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Administration (9/21/20)
– Quiz1 

• Statistics
• We already got some positive feedback – the more feedback, the better. 

– Remember that all the lectures are available on the website before the class
• Go over it and be prepared

– HW 1 will be released today
• I will discuss it on Wednesday, once you had a chance to read and think about it
• You will see some new material there; for example, regarding procedures for evaluating classifiers and 

statistical significance. This is intentional. The material should be self explanatory. 
• Start working on it now. Don’t wait until the last day (or two) since it could take a lot of your time

– Go to the recitations and office hours

– Questions?
• Please ask/comment during class.
• Give us feedback 

Are we recording? YES!

Available on the web site

https://canvas.upenn.edu/courses/1546646/quizzes/2470177/statistics
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Introduction – Summary 
• The importance of a hypothesis space

– The need to make some assumptions of the 
function we are trying to learn

• Expressivity of 
functions and 
feature spaces

• And Linear functions
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Introduction – Summary (2)
• Loss functions

– They drive the search for a good hypothesis

• How to search?
– Via gradient Descent

• Algorithms: GD and SGD
– A sequence of weight vectors 

(hypotheses) from an initial guess 
to the final learned function.

GD: averaging the gradient of the 
loss over the complete training set. 

SGD: update the weight vector 
based on a single example (or a 

small batch)
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Introduction - Summary
• We introduced the technical part of the class by giving two (very important) examples for learning approaches 

to linear discrimination.
• There are many other solutions.
• Question 1: Our solution learns a linear function; in principle, the target function may not be linear, and this 

will have implications on the performance of our learned hypothesis. 
– Can we learn a function that is more flexible in terms of what it does with the feature space?

• Question 2: Do we understand what we learn (the interpretability of the model)? 

• Question 3: Can we say something about the quality of what we learn (sample complexity, time complexity; 
quality)



CIS 419/519 Fall’20
7

Decision Trees
• Earlier, we decoupled the generation of the feature space from the learning. 
• Argued that we can map the given examples into another space, in which the target 

functions are linearly separable. 

• Do we always want to do it? 
• How do we determine what are good mappings?

• The study of decision trees may shed some light on this.
• Learning is done directly from the given data representation.
• The algorithm ``transforms” the data itself.

• Some would argue: Boosted Decision Trees
– Interpretation of the final model might also play a role

Think about the Badges problem (vowel)

x

x2

What’s the best learning algorithm? 
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This Lecture
• Decision trees for (binary) classification

– Non-linear classifiers

• Learning decision trees (ID3 algorithm)
– Greedy heuristic (based on information gain)

Originally developed for discrete features
– Some extensions to the basic algorithm

• Overfitting
– Some experimental issues
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Introduction of Decision trees
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Representing Data 
• Think about a large table, N attributes, and assume you want to know something about the people 

represented as entries in this table.
• E.g. reads a lot of books or not;
• Simplest way: Histogram on the first attribute – reads
• Then, histogram on 1st and 2nd: (reads (0/1) & gender (0/1): 00, 01, 10, 11)
• But, what if the # of attributes is larger: N=16
• How large are the 1-d histograms (contingency tables) ? 16 numbers
• How large are the 2-d histograms? 16-choose-2 (all pairs) = 120 numbers
• How many 3-d tables? 560 numbers
• With 100 attributes, the 3-d tables need 161,700 numbers

• We need to figure out a way to represent data in a better way; 
– In part, this depends on identifying the important attributes, since we want to look at these first. 
– Information theory has something to say about it – we will use it to better represent the data. 
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Decision Trees
• A hierarchical data structure that represents data by implementing a 

divide and conquer strategy
– Can be used as a non-parametric classification and regression method (real 

numbers associated with each example, rather than a categorical label)
• Process:

– Given a collection of examples, learn a decision tree that represents it.
– Use this representation to classify new examples

AC           B

Given this collection of shapes, 
what shapes are type A, B, and C?
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The Representation
• Decision Trees are classifiers for instances represented as feature vectors 

– color={red, blue, green} ; shape={circle, triangle, rectangle} ; label= {A, B, C}
– An example: <(color = green; shape = rectangle), label = B>

• Nodes are tests for feature values
• There is one branch for each value of the feature
• Leaves specify the category (labels)
• Can categorize instances into multiple disjoint categories

Evaluation of a 
Decision Tree

Learning a 
Decision Tree?

Color

Shape ShapeB

A C B AB

AC B

- Check the color
feature. 

- If it is blue than 
check the shape 
feature 

- if it is …then…
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Expressivity of Decision Trees
• As Boolean functions they can represent any Boolean function.
• Can be rewritten as rules in Disjunctive Normal Form (DNF)

– Green ∧ Square  positive
– Blue ∧ Circle  positive
– Blue ∧ Square  positive

• The disjunction of these rules is equivalent to the Decision Tree
• What did we show? What is the hypothesis space here?

– 2 dimensions: color and shape
– 3 values each: color(red, blue, green), shape(triangle, square, circle)
– |X| = 9: (red, triangle), (red, circle), (blue, square) …
– |Y| = 2: + and -
– |H| = 29

• And, all these functions can be represented as decision trees. 

Color

Shape ShapeB

+ + + --
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Decision Trees

• Output is a discrete category. Real valued outputs 
are possible (regression trees)

• There are efficient algorithms for processing large 
amounts of data (but not too many features)

• There are methods for handling noisy data 
(classification noise and attribute noise) and for 
handling missing attribute values

Color

Shape ShapeB

+ + + --
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Decision Boundaries
• Usually, instances are represented as attribute-value pairs (color=blue, 

shape = square, +)
• Numerical values can be used either by discretizing or by using thresholds 

for splitting nodes
• In this case, the tree divides the features space into axis-parallel 

rectangles, each labeled with one of the labels

1                   3                    X

7

5

Y

- +

+ +

+ +

-

-

+

X < 3

Y > 7 Y < 5

X < 1- + +

+ -

yes

yesyes

yes

no

no no

no
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Learning decision trees (ID3 algorithm
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Decision Trees
• Can represent any Boolean Function
• Can be viewed as a way to compactly represent a lot of data.
• Natural representation: (20 questions) 
• The evaluation of the Decision Tree Classifier is easy

• Clearly, given data, there are
many ways to represent it as 
a decision tree. 

• Learning a good representation 
from data is the challenge. Yes

Humidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes

Outlook 

Overcast RainSunny
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Will I play tennis today? 
• Features 

– Outlook: {Sun, Overcast, Rain}
– Temperature: {Hot, Mild, Cool}
– Humidity: {High, Normal, Low}
– Wind: {Strong, Weak}

• Labels
– Binary classification task: Y =  {+, -}
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Will I play tennis today? 
Outlook: S(unny), 

O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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Basic Decision Trees Learning Algorithm
• Data is processed in Batch (i.e. all the 

data available)
• Recursively build a decision tree top 

down.

Algorithm?

YesHumidity

NormalHigh
No Yes

Wind

WeakStrong
No Yes

Outlook 

Overcast RainSunny

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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Basic Decision Tree Algorithm
• Let S be the set of Examples

– Label  is the target attribute (the prediction) 
– Attributes is the set of measured attributes

• ID3(S, Attributes, Label)
If all examples are labeled the same return a single node tree with Label

Otherwise Begin 
A =  attribute in Attributes that best classifies S   (Create a Root node for tree)

for each possible value v of A
Add a new tree branch corresponding to A=v

Let Sv be the subset of examples in S with A=v
if Sv is empty:  add leaf node with the common value of Label in S
Else:  below this branch add the subtree

ID3(Sv, Attributes - {a}, Label)
End
Return Root

why? 

For evaluation time
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Picking the Root Attribute
• The goal is to have the resulting decision tree as small as 

possible (Occam’s Razor)
– But, finding the minimal decision tree consistent with the data is NP-

hard

• The recursive algorithm is a greedy heuristic search for a 
simple tree, but cannot guarantee optimality.

• The main decision in the algorithm is the selection of the next 
attribute to condition on.
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Picking the Root Attribute
• Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples
<  (A=1,B=1), + >: 100 examples

• What should be the first attribute we select?
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Picking the Root Attribute
• Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples
<  (A=1,B=1), + >: 100 examples

• What should be the first attribute we select?
– Splitting on A: we get purely labeled nodes.
– Splitting on B: we don’t get purely labeled nodes.
– What if we have: <(A=1,B=0), - >: 3 examples?

• (one way to think about it: # of queries required to label a 
random data point)

A

-+

1 0

splitting on A

B

-
1 0

A

-+
1 0

splitting on B
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Picking the Root Attribute
• Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples       3 examples
<  (A=1,B=1), + >: 100 examples

• What should be the first attribute we select?



CIS 419/519 Fall’20
29



CIS 419/519 Fall’20
30

Picking the Root Attribute
• Consider data with two Boolean attributes (A,B).

<  (A=0,B=0), - >:    50 examples
<  (A=0,B=1), - >:    50 examples
<  (A=1,B=0), - >:      0 examples       3 examples
<  (A=1,B=1), + >: 100 examples

• What should be the first attribute we select?
• Trees looks structurally similar; which attribute should we choose?

Advantage A. But…
Need a way to quantify things

• One way to think about it: # of queries required to 
label a random data point.

• If we choose A we have less uncertainty about 
the labels. 

53

50100

B

-
1 0

A

-+
1 0100

3100

A

-
1 0

B

-+
1 0

splitting on A splitting on B
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Picking the Root Attribute
• The goal is to have the resulting decision tree as small as 

possible (Occam’s Razor)
– The main decision in the algorithm is the selection of the next 

attribute to condition on.

• We want attributes that split the examples to sets that are 
relatively pure in one label; this way we are closer to a leaf 
node.
– The most popular heuristics is based on information gain, originated 

with the ID3 system of Quinlan.
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Entropy
• Entropy (impurity, disorder) of a set of examples, S, relative to a binary 

classification is:
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 = −𝑝𝑝+ log 𝑝𝑝+ − 𝑝𝑝− log 𝑝𝑝−

• 𝑝𝑝+ is the proportion of positive examples in S and
• 𝑝𝑝− is the proportion of  negatives examples in S

– If all the examples belong to the same category [(1,0) or (0,1)]: Entropy = 0 
– If all the examples are equally mixed (0.5, 0.5): Entropy = 1
– Entropy  = Level of uncertainty. 

• In general, when pi is the fraction of examples labeled i:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 𝑝𝑝1,𝑝𝑝2 , … ,𝑝𝑝𝑘𝑘 = −�
1

𝑘𝑘
𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖

• Entropy can be viewed as the number of bits required, on average, to  encode 
the class of labels. If the probability for + is 0.5, a single bit is required for each 
example; if it is 0.8 – can use less then 1 bit.
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Entropy

1

-- +

1

-- + --

1

+

• Entropy (impurity, disorder) of a set of examples, S, relative to a binary 
classification is:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 = −𝑝𝑝+ log 𝑝𝑝+ − 𝑝𝑝− log 𝑝𝑝−
• 𝑝𝑝+ is the proportion of positive examples in S and
• 𝑝𝑝− is the proportion of  negatives examples in S

– If all the examples belong to the same category: Entropy = 0 
– If all the examples are equally mixed (0.5, 0.5): Entropy = 1
– Entropy  = Level of uncertainty. 

Test yourself: assign 
high, medium, low 
to each of these 
distributions
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Entropy

1 1 1

(Convince yourself that the max value would be log 𝑘𝑘 )
(Also note that the base of the log only introduces a constant factor; therefore, we’ll think about base 2)

Test yourself again: 
assign high, medium, 
low to each of 
these distributions.
For the middle 
distribution, try to 
guess the value of 
the entropy.
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Information Gain
• The information gain of an attribute a is the expected reduction 

in entropy caused by partitioning on this attribute

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆,𝑎𝑎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 − �
𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)

• Where:
– Sv is the subset of S for which attribute a has value v, and
– the entropy of partitioning the data is calculated by weighing the 

entropy of each partition by its size relative to the original set

• Partitions of low entropy (imbalanced splits) lead to high gain
• Go back to check which of the A, B splits is better

High Entropy – High level of Uncertainty

Low Entropy – No Uncertainty. 

Outlook 

Overcast RainSunny
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Administration (9/21/20)

– Remember that all the lectures are available on the website before the class
• Go over it and be prepared

– HW 1 was released on Monday
• Covers: SGD, DT, Feature Extraction, Ensemble Models,  & Experimental Machine Learning
• Start working on it now. Don’t wait until the last day (or two) since it could take a lot of 

your time

– Go to the recitations and office hours

– No Class on Monday 9/28 for Yom Kippur

– Questions?
• Please ask/comment during class.
• Give us feedback 

Are we recording? YES!

Available on the web site
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What Have We Done?
1. Decision Trees 

– Expressivity

3. Entropy and Information Gain

2. A Recursive 
Decision Tree 
Algorithm
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Outlook: S(unny), 
O(vercast), 
R(ainy)

Temperature: H(ot), 
M(edium), 
C(ool)

Humidity: H(igh),
N(ormal), 
L(ow)

Wind: S(trong), 
W(eak)
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Will I play tennis today? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

calculate current entropy

• 𝑝𝑝+ = 9
14

𝑝𝑝− = 5
14

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −𝑝𝑝+ log 2 𝑝𝑝+ − 𝑝𝑝− log 2 𝑝𝑝−
= −

9
14

log2
9

14
−

5
14

log2
5

14
≈ 0.94
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Information Gain: Outlook
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Outlook = sunny: 
𝑝𝑝+ = 2/5 𝑝𝑝− = 3/5 Entropy(O = S) = 0.971

Outlook = overcast:
𝑝𝑝+ = 4/4 𝑝𝑝− = 0 Entropy(O = O) = 0
Outlook = rainy:
𝑝𝑝+ = 3/5 𝑝𝑝− = 2/5 Entropy(O = R) = 0.971

Expected entropy 
= ∑𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
= (5/14)×0.971 + (4/14)×0 + (5/14)×0.971 = 0.694

Information gain = 0.940 – 0.694 = 0.246

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆, 𝑎𝑎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 − �
𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
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Information Gain: Humidity
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Humidity = high:
𝑝𝑝+ = 3/7 𝑝𝑝− = 4/7 Entropy(H = H) = 0.985

Humidity = Normal:
𝑝𝑝+ = 6/7 𝑝𝑝− = 1/7 Entropy(H = N) = 0.592

Expected entropy 
= ∑𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
= (7/14)×0.985 + (7/14)×0.592 = 0.7785

Information gain = 0.940 – 0.694 = 0.246

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆, 𝑎𝑎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 − �
𝑣𝑣∈𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)

|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
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Which feature to split on? 
O T H W Play?

1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Information gain: 
Outlook:  0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

→ Split on Outlook
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An Illustrative Example (III)

Outlook 
Gain(S,Humidity)=0.151
Gain(S,Wind) = 0.048
Gain(S,Temperature) = 0.029
Gain(S,Outlook) = 0.246
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An Illustrative Example (III)

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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An Illustrative Example (III)

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

Continue until:
• Every attribute is included in path, or,
• All examples  in the leaf have same label

O T H W Play?
1 S H H W -
2 S H H S -
3 O H H W +
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -
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An Illustrative Example (IV)

=Humidity),Gain(S sunny .97-(3/5) 0-(2/5) 0 = .97

=Temp),Gain(S sunny .97- 0-(2/5) 1 = .57

=Wind),Gain(S sunny .97-(2/5) 1 - (3/5) .92= .02

Outlook 

Overcast Rain
3,7,12,13 4,5,6,10,14

3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

O T H W Play?
1 S H H W -
2 S H H S -
4 R M H W +
5 R C N W +
6 R C N S -
7 O C N S +
8 S M H W -
9 S C N W +
10 R M N W +
11 S M N S +
12 O M H S +
13 O H N W +
14 R M H S -

Split on Humidity



CIS 419/519 Fall’20
48

An Illustrative Example (V)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 
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An Illustrative Example (V)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity ? 

NormalHigh
No Yes
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induceDecisionTree(S)
• 1. Does S uniquely define a class? 

if all s ∈ S have the same label y: return S;

• 2. Find the feature with the most information gain:
i = argmax i Gain(S, Xi)

• 3. Add children to S:
for k in Values(Xi): 

Sk = {s ∈ S | xi = k}
addChild(S, Sk)

induceDecisionTree(Sk)
return S;
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An Illustrative Example (VI)

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes
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Hypothesis Space in Decision Tree Induction

• Conduct a search of the space of decision trees which can 
represent all possible discrete functions. (pros and cons)

• Goal: to find the best decision tree
– Best could be “smallest depth”
– Best could be “minimizing the expected number of tests”

• Finding a minimal decision tree consistent with a set of data is 
NP-hard.

• Performs a greedy heuristic search:  hill climbing without 
backtracking

• Makes statistically based decisions using all data
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History of Decision Tree Research

• Hunt and colleagues in Psychology used full search decision tree 
methods to model human concept learning in the 60s
– Quinlan developed ID3, with the information gain heuristics in the late 70s to 

learn expert systems from examples
– Breiman, Freidman and colleagues in statistics developed CART (classification 

and regression trees simultaneously)
• A variety of improvements in the 80s: coping with noise, continuous 

attributes, missing data, non-axis parallel etc.
– Quinlan’s updated algorithm, C4.5 (1993) is commonly used (New: C5)

• Boosting (or Bagging) over DTs is a very good general-purpose 
algorithm
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HW1 – Learning Algorithms
• SGD: You will learn the weights 𝑤𝑤𝑖𝑖

• DT/DT-stumps: learn a small DTs

• SGD+Stumps
– But, the DT algorithm is deterministic, and will give me the same DT every time
– Run it on different data – in this case, use random 50% of the features; 100 times

• Not the only option; you could use random 50% of the data

𝒘𝒘𝑇𝑇 � 𝒙𝒙 = �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑤𝑤600

𝑤𝑤1

𝑥𝑥1 𝑥𝑥600
100

𝑤𝑤100

Final Process: 
For each example: x1,600  (DT1(x),…, DT100(x))
Run SGD on 100 dimensional examples

https://www.seas.upenn.edu/%7Ecis519/fall2020/assets/HW/HW1/hw1.pdf
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Overfitting



CIS 419/519 Fall’20
58

Example

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes

• Outlook = Sunny, 
• Temp = Hot
• Humidity = Normal
• Wind = Strong 
• label: NO
• this example doesn’t exist in the tree
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Overfitting - Example
Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No

WeakStrong
No Yes

WeakStrong
No Yes

Wind

This can always be done 
– may fit noise or other 
coincidental regularities

• Outlook = Sunny, 
• Temp = Hot
• Humidity = Normal
• Wind = Strong 
• label: NO
• this example doesn’t exist in the tree
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Our training data
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The instance space
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Overfitting the Data
• Learning a tree that classifies the training data perfectly may not lead to the tree with the best 

generalization performance.
– There may be noise in the training data the tree is fitting
– The algorithm might be making decisions based on very little data

• A hypothesis h is said to overfit the training data if there is another hypothesis h’, such that h has a 
smaller error than h’ on the training data but h has larger error on the test data than h’.

Complexity of tree

accuracy

On testing

On training
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Reasons for overfitting
• Too much variance in the training data

– Training data is not a representative sample 
of the instance space

– We split on features that are actually irrelevant

• Too much noise in the training data
– Noise = some feature values or class labels are incorrect
– We learn to predict the noise

• In both cases, it is a result of our will to minimize the empirical 
error when we learn, and the ability to do it (with DTs) 
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Pruning a decision tree
• Prune = remove leaves and assign majority label of the parent 

to all items
• Prune the children of node s if:

– all children are leaves, and
– the accuracy on the validation set does not decrease if we assign the 

most frequent class label to all items at s.
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Avoiding Overfitting
• Two basic approaches

– Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is 
not enough data to make reliable choices.

– Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
• Methods for evaluating subtrees to prune

– Cross-validation: Reserve hold-out set to evaluate utility
– Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance
– Other

• The goal is to guarantee/improve generalization 
• This is related to the notion of regularization that we will see in other contexts – keep the 

hypothesis simple. 

How can this be avoided with linear classifiers?

Next: a brief detour into explaining generalization and overfitting

Hand waving, for now. 
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Preventing Overfitting

h1 h2
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Preventing Overfitting

h1 h2
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DT Extensions:
continuous attributes and missing 
values
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Continuous Attributes
• Real-valued attributes can, in advance, be discretized into ranges, such as 

big, medium, small
• Alternatively, one can develop splitting nodes based on thresholds of the 

form A<c that partition the data into examples that satisfy A<c and A>=c. 
– The information gain for these splits is calculated in the same way and compared to 

the information gain of discrete splits.

• How to find the split with the highest gain?
• For each continuous feature A:

– Sort examples according to the value of A
– For each ordered pair (x,y) with different labels

• Check the mid-point as a possible threshold, i.e.
• Sa < x Sa >= y
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Continuous Attributes
• Example:  

– Length (L):  10  15  21  28  32  40  50 
– labels:           - +   +    - +    +    -
– Check thresholds:   L < 12.5;  L < 24.5;  L < 45
– Subset of Examples= {…},      Split= k+,j-

• How to find the split with the highest gain ?
– For each continuous feature A:

• Sort examples according to the value of A
• For each ordered pair (x,y) with different labels

– Check the mid-point as a possible threshold. I.e,    
– Sa < x, Sa >= y



CIS 419/519 Fall’20
73

Missing Values
• Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

• Many times values are not available for all attributes during 
training or testing  (e.g., medical diagnosis)

• Training: evaluate Gain(S,a) where in some of the examples a 
value for a is not given 
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Missing Values
Outlook 

Overcast Rain

3,7,12,134,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
Yes? ? 

=Humidity),Gain(Ssunny

=Temp),Gain(Ssunny .97- 0-(2/5) 1 = .57      

Day    Outlook Temperature      Humidity    Wind PlayTennis
1       Sunny            Hot              High          Weak            No
2       Sunny            Hot              High          Strong          No
8       Sunny            Mild                ??? Weak             No
9       Sunny            Cool             Normal     Weak            Yes
11      Sunny            Mild              Normal     Strong          Yes

 Fill in: assign the most likely value of Xi to s:
argmax k P( Xi = k ): Normal

 97-(3/5) Ent[+0,-3] -(2/5) Ent[+2,-0] = .97

 Assign fractional counts P(Xi =k) 
for each value of Xi to s 
 .97-(2.5/5) Ent[+0,-2.5] - (2.5/5) Ent[+2,-.5] < .97

Other suggestions?

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆,𝑎𝑎 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆 −�
|𝑆𝑆𝑣𝑣|
|𝑆𝑆|

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)
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Missing Values
• Diagnosis = < fever, blood_pressure,…, blood_test=?,…> 

• Many times values are not available for all attributes during 
training or testing  (e.g., medical diagnosis)

• Training: evaluate Gain(S,a) where in some of the examples a 
value for a is not given 

• Testing: classify an example without knowing the value of a
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Missing Values

Outlook 

Overcast Rain

3,7,12,13 4,5,6,10,14
3+,2-

Sunny
1,2,8,9,11

4+,0-2+,3-
YesHumidity Wind

NormalHigh
No

WeakStrong
No YesYes

Outlook = ???, Temp = Hot,  Humidity = Normal,  Wind = Strong, label = ??

1/3 Yes + 1/3 Yes +1/3 No = Yes

Outlook = Sunny, Temp = Hot,  Humidity = ???,  Wind = Strong, label = ??   Normal/High
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Other Issues
• Attributes with different costs 

– Change information gain so that low cost attribute are preferred
• Dealing with features with different # of values

• Alternative measures for selecting attributes
– When different attributes have different number of values information 

gain tends to prefer those with many values
• Oblique Decision Trees 

– Decisions are not axis-parallel
• Incremental Decision Trees induction

– Update an existing decision tree to account  for new examples 
incrementally  (Maintain consistency?) 
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Summary: Decision Trees 
• Presented the hypothesis class of Decision Trees

– Very expressive, flexible, class of functions 

• Presented a learning algorithm for Decision Tress
– Recursive algorithm.
– Key step is based on the notion of Entropy

• Discussed the notion of overfitting and ways to address it within DTs
– In your problem set – look at the performance on the training vs. test

• Briefly discussed some extensions
– Real valued attributes
– Missing attributes

• Evaluation in machine learning
– Cross validation
– Statistical significance
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Decision Trees as Features
• Rather than using decision trees to represent the target function it is becoming common to use 

small decision trees as features
• When learning over a large number of features, learning decision trees is difficult and the resulting 

tree may be very large  
 (over fitting)

• Instead, learn small decision trees, with limited depth.
• Treat them as “experts”; they are correct, but only on a small region in the domain. (what DTs to 

learn?  same every time?)
• Then, learn another function, typically a linear function, over these as features. 
• Boosting (but also other linear learners) are used on top of the small decision trees. (Either 

Boolean, or real valued features)

• In HW1 you learn a linear classifier over DTs.
– Not learning the DTs sequentially; all are learned at once. 

• How can you learn multiple DTs?
– Combining them using an SGD algorithm.

https://www.seas.upenn.edu/%7Ecis519/fall2018/assets/lectures/lecture-2/boost-DT.pdf
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The i.i.d. assumption
• Training and test items are independently and identically 

distributed (i.i.d.): 
– There is a distribution P(X, Y) from which the data D = {(x, y)} is generated.

• Sometimes it’s useful to rewrite P(X, Y) as P(X)P(Y|X)
Usually P(X, Y) is unknown to us (we just know it exists)

– Training and test data are samples drawn from the same P(X, Y): they are 
identically distributed

– Each (x, y) is drawn independently from P(X, Y)
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Size of tree

Accuracy

On test data

On training data

85

Overfitting

• A decision tree overfits the training data when its accuracy on 
the training data goes up but its accuracy on unseen data goes 
down

Why this shape 
of curves? 
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Model complexity

Empirical 
Error

86

Overfitting

• Empirical error (= on a given data set):
The percentage of items in this data set are misclassified by 
the classifier f.

??
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Model complexity

Empirical 
Error

87

Overfitting

• Model complexity (informally):
How many parameters do we have to learn?

• Decision trees: complexity = #nodes
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Model complexity

Expected
Error

88

Overfitting

• Expected error:
What percentage of items drawn from P(x,y) do we expect to 
be misclassified by f? 

• (That’s what we really care about – generalization)
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Model complexity

89

Variance of a learner (informally)

• How susceptible is the learner to minor changes in the training data? 
– (i.e. to different samples from P(X, Y))

• Variance increases with model complexity 
– Think about extreme cases: a hypothesis space with one function vs. all functions. 
– Or, adding the “wind” feature in the DT earlier.
– The larger the hypothesis space is,  the more flexible the selection of the chosen hypothesis is as a 

function of the data. 
– More accurately: for each data set D, you will learn a different hypothesis h(D), that will have a different 

true error e(h); we are looking here at the variance of this random variable. 

Variance
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Model complexity

90

Bias of a learner (informally)

• How likely is the learner to identify the target hypothesis? 
• Bias is low when the model is expressive (low empirical error) 

• Bias is high when the model is (too) simple 
– The larger the hypothesis space is,  the easiest it is to be close to the true hypothesis. 
– More accurately: for each data set D, you learn a different hypothesis h(D), that has a different true error 

e(h); we are looking here at the difference of the mean of this random variable from the true error. 

Bias
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Model complexity

Expected
Error

91

Impact of bias and variance

• Expected error ≈ bias + variance

Variance

Bias
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Model complexity

Expected
Error

92

Model complexity

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 
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Underfitting Overfitting

Model complexity

Expected
Error
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Underfitting and Overfitting

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 

This can be made more accurate for some loss functions. 
We will discuss a more precise and general theory that 
trades expressivity of models with empirical error
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Experimental Machine Learning
• Machine Learning is an Experimental Field and we will spend some time 

(in Problem sets) learning how to run experiments and evaluate results
– First hint: be organized; write scripts

• Basics:
– Split your data into three sets:

• Training data (often 70-90%)
• Test data (often 10-20%)
• Development data (10-20%)

• You need to report performance on test data, but you are not allowed to 
look at it.
– You are allowed to look at the development data (and use it to tune parameters)
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Metrics
Methodologies
Statistical Significance
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Metrics
• We train on our training data Train = {xi, yi}1,m
• We test on Test data.
• We often set aside part of the training data as a development set, 

especially when the algorithms require tuning. 
– In the HW we asked you to present results also on the Training; why? 

• When we deal with binary classification we often measure performance 
simply using Accuracy: 

• Any possible problems with it?
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Alternative Metrics
• If the Binary classification problem is biased

– In many problems most examples are negative
• Or, in multiclass classification

– The distribution over labels is often non-uniform
• Simple accuracy is not a useful metric. 

– Often we resort to task specific metrics
• However one important example that is being used often 

involves Recall and Precision

• Recall:         # (positive identified = true positives)     
# (all positive)

• Precision:   # (positive identified = true positives)                
# (predicted positive)

Predicted positive

Positive     negative    
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Example
• 100 examples, 5% are positive.

• Just say NO: your accuracy is 95%
– Recall = precision = 0

• Predict 4+, 96-; 2 of the +s are indeed positive
– Recall:2/5;  Precision: 2/4

• Recall:         # (positive identified = true positives)     
# (all positive)

• Precision:   # (positive identified = true positives)                
# (predicted positive)

Positive     negative    
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Confusion Matrix
99

• Given a dataset of P positive instances and N negative 
instances:

• Imagine using classifier to identify positive cases (i.e., for 
information retrieval)

Yes

No

Yes No

A
ct

ua
l C

la
ss

Predicted Class

TP FN

FP TN

Probability that a randomly 
selected positive prediction 
is indeed positive

Probability that a randomly 
selected positive is 
identified 

The notion of a 
confusion matrix can 
be usefully extended 
to the multiclass case
(i,j) cell indicate how 
many of the i-labeled 
examples were 
predicted to be j
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Relevant Metrics
• It makes sense to consider Recall and 

Precision together or combine them 
into a single metric.

• Recall-Precision Curve:

• F-Measure: 
– A measure that combines precision and 

recall is the harmonic mean of precision 
and recall. 

– F1 is the most commonly used metric. 
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Comparing Classifiers
Say we have two classifiers, C1 and C2, and want to choose the 
best one to use for future predictions

Can we use training accuracy to choose between them?
• No! 

• What about accuracy on test data?
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N-fold cross validation
• Instead of a single test-training split:

• Split data into N equal-sized parts 

• Train and test N different classifiers
• Report average accuracy and standard deviation of the 

accuracy

train test
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Evaluation: significance tests
• You have two different classifiers, A and B
• You train and test them on the same data set using N-fold 

cross-validation
• For the n-th fold: 

accuracy(A, n), accuracy(B, n)
pn = accuracy(A, n) - accuracy(B, n)

• Is the difference between A and B’s accuracies significant?
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Hypothesis testing
• You want to show that hypothesis H is true, based on your 

data  
– (e.g.  H  = “classifier A and B are different”) 

• Define a null hypothesis H0
– (H0 is the contrary of what you want to show)

• H0 defines a distribution P(m |H0) over some statistic
– e.g. a distribution over the difference in accuracy between A and B

• Can you refute (reject) H0?
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Rejecting H0

• H0 defines a distribution P(M |H0) over some statistic M
– (e.g. M= the difference in accuracy between A and B)

• Select a significance value S 
– (e.g. 0.05, 0.01, etc.)
– You can only reject H0 if P(m |H0) ≤ S

• Compute the test statistic m from your data
– e.g. the average difference in accuracy over your N folds

• Compute P(m |H0) 
• Refute H0 with p ≤ S if P(m |H0) ≤ S
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Paired t-test
• Null hypothesis (H0; to be refuted): 

– There is no difference between A and B, i.e. the expected accuracies of 
A and B are the same 

• That is, the expected difference (over all possible data sets) 
between their accuracies is 0:

H0: E[pD]  = 0

• We don’t know the true E[pD]
• N-fold cross-validation gives us N samples of pD
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Paired t-test
• Null hypothesis H0: E[diffD]  = μ = 0

• m: our estimate of μ based on N samples of diffD
m = 1/N ∑n diffn

• The estimated variance S2:  
S2 = 1/(N-1) ∑1,N (diffn – m)2

• Accept Null hypothesis at significance level a if the     
following statistic lies in (-ta/2, N-1, +ta/2, N-1)
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Decision Trees - Summary
• Hypothesis Space: 

– Variable size (contains all functions)
– Deterministic;  Discrete and Continuous attributes 

• Search Algorithm
– ID3 - batch
– Extensions: missing values

• Issues:  
– What is the goal? 
– When to stop? How to guarantee good generalization?

• Did not address: 
– How are we doing? (Correctness-wise, Complexity-wise)
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