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Are we recording? YES!

Administration (12/02/20)

. Remember that all the lectures are available on the website before the class
— Gooveritand be prepared
— A new set of written notes will accompany most lectures, with some more details, examples and, (when relevant) some code.

Available on the web site

. HW4 is out — NNs and Bayesian Learning
- Due 12/3 = 12/7 (Next Monday)

. HWS5 will be out tomorrow, 12/3. Due 12/10 (last day of the semester).
— It is mostly a summary of the material we covered this semester (with a focus on the second half) and will help you prepare for the exam.
- No programming.
— We will give an extension until a few days before the exam.

. Next week is the last week of classes — there will be three meetings (Monday, Wednesday, Thursday)

. Projects
— You should have received an email from one of the TAs that will help guide your project
— Progress reports are due today. Check the course’s web site

. The Final is on 12/18; it is scheduled for 9am; we will try to given you a larger window of time.
. Project Paper and Video Submission: 12/21
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Projects

. CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage
— Teams will be of size 2-4
—  We will help grouping if needed

. There will be 3 options for projects.
- Natural Language Processing (Text)
- Computer Vision (Images)
- Speech (Audio)

* Inall cases, we will give you datasets and initial ideas
— The problem will be multiclass classification problems
— You will get annotated data only for some of the labels, but will also have to predict other labels
- 0-zero shot learning; few-shot learning; transfer learning

. A detailed note will come out today.
. Timeline:
— 11/11 Choose a project and team up
— 11/23 Initial proposal describing what your team plans to do
— 12/2 Progress report: 1 page. What you have done; plans; problems.
- 12/21 Final paper + short video
. Try to make it interesting!
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From NB to Logistic Regression

. Naive Bayes and Logistic Regression:
—  https://colab.research.google.com/drive/1xWrXzOvs3PpTIBqWbJ9JYxAGui49sOra?usp=sharing#scrollTo=gG9pycPfUOrr

Example ows = argmaxyerP(y) | [P (xilw) Recall: Naive Bayes, Two Classes
1
+  Given: (Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong) * Inthe case of two classes we have:
* P(PlayTennis = yes) P(PlayTennis = no) h,gip(q‘i' =10 _ Z wix; — b
=9/14 = 0.64) =5/14 = 0.36 Py =0lx) &

*  P(outlook = sunny|yes)= 2/9 | P(outlook = sunny|no) = 3/5 * butsince P(ry = 1lx) =1 —P(r; = 0x)

* P(temp = cool|yes) = 3/9 P(temp = cool|no) = 1/5

*  P(humidity = hi|yes) = 3/9 P(humidity = hi|no) = 4/5 +  We showed that:

* P(wind = strong |yes) = 3/9 P({wind = strong |no)= 3/5 P(vi = 1]x) :;
! 1+ exp(=X;wix; +b)

* P(yes,....)~0.0053 P(no,.....)~ 0.0206 *  Which is simply the logistic (sigmoid) function used in the

. P(nolr’.nstance) = 0‘0206;‘(0‘0053 1 0.0206) =0.795 * neural network representation.

What if we were asked about Outlook=0C?
I 4197519 Far20 Logistic Regression (3) *

Using the standard mapping to linear separators through the origin, we would like to minimize:
miun SMlogP(y = +1|xw) :mi;lﬁ’f' log[1 + exp(—y;(w"x; + b)]
. w.

To get good generalization, itis common to add a regularization term, and the regularized logistics

regression then becomes:
m

min, f(w) = %whw + C Zlng[] + expl—yi(wTxp)],
—— -

~

Regularization term .
Empirical loss

Where € is a user selected parameter that balances the two terms.
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https://colab.research.google.com/drive/1xWrXz0vs3PpTlBqWbJ9JYxAGui49sOra?usp=sharing#scrollTo=gG9pycPfUOrr

Summary: Basic Probability

Product Rule: P(A,B) = P(A|B)P(B) = P(B|A)P(A)
 |f Aand B are independent:
— P(4,B) = P(A)P(B); P(A|B) = P(A),P(A|B,C) = P(4|C)
* SumRule: P(AvB) = P(A)+ P(B)—P(A,B)
 BayesRule: P(A|B) = P(B|A) P(A)/P(B)
e Total Probability:
— Ifevents A;, Ay, ... A, are mutually exclusive: A4; AA; Aj = ®,2; P(4;) = 1
— P(B) = X P(B,A;) =2; P(B|Ay) P(4)
* Total Conditional Probability:
— Ifevents Ay, Ay, ... Ay are mutually exclusive: A; AAjA; =@, 2,; P(4;) =1
— P(BIC) = 2 P(B,A;|C) = 2; P(B|A;, C) P(4;]C)
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Expectation of a Random Variable

 Let X be arandom variable with arity k that takes the values
{x{, %, ..., X3 } with probabilities {p;, D5, ..., P }, respectively,

with Y% p; =1 e
* Then, the expectation of the random variable X is: .

k k
ElX] = ZP(X = X;)X; = Zpixi
i=1 =1

— Example: Let X be the outcome of tossing a fair 6-sided dice: E[X] = 3.5
* |mportant property:
— Linearity: E[X+Y] = E[X] + E[Y]
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Semi-Supervised Learning

Consider the problem of Prepositional Phrase Attachment.

— Buy car with money ; buy car with wheel

Predict: noun (n) attachment or verb (v) attachment
— Car with (n) or Buy with (v)

There are several ways to generate features.

— E.g., we can assume that all possible conjunctions of the 4 attributes are
used. (15 feature in each example). Assume that we have k features

Assume that we use naive Bayes for learning to decide between [n, V]

— Examples are: (xq, x,, ... X3, [, V])

CIS 419/519 Fall20 7



Assume we will use naive Bayes for learning to decide

U Sl ng N alve Bayes between [n, v]; Examples are: (xq, Xy, ... x4, [, V])

* To use naive Bayes, we need to use the data to estimate:

P(n) P()
P(x;|n) P(x,|v)
P(x,|n) P(x,|v)
POoln) P(xlv)

* Then, given an example (x4, x,, ... X, 7 ), compare:
P(nlx)~ = P(n) P(x;|n) P(x,|n) ... P(x,In)
and
P(v]x)~ = P(v) P(x;|v) P(,|v) ... (V)

CIS 419/519 Fall’20 8



Using Nalve Bayes

* After seeing 10 examples, we have:

 P(n) =0.5; P(v) =0.5
P(x,|n) = 0.75; P(x,|n) = 0.5; P(x3|n) = 0.5; P(x4n) = 0.5
P(x,|v) = 0.25; P(x,|v) = 0.25; P(x3|v) = 0.75; P(x,|Jv) = 0.5

* Then, given an example x = (1000), we have:
P,(x)~=05x%x 0.75%x 0.5x 0.5x 0.5 = 3/64
P,(x)~=0.5x0.25x%x0.75 x 0.25 X 0.5 = 3/256

— Forx=0101 you will get: P, (x)~ = 1/64=8/512 P (x)~ =9/512

 Now, assume that in addition to the 10 labeled examples, we also have
100 unlabeled examples.

* Will that help?
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Using Nalve Bayes

* For example, what can be done with the example (1000) ?
— We have an estimate for its label...

— But, can we use it to improve the classifier (that is, the estimation of the
probabilities that we will use in the future)?

 Option 1: We can make predictions, and believe them
— Or some of them (based on what?)

* Option 2: We can assume the example x = (1000) is a

. - Pp(x) What do we do once
An n-labeled example with probability PO+ Po(D) we have these labels?
_ o P,(x) We estimate the most likely parameters:
— A v-labeled example with probability POt PoCD) P(n),P(v); P(x,|n),P(xi|v)

That is, we run NB again

e Estimation of probabilities does not require working with integers!

CIS 419/519 Fall20 10



Using Unlabeled Data

The discussion suggests several algorithmes:

1. Use a threshold. Chose examples labeled with high
confidence. Label them [n, v]. Retrain.

2. Use fractional examples. Label the examples with fractional
labels [p of n, (1 — p) of v]. Retrain.

CIS 419/519 Fall20
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Comments on Unlabeled Data

 Both algorithms suggested can be used iteratively.

* Both algorithms can be used with other classifiers, not only naive Bayes.
The only requirement — a robust confidence measure in the classification.

 There are other approaches to Semi-Supervised learning:
— Most are conceptually similar: bootstrapping algorithms, self-training

— Some are “graph-based” algorithms: assume “similar” examples have “similar
labels”.

 What happens if instead of 10 labeled examples we start with

0 labeled examples?
— Make a Guess; continue as above; a version of EM

CIS 419/519 Fall20 12



EM

e EM is aclass of algorithms that is used to estimate a
probability distribution in the presence of missing attributes.

— Using it requires an assumption on the underlying probability
distribution.

* The algorithm can be very sensitive to this assumption and to
the starting point (that is, the initial guess of parameters).

— In general, known to converge to a local maximum of the maximum
likelihood function.

CIS 419/519 Fall20 13



Three Coin Example

* We observe a series of coin tosses generated in the following
way:
* A person has three coins.
— Coin 0: probability of Head is «

— Coin 1: probability of Head p
— Coin 2: probability of Head g

* Consider the following coin-tossing scenarios:

CIS 419/519 Fall20
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Estimation Problems

CIS 419/519 Fall’20 so as to maximize the likelihood of the data.

Scenario |: Toss one of the coins four times.
Observing HHTH
Question: Which coin is more likely to produce this sequence ?

Scenario Il: Toss coin 0. If Head — toss coin 1; otherwise — toss coin 2
Observing the sequence HHHHT, THTHT, HHHHT,HHTTH, THTTH
produced by Coin 0, Coinl and Coin2

Question: Estimate most likely values for p, g (the probability of H in each coin) and the probability
to use each of the coins (o)
- (Mixing the Coinl and Coin2 distributions)

Coin O
Scenario Ill: Toss coin 0. If Head — toss coin 1, o/w — toss coin 2
Observing the sequence HHHT, HTHT,HHHT,HTTH, HTTH
each 4 consecutive tosses are produced by Coin 1 or Coin 2
e . 15t toss 4th
Question: Estimate most likely values for p, g and a 2nd t
— (CoinOis a hidden (latent) variable) toss toss

There is no known analytical solution to this problem (general setting).
That is, it is not known how to compute the values of the parameters

15



Key Intuition (1)

. If we knew which of the data points (HHHT), (HTHT), (HTTH) came from Coin 1 and which
from Coin 2, there was no problem.

. Recall that the “simple” estimation is the ML estimation:
*  Assume that you toss a (p, 1 — p) coin m times and get k Heads m — k Tails.

log[P(D|p)] =log[p*(1—p)™~*] = klogp + (m — k) log(1— p)

. To maximize, set the derivative w.r.t. p equal to 0:

=

Solving this for p, gives: p =

CIS 419/519 Fall'20 16



Key Intuition (2)

. If we knew which of the data points (HHHT), (HTHT), (HTTH) came from Coin 1 and which
from Coin 2, there was no problem.
. Instead, use an iterative approach for estimating the parameters:

— Guess the probability that a given data point came from Coin 1 or 2; Generate fictional labels, weighted
according to this probability.

— Now, compute the most likely value of the parameters. [recall NB example]

— Compute the likelihood of the data given this model.

— Re-estimate the initial parameter setting: set them to maximize the likelihood of the data.
(Labels €= Model Parameters)$&—> Likelihood of the data

. This process can be iterated and can be shown to converge to a local maximum of the likelihood
function
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EM Algorithm (Coins) -

We will assume (for a minute) that we know the parameters p, d, & and use it to estimate which Coin it
is (Problem 1)

Then, we will use this “label” estimation of the observed tosses, to estimate the most likely parameters
- and so on...

Notation: n data points; in each one: m tosses each, h; heads in the i-th data point D*
What is the probability that the i-th data point, D!, came from Coin 1 ?
STEP 1 (Expectation Step): (Here h = h;)

P(D'|Coin1) P(Coinl) _
P(DY) B

P! = P(Coin1|D}) =

_ aph(1—p)m
ap(1—p)m "+ (1 - D" A - r "

CIS 419/519 Fall'20 18



EM Algorithm (Coins) - Il

* Now, we would like to compute the likelihood of the data, and
find the parameters that maximize it.
* We will maximize the log likelihood of the data (n data points)
— LL = X} logP(D'|p,q, o)
e But, one of the variables — the coin’s name - is hidden. We can
marginalize:
— LL= X[ logX,—01 P(DLy P, q, )
* However, the sum is inside the log, making ML solution
difficult.
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EM Algorithm (Coins) - Il

LL= Yi—1plog  Xy—01 P(DLy | p.q, @) =
= 2i=1,n1082y-01P(D'|p,q, 0 )P(y|D", p,q, )

— Instead of maximizing the LL we will maximize = Yiz1nl0g By P(D' |p,q,0) =
the expectation of the LL of the data (over the = 2i=1nEy log P(D* |p,q, )
coin’s name, y) E[LL] = EJ ?_1 logP(Di| p,q,0)] Where the inequality is due to Jensen’s Inequality

(concave case).
— Explanation: We maximize a lower bound on the Likelihood.

* Since the variable y is not observed, we cannot
use the complete-data log likelihood. Instead, we I
use the expectation of the complete-data log Ry
likelihood under the posterior distribution of y to
approximate log P(D'| p, q, @) [see above]

* We think of the likelihood log P(D!|p, g, a)as a
random variable that depends on the value y of
the coin in the i-th toss. Therefore, instead of
maximizing the LL we will maximize the
expectation of this random variable (over the
coin’s name). [Justified using Jensen’s Inequality]
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EM Algorithm (Coins) - Il

* We maximize the expectation of this random variable (over the coin name).

° E[LL] = E[ logP(D | p,q, OL)] 1E[10gP(D | p,q, OL)] (some math; see below)
1Py logP(D‘_, 1lpgo)] + (1- P1) logP(D*, 2| p,q,0)]
1 1 1 1

(Does not matter when we maximize)

* Thisis due to the linearity of the expectation and the random variable definition

1
E[LL] = E[Z logP (D|p, q, @)]

i=1

1
= Ellogp(0'lp,q, @]

=
n
ZpilogP(D‘]p g.a)+ (1 —pdHlogP(Di|p,q,a)
i=1
logP(D',1|p.q, a)

P(1lp,q,@)

logP(D',0|p,q, )

+a-r P(0lp,q, @)

i

‘M=

Il
=Y

logP(Dl 1|p q, a)
P(1lp.q,a)

logP (D%, 0|p,q, @)

P(0lp,q, @)
logP (D, 1|p,q,a _logP(D%,0|p, q,«
=Y pilooP @ llpaa) | iy logP (DL 0lpg @)

& pi 1-p)

+(1-ph)

(A

p

Il
=1\ =
L

n

CIS 419/519 Fall’20 = pilogh(D',1]p,q,@) - pllogni + (1 - pHlogh(D',0lp,q.@) (1 - pf)log(1 - p) 21




EM Algorithm (Coins) - IV

e Explicitly, we get:
E(X;log P(D'P,q,&) =
~ Y, PilogP(1,D'|p,q,&@) +3%; (1 —P}log P(0,D'|p,q,&) =
=% Pilog@ p" (1—p)™ M +3%,; (1-P)Hlog(1—a)q" (1—q)™ M=
=Y Pi(log @ + h;logp +(m—h;)log (1—p) )
+X; (1=P)(log (1 — @) + hlogq +(m —hy)log (1—q) )

CIS 419/519 Fall'20
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EM Algorithm (Coins) - V

* Finally, to find the most likely parameters, we maximize the derivatives
W|th reSpECt to ﬁ, q, C'Z . Given old parameters we
. . . labeled the data. Now we
* STEP 2: Maximization Step —= compute the likelihood of the
° complete data (with the

(Sanity check: Think of the weighted fictional points)

labels; as in the previous slide)

When computing the and next we will find the new
derivatives, notice Pli here . . ] mset. n‘:f Zar:r:]'qer'iz';hatd
is a constant; it was dE Pll 1-— Pll B Z Pll aximizes this likelihood.
computed using the — = —_— — = —3 a =
current parameters in the da =1 a 1-a n
E step 1= h
n 74
l ~
G- LhG - T=5)=0 = P= :
p = p p 2. P
n N
d o hi m-—h o 2xA-pPH—
=) A-PDE T =0 > q=
q i=1 q q Z( _ 1)

CIS 419/519 Fall'20
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Summary: EM Algorithm (Coins)

*  We will assume (for a minute) that we know the parameters p, g, @ and use it to estimate which Coin it

STEP 1 (Expectation Step):

Why does it work?

It can be shown that the likelihood of the
observed data when computed with the set
of parameters at time t+1, is larger than the
likelihood of the observed data when
computed with the set of parameters at time
t. That is, the likelihood of the data grows in
each round, reaching a local maxima.

(Here h = h;)

P} = P(Coinl|D}) =

. STEP 2: Maximization Step

dE P} 1—Pf
da @ 1—a&
=1
n
dE_ZPL(hl m—hl) 0
dp izllﬁ 1-p
. lterate

CIS 419/519 Fall'20
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apt(1-p)m"

P(D'|Coinl) P(Coinl) _

apt(1-pm T+ (A -Dgtra-gpmh

dE_i(l piyci_m
a4 & 7

1—

q

2

)=0

=

> - Ph

T3a-e
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The General EM Procedure

e Initially, the parameter 6 is set as 6
@ In E step

o We use the current parameter values #0ld +o find the posterior
distribution of the latent variables given by p(Z|X, 6’0|d)

o Use p(Z|X, QOld) to compute the expectation of the complete-data log
likelihood In p(X, Z|@) under p(Z|X.#°!d)

Q(8.6°%) = 3" p(z|X.6°) In p(X. Z|6) E

Z

o In M step, we need to compute "W which maximizes Q(6. °!d)

oW = arg max, Q(. 6’O|d) M

CIS 419/519 Fall'20
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EM Summary (so far)

* EMis a general procedure for learning in the presence of
unobserved variables.

* We have shown how to use it in order to estimate the most likely
density function for a mixture of (Bernoulli) distributions.

* EMis an iterative algorithm that can be shown to converge to a
local maximum of the likelihood function.
— It depends on assuming a family of probability distributions.

— In this sense, it is a family of algorithms. The update rules you will derive
depend on the model assumed.

* |t has been shown to be quite useful in practice, when the
assumptions made on the probability distribution are correct, but
can fail otherwise.
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EM Summary (so far)

e EMis a general procedure for learning in the presence of
unobserved variables.

* The (family of ) probability distribution is known; the problem is to
estimate its parameters

* In the presence of hidden variables, we can often think about it as a

problem of a mixture of distributions — the participating
distributions are known, we need to estimate:

— Parameters of the distributions
— The mixture policy

e Our previous example: Mixture of Bernoulli distributions

CIS 419/519 Fall20 31



Example: K-Means Algorithm

K-Means is a clustering algorithm.

We are given data points, known to be sampled independently
from a mixture of k Normal distributions, with

means W, i = 1, ...k and the same standard variation o

p(X) Standard K-Means clustering:
*  Guess k centers.
* Repeat:
* Place each point in its
center, based on distance.
* Re-estimate centers for
each cluster.

i t * Re-place points
H 1

2 H
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Example: K-Means Algorithm

First, notice that if we knew that all the data points are taken from a
normal distribution with mean p, finding its most likely value is easy.

1 1
p(x|u) = W xp[——(x—#) |

We get many data points, D = {xq, ..., X}
In(L(DI) = In(P(D|1)) = 2 (= )?
* Maximizing the log-likelihood is equwalent to minimizing:

Uy = argmin, Z(xi — p)?

Calculate the derivative with respect to 1, we get that the

. : : : . 1
* minimal point, that is, the most likely mean is u = ;Zixi
CIS 419/519 Fall’20 33




A mixture of Distributions

* Asinthe coin example, the problem is that data is sampled from a mixture
of k different normal distributions, and we do not know, for a given data
point x;, where is it sampled from.

* Assume that we observe data point x; ;what is the probability that it was
sampled from the distribution p; ?

s . 1 = x.lu = u:
Pij:P(ﬂjlxi)ZP(xllﬂ] )P(H1)= /kP(x il #J)

P(x) 1 PG= Xl = )

1
exp|— 202 (x; — Ilj)z]

- 1
YK _ exp[— 552 (X~ Un)?]

CIS 419/519 Fall20 34



A Mixture of Distributions

As in the coin example, the problem is that data is sampled from a mixture
of k different normal distributions, and we do not know, for a given each
data point x;, where is it sampled from.

* For adata point x;, define k binary hidden variables, z;1, Z;5, ..., Zjx, S.t
zij = 1iff x; is sampled from the j-th distribution.

E[Zij] =1 P(xl- was sampled from ,uj) + 0 » P(x; was not sampled from u;) = P;;
E[Y] = ) yiP(Y = 1)
Vi
E[X+Y] =E[X]+ E[Y]
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Example: K-Means Algorithms

 Expectation: (here:h = o,uq, Uy,..., Ux )

1 1
Pl = Pz Zilh) = Tgexpl=gy ) 21y (e = )
J

* Computing the likelihood given the observed data D = {x4, ..., x;;;} and
the hypothesis h (w/o the constant coefficient)
m

In(P(DIR)) = ) - ZGZsz e
=1

E[in(P(DIh))] = E[Zizl—gzz] 2 (xi = 1)°]

= m
1 2
:Z_TCZZE Zl] 1Cx; — .u])

j

i=1
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Example: K-Means Algorithms

* Maximization: Maximizing

* Which yields:

u; €Z1E[Zij]xi
g 2, Elz]

CIS 419/519 Fall'20

Given old parameters (h") we labeled
the data. Now we compute the
likelihood of the complete data (with
the labels) and next we will find the
new set of parameters (h) that
maximizes this likelihood.
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Summary: K-Means Algorithms

 GivenasetD = {xq,..,x,,} of data points, guess initial parameters
0,11, U2y, By

* Compute (forall i, )

1 Difference: now we place
- — 2 u -
exp[ 5 (xi ‘Ll]) ] fractional” points into
o= Flz::1 = 20 clusters.
pij = Elz;;] = 1 .
k _ _ 2 pi; is the fractional label
n=1 exp[ 202 (xi ﬂn) ]
* and a new set of means: m V
Li=1 Efzj]x; _ )
. = Recall: Standard K-Means clustering
] ?il E [Zij] : S:s::tk centers.
° repeat to convergence * Place each point in its

center, based on distance.
e Re-estimate centers for

Notice that this algorithm will find the best k means in the . ;\Z‘igli‘:;e;ms
sense of minimizing the sum of square distance.

The hard EM algorithm
(threshold the distribution and

CIS 419/519 Fall'20 keep the top option)




EM

* We think about the probabilistic model generating the data

— But, some of the data is not observed, making a direct estimation of
the parameters more difficult

— EM is used to estimate the model parameters in these cases

Summary: EM Algorithm (Coins) Summary: K-Means Algorithms
We will assume (for a minute) that we know the parameters f,§, & and use it to estimate which Coin it * GivenasetD = {xy,..,x,} of data points, guess initial parameters
STEP 1 (Expectation Step): (Here h = k; ) Ty g Hay ooy P
. . P(Di|Coin1) P(Coin1) + Compute(forall i, j) 1 . Differencernow we place
Pf = F(Coinl|D") = — roH exp[—m(x,- - ;)% “fractional” peints into
pij = Elz;;] = _
It 1 2 pyy is the fractional label
a1 —pymn Zn=1 exP[_m(xi — ln)?]
By AL =gt 4 (1= &)1 - gym- * and a new set of means: Bz
STEP 2: Maximization Ste T Sl S Recall: Standard K-Means clustering
. P I EI:l EIZU-J *+ Guess k centers,
dE N Bo1op o s A . ’ RE?NPT;M each peint in its
@ La 1-a n repeat to convergence center based on distance.
dE M R me o pi e iE m=h 501 - By *»  Re-estimate centers for
VR Do, 5 p=lm — =2U LS. P . L o Notice that this algorithm will find the best k means in the Chinan
dp LUE 1 o L g 1-4 Ei-rh . *  Re-plage poines
sense of minimizing the sum of square distance.
Iterate Tha hard EM algarithm
e —— 24 e —— {thresheld the distribution and
CIS 419/519 Fall20 CIS 419/519 Fall20 P ey
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Summary: EM

* EMis ageneral procedure for learning in the presence of unobserved variables.

*  We have shown how to use it in order to estimate the most likely density function for a mixture of
probability distributions.

* EMis an iterative algorithm that can be shown to converge to a local maximum of the likelihood
function. Thus, might requires many restarts.

* |t depends on assuming a family of probability distributions.

* It has been shown to be quite useful in practice, when the assumptions made on the probability
distribution are correct, but can fail otherwise.

* Asexamples, we have derived an important clustering algorithm, the k-means algorithm and have
shown how to use it in order to estimate the most likely density function for a mixture of
probability distributions.
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More Thoughts about EM

* Training: a sample of data points, (x,, x,, ..., x,) € {0,1}"*1
* Task: predict the value of x, given assignments to all n variables.
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How would you model this as a learning problem? What
learning approach would you use?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
CID 917/017 rail Lv



More Thoughts about EM @/@ﬁé\

e Assume that a set x! € {0,1}**! of data points is generated as
follows:

— Postulate a hidden variable Z, with k values, 1 < z < k with probability
a,>fa, =1
* Having randomly chosen a value z for the hidden variable, we

choose the value x; for each observable X;to be 1 with probability
p{ and 0 otherwise, [i = 0,1,2,....1]

* Training: a sample of data points, (x,, x;, ..., x,) € {0,1}"*1
* Task: predict the value of x, given assignments to all n variables.

CIS 419/519 Fall20 43



Another important distinction to attend to is the fact that, once you
\\ estimated all the parameters with EM, you can answer many prediction
problems e.g., p(xy, X7, ..., Xg |X1, X5 , ..., X,,) While with Perceptron (say)

you need to learn separate models for each prediction problem.

* Two optlons.
* Parametric: estimate the model using EM. W

Once a model is known, use it to make predictions.

— Problem: Cannot use EM directly without an additional assumption on the way data is
generated.

* Non-Parametric: Learn x, directly as a function of the other variables.
— Problem: which function to try and learn?
* X, turns out to be a linear function of the other variables, when k = 2 (what
does it mean)?

 When k is known, the EM approach performs well; if an incorrect value is
assumed the estimation fails; the linear methods performs better
[Grove & Roth 2001]
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