝑖 )

• Iterate
24

Summary: EM Algorithm (Coins) 

𝑃𝑃1𝑖𝑖 = 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝐷𝐷𝑖𝑖) =
𝑃𝑃(𝐷𝐷𝑖𝑖|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

𝑃𝑃(𝐷𝐷𝑖𝑖)
=

=
�𝛼𝛼 �𝑝𝑝ℎ(1 − �𝑝𝑝)𝑚𝑚−ℎ

�𝛼𝛼 �𝑝𝑝ℎ(1 − �𝑝𝑝)𝑚𝑚−ℎ + (1 − �𝛼𝛼) �𝑞𝑞ℎ(1 − �𝑞𝑞)𝑚𝑚−ℎ

• STEP 2: Maximization Step

𝑑𝑑𝑑𝑑
𝑑𝑑 �𝛼𝛼 = �

𝑖𝑖=1

𝑛𝑛
𝑃𝑃1𝑖𝑖

�𝛼𝛼 −
1 − 𝑃𝑃1𝑖𝑖

1 − �𝛼𝛼 = 0 ⇒ �𝛼𝛼 =
∑𝑃𝑃1𝑖𝑖

𝑛𝑛

𝑑𝑑𝑑𝑑
𝑑𝑑 �𝑝𝑝

= �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃1𝑖𝑖(
ℎ𝑖𝑖
�𝑝𝑝
−
𝑚𝑚 − ℎ𝑖𝑖
1 − �𝑝𝑝

) = 0 ⇒ �𝑝𝑝 =
∑𝑃𝑃1𝑖𝑖

ℎ𝑖𝑖
𝑚𝑚

∑𝑃𝑃1𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑 �𝑞𝑞

= �
𝑖𝑖=1

𝑛𝑛

(1 − 𝑃𝑃1𝑖𝑖)(
ℎ𝑖𝑖
�𝑞𝑞
−
𝑚𝑚 − ℎ𝑖𝑖
1 − �𝑞𝑞

) = 0 ⇒ �𝑞𝑞 =
∑(1 − 𝑃𝑃1𝑖𝑖)

ℎ𝑖𝑖
𝑚𝑚

∑(1 − 𝑃𝑃1𝑖𝑖)

Why does it work?
It can be shown that the likelihood of the 
observed data when computed with the set 
of parameters at time t+1, is larger than the 
likelihood of the observed data when 
computed with the set of parameters at time 
t. That is, the likelihood of the data grows in 
each round, reaching a local maxima. 
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The General EM Procedure 

E

M
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EM Summary (so far)
• EM is a general procedure for learning in the presence of  

unobserved variables. 
• We have shown how to use it in order to estimate the most likely 

density function for a mixture of (Bernoulli) distributions. 
• EM is an iterative algorithm that can be shown to converge to a 

local maximum of the likelihood function.
– It depends on assuming a family of probability distributions.
– In this sense, it is a family of algorithms. The update rules you will derive 

depend on the model assumed.
• It has been shown to be quite useful in practice, when the 

assumptions made on the probability distribution are correct,  but 
can fail otherwise.



CIS 419/519 Fall’20 31

EM Summary (so far)
• EM is a general procedure for learning in the presence of  

unobserved variables. 
• The (family of ) probability distribution is known; the problem is to 

estimate its parameters  
• In the presence of hidden variables, we can often think about it as a 

problem of a mixture of distributions – the participating 
distributions are known, we need to estimate:  
– Parameters of the distributions 
– The mixture policy

• Our previous example: Mixture of Bernoulli distributions
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Example: K-Means Algorithm
K-Means is a clustering algorithm.
We are given data points, known to be sampled independently 
from  a mixture of 𝑘𝑘 Normal distributions, with 
means  µ𝑖𝑖, 𝑖𝑖 = 1, …𝑘𝑘 and the same standard variation  σ

x

𝑝𝑝(𝑥𝑥)

1µ2µ

Standard K-Means clustering: 
• Guess k centers.
• Repeat: 

• Place each point in its 
center, based on distance. 

• Re-estimate centers for 
each cluster.

• Re-place points

𝑥𝑥

𝑝𝑝(𝑥𝑥)
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Example: K-Means Algorithm
• First, notice that if we knew that all the data points are taken from a 

normal distribution with mean  µ , finding its most likely value is easy.

𝑝𝑝(𝑥𝑥|𝜇𝜇) =
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒[−
1

2𝜎𝜎2
(𝑥𝑥 − 𝜇𝜇)2]

• We get many data points, 𝐷𝐷 = {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚}

𝑙𝑙𝑙𝑙(𝐿𝐿(𝐷𝐷|𝜇𝜇)) = 𝑙𝑙𝑙𝑙(𝑃𝑃(𝐷𝐷|𝜇𝜇)) = �
𝑖𝑖

−
1

2𝜎𝜎2
(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

• Maximizing the log-likelihood is equivalent to minimizing: 

𝜇𝜇𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜇𝜇�
𝑖𝑖

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

• Calculate the derivative with respect to µ,  we get that the 
• minimal point, that is, the most likely mean is 𝜇𝜇 = 1

𝑚𝑚
∑𝑖𝑖 𝑥𝑥𝑖𝑖
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A mixture of Distributions
• As in the coin example, the problem is that data is sampled from a mixture 

of 𝑘𝑘 different normal distributions, and we do not know, for a given data 
point 𝒙𝒙𝑖𝑖, where is it  sampled from. 

• Assume that we observe data point 𝒙𝒙𝑖𝑖 ;what is the probability that it was 
sampled from the distribution µ𝑗𝑗 ?

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝜇𝜇𝑗𝑗|𝒙𝒙𝑖𝑖) =
𝑃𝑃(𝒙𝒙𝑖𝑖|𝜇𝜇𝑗𝑗 )𝑃𝑃(𝜇𝜇𝑗𝑗)

𝑃𝑃(𝒙𝒙𝑖𝑖)
=

�1
𝑘𝑘 𝑃𝑃(𝒙𝒙 = 𝒙𝒙𝑖𝑖|𝜇𝜇 = 𝜇𝜇𝑗𝑗)

∑𝑛𝑛=1𝑘𝑘 �1
𝑘𝑘 𝑃𝑃(𝒙𝒙 = 𝒙𝒙𝑖𝑖|𝜇𝜇 = 𝜇𝜇𝑛𝑛)

=

=
𝑒𝑒𝑒𝑒𝑒𝑒[− 1

2𝜎𝜎2 (𝒙𝒙𝑖𝑖 − 𝜇𝜇𝑗𝑗)2]

∑𝑛𝑛=1𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒[− 1
2𝜎𝜎2 (𝒙𝒙𝑖𝑖 − 𝜇𝜇𝑛𝑛)2]
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A Mixture of Distributions
• As in the coin example, the problem is that data is sampled from a mixture 

of 𝑘𝑘 different normal distributions, and we do not know, for a given each 
data point 𝒙𝒙𝑖𝑖, where is it  sampled from. 

• For a data point 𝒙𝒙𝑖𝑖, define 𝑘𝑘 binary hidden variables, 𝑧𝑧𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖, … , 𝑧𝑧𝑖𝑖𝑖𝑖 , s.t 
𝑧𝑧𝑖𝑖𝑖𝑖 = 1 iff 𝒙𝒙𝑖𝑖 is sampled from the j-th distribution. 

𝐸𝐸 𝑧𝑧𝑖𝑖𝑖𝑖 = 1 • 𝑃𝑃 𝒙𝒙𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜇𝜇𝑗𝑗 + 0 • 𝑃𝑃(𝒙𝒙𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝜇𝜇𝑗𝑗) = 𝑃𝑃𝑖𝑖𝑖𝑖

𝐸𝐸[𝑌𝑌] = �
𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖)

𝐸𝐸[𝑋𝑋 + 𝑌𝑌] = 𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑌𝑌]
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Example: K-Means Algorithms
• Expectation: (here: ℎ = 𝜎𝜎, 𝜇𝜇1, 𝜇𝜇2, . . . , 𝜇𝜇k ) 

• Computing the likelihood given the observed data  𝐷𝐷 = {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} and 
the hypothesis ℎ (w/o the constant coefficient)

𝑝𝑝(𝑑𝑑𝑖𝑖|ℎ) = 𝑝𝑝(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖, . . . , 𝑧𝑧𝑖𝑖𝑖𝑖|ℎ) =
1
2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒[−
1

2𝜎𝜎2
�
𝑗𝑗

𝑧𝑧𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2]

𝑙𝑙𝑙𝑙(𝑃𝑃(𝐷𝐷|ℎ)) = �
𝑖𝑖=1

𝑚𝑚

−
1

2𝜎𝜎2�
𝑗𝑗

𝑧𝑧𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2

𝐸𝐸[𝑙𝑙𝑙𝑙(𝑃𝑃(𝐷𝐷|ℎ))] = 𝐸𝐸[�
𝑖𝑖=1

𝑚𝑚
−

1
2𝜎𝜎2�𝑗𝑗

𝑧𝑧𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2

=
= �

𝑖𝑖=1

𝑚𝑚

−
1

2𝜎𝜎2�
𝑗𝑗

𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖](𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2
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Given old parameters (ℎ’) we labeled 
the data. Now we compute the 

likelihood of the complete data (with 
the labels) and next we will find the 

new set of parameters (ℎ) that 
maximizes this likelihood.

• Maximization: Maximizing

• with respect to 𝑢𝑢𝑗𝑗 we get that:

• Which yields:

37

Example: K-Means Algorithms

𝑄𝑄(ℎ|ℎ′) = �
𝑖𝑖=1

𝑚𝑚

−
1

2𝜎𝜎2
�
𝑗𝑗

𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖](𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2

𝜇𝜇𝑗𝑗 =
∑𝑖𝑖=1𝑚𝑚 𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖]𝑥𝑥𝑖𝑖
∑𝑖𝑖=1𝑚𝑚 𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖]

𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇𝑗𝑗

= 𝐶𝐶�
𝑖𝑖=1

𝑚𝑚

𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖](𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗) = 0
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Summary: K-Means Algorithms
• Given a set 𝐷𝐷 = {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} of data points, guess initial parameters 

𝜎𝜎,𝜇𝜇1,𝜇𝜇2, . . . , 𝜇𝜇𝑘𝑘
• Compute (for all 𝑖𝑖, 𝑗𝑗)

• and a new set of means:

• repeat to convergence

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖] =
𝑒𝑒𝑒𝑒𝑒𝑒[− 1

2𝜎𝜎2 (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗)2]

∑𝑛𝑛=1𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒[− 1
2𝜎𝜎2 (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑛𝑛)2]

𝜇𝜇𝑗𝑗 =
∑𝑖𝑖=1𝑚𝑚 𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖]𝑥𝑥𝑖𝑖
∑𝑖𝑖=1𝑚𝑚 𝐸𝐸[𝑧𝑧𝑖𝑖𝑖𝑖]

Notice that this algorithm will find the best 𝑘𝑘 means in the 
sense of minimizing the sum of square distance.

Recall: Standard K-Means clustering
• Guess k centers.
• Repeat: 

• Place each point in its 
center, based on distance. 

• Re-estimate centers for 
each cluster.

• Re-place points

Difference: now we place 
“fractional” points into 

clusters. 
𝑝𝑝𝑖𝑖𝑖𝑖 is the fractional label

The hard EM algorithm
(threshold the distribution and 

keep the top option)
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EM
• We think about the probabilistic model generating the data

– But, some of the data is not observed, making a direct estimation of 
the parameters more difficult 

– EM is used to estimate the model parameters in these cases

– We have made some code available.
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Summary: EM
• EM is a general procedure for learning in the presence of   unobserved variables. 

• We have shown how to use it in order to estimate the most likely density function for a mixture of 
probability distributions.

• EM is an iterative algorithm that can be shown to converge to a local maximum of the likelihood 
function. Thus, might requires many restarts.

• It depends on assuming a family of probability distributions.

• It has been shown to be quite useful in practice, when the assumptions made on the probability 
distribution are correct,  but can fail otherwise.

• As examples, we have derived an important clustering algorithm,  the k-means algorithm and have 
shown how to use it in order to estimate the most likely density function for a mixture of 
probability distributions. 
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More Thoughts about EM

• Training: a sample of data points, 𝑥𝑥0, 𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛+1

• Task: predict the value of 𝑥𝑥0, given assignments to all 𝑛𝑛 variables. 
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More Thoughts about EM
• Assume that a set 𝒙𝒙𝑖𝑖 ∈ 0,1 𝑛𝑛+1 of data points is  generated as 

follows:
– Postulate a hidden variable 𝑍𝑍, with 𝑘𝑘 values, 1 ≤ 𝑧𝑧 ≤ 𝑘𝑘 with probability 
𝛼𝛼𝑧𝑧,∑1𝑘𝑘 𝛼𝛼𝑧𝑧 = 1

• Having randomly chosen a value 𝑧𝑧 for the hidden variable, we 
choose the value  𝒙𝒙𝑖𝑖 for each observable  𝑋𝑋𝑖𝑖 to be 1 with probability 
𝑝𝑝𝑖𝑖𝑧𝑧 and 0 otherwise, [𝑖𝑖 = 0, 1, 2, … .𝑛𝑛]

• Training: a sample of data points, 𝑥𝑥0, 𝑥𝑥1 , … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛+1

• Task: predict the value of 𝑥𝑥0, given assignments to all 𝑛𝑛 variables. 

𝑧𝑧
𝑃𝑃𝑖𝑖𝑧𝑧

𝛼𝛼𝑧𝑧
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More Thoughts about EM

• Two options:
• Parametric:   estimate the model using EM.                  

Once a model is known, use it to make predictions.
– Problem: Cannot use EM directly without an additional assumption on the way data is 

generated.
• Non-Parametric:  Learn 𝑥𝑥0 directly as a function of the other variables.

– Problem: which function to try and learn? 
• 𝑥𝑥0 turns out to be a linear function of the other variables, when 𝑘𝑘 = 2 (what 

does it mean)?
• When 𝑘𝑘 is known, the EM approach performs well; if an incorrect value is 

assumed the estimation fails; the linear methods performs better 
[Grove & Roth 2001]

Another important distinction to attend to is the fact that, once you 
estimated all the parameters with EM, you can answer many prediction 
problems e.g., 𝑝𝑝(𝑥𝑥0,𝑥𝑥7, … , 𝑥𝑥8 |𝑥𝑥1,𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛) while with Perceptron (say) 
you need to learn separate models for each prediction problem. 

𝑧𝑧 𝑃𝑃𝑖𝑖𝑧𝑧𝛼𝛼𝑧𝑧
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