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Administration (10/26/20)

• Remember that all the lectures are available on the website before 
the class
– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more 

details, examples and, (when relevant) some code. 

• HW 2: Due date extended to 10/22; late submissions are due today.

• Quizzes: Quiz 6 Statistics

• Mid-term is on 10/28; at the class time. 

Are we recording? YES!

Available on the web site

https://canvas.upenn.edu/courses/1546646/quizzes/2488616/statistics
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Midterm on 10/28/20
• Mid-term will be a Quiz style. 

– It will be done on Canvas.
– We will open at 10:30am Eastern time, and close it at 11:30am 

• Except for people that have been approved for extended time
– And have heard from me (some time today)

• You need to be on zoom. If at all possible, open your video. 
– No one came forward with a time zone problem. 

• Short questions
– Multiple choice; a few will require filling in answers
– There will be quite a few questions
– Open books (but you may not have time to consult it too much)
– We try to make it about understanding rather than memorization

• Questions? Please ask/comment during class; give us feedback 
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Projects
• CIS 519 students need to do a team project

– Teams will be of size 2-4
– We will help grouping if needed

• There will only be ~3 types of projects. 
– We will provide initial ideas and ask that you write a short proposal/plan for what you want to do.

• If you have an idea for a project that you would like to be one of these projects –
– please send me a short write-up (< 1 page) with a description, motivation, relevant data available, and any other relevant information.
– No later than Friday this week: 10/30/20

• Details will be available on the website
– Start teaming up

• The project will require developing a machine learning system and running experiments with it
– You will be given some data
– Beyond running several algorithms on the data, the key part will require asking a question or proposing a hypothesis and investigating it. 

• Say that the data comes from multiple domains – it is enough to train on one of the domains?
– The work has to include some reading of the literature . 
– Originality is not mandatory but is encouraged. 

• Try to make it interesting! 
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Where are we?
• Algorithmically: 

– Perceptron + Variations
– (Stochastic) Gradient Descent 

• Models:
– Online Learning; Mistake Driven Learning

• What do we know about Generalization? (to previously unseen 
examples?) 
– How will your algorithm do on the next example?

• Next we develop a theory of Generalization.
– We will come back to the same (or very similar) algorithms and show how 

the new theory sheds light on appropriate modifications of them, and 
provides guarantees. 
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Why Learning Works? 
• (A glimpse into) A theory of Generalization: 
• The basic theorem we will discuss has the following form:  

– Error(f) [on sample from distribution D]  <     Training Error (f) + 
Complexity Term 

(size of hypothesis space, # of examples, how good you want it to be)

• Key Condition: Training data is sampled from the same distribution as the test data 
– IID: Independently, Identically distributed

• Key question: How we do estimate the complexity term?
– What is the relation between what we see on the training data and what we’ll see in the real world.
– Note that you already know something about it, experimentally; but, can we quantify it?

Example: 
• For any distribution 𝐷𝐷 generating training and test instances, with probability at least 1 − δ over the choice of the training set of size 𝑚𝑚, 

(drawn IID), for all ℎ∈𝐻𝐻

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 < 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ +
log 𝐻𝐻 + log 1

𝛿𝛿
2𝑚𝑚

1
2

• What if H isn’t finite? What other complexity parameters can be used?                                          

Generalization: a function of the 
Hypothesis class size 

Error on the training data
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Computational Learning Theory
• What general laws constrain inductive learning ?

– What learning problems can be solved ?  
– When can we trust the output of a  learning  algorithm ? 

• We seek theory to relate
– Probability of successful Learning
– Number of training examples
– Complexity of hypothesis space
– Accuracy to which target concept is approximated
– Manner in which training examples are presented
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Quantifying Performance via Learning Conjunctions

• There is a hidden conjunction the learner (you) is to learn 
𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

• How many examples are needed to learn it ?  How ?
– Protocol I:  

• The learner proposes instances as queries to the teacher
– Protocol II:  

• The teacher (who knows f) provides training examples 
– Protocol III: 

• Some random source (e.g., Nature) provides training examples; the 
Teacher (Nature) provides the labels (𝑓𝑓 𝑥𝑥 )

Recall what we did earlier: 
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Learning Conjunctions(III)
• Protocol III:  Some random source (e.g., Nature) provides training examples

– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))
• Algorithm:  Elimination 

– Start with the set of all literals as candidates
– Eliminate a literal that is not active (0) in a positive example

<(1,1,1,1,1,1,…,1,1), 1>     
<(1,1,1,0,0,0,…,0,0), 0>       learned nothing
<(1,1,1,1,1,0,...0,1,1), 1>
<(1,0,1,1,0,0,...0,0,1), 0>    learned nothing
<(1,1,1,1,1,0,...0,0,1), 1>
<(1,0,1,0,0,0,...0,1,1), 0>     Final hypothesis: 
<(1,1,1,1,1,1,…,0,1), 1>       ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
<(0,1,0,1,0,0,...0,1,1), 0>

• Is it  good?
• Performance ?
• # of examples ?

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
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Learning Conjunctions (III)
• Protocol III:  Some random source (e.g., Nature) provides training 

examples
– Teacher (Nature) provides the labels (𝑓𝑓(𝑥𝑥))

• Algorithm: 
<(1,1,1,1,1,1,…,1,1), 1>     
<(1,1,1,0,0,0,…,0,0), 0>      
<(1,1,1,1,1,0,...0,1,1), 1>
<(1,0,1,1,0,0,...0,0,1), 0>     
<(1,1,1,1,1,0,...0,0,1), 1>
<(1,0,1,0,0,0,...0,1,1), 0>   Final hypothesis:
<(1,1,1,1,1,1,…,0,1), 1>     ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
<(0,1,0,1,0,0,...0,1,1), 0>
<(0,1,0,1,0,0,...0,1,1), 0>

• Is it  good
• Performance ?
• # of examples ?

 With the given data, we only learned an 
“approximation” to the true concept

 We don’t know how many examples 
we need to see to learn exactly. (do we 
care?)

 But we know that we can make a limited 
# of mistakes. 

𝑓𝑓 = 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
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Two Directions
– Can continue to analyze the probabilistic intuition:

• Never saw 𝑥𝑥1 in positive examples, maybe we’ll never see it?
• And if we will, it will be with small probability, so the concepts we learn may 

be pretty good
• Good: in terms of performance on future data
• PAC framework

– Mistake Driven Learning algorithms
• Update your hypothesis only when you make mistakes
• Good: in terms of how many mistakes you make before you stop, happy with 

your hypothesis. 
• Note: not all on-line algorithms are mistake driven, so performance measure 

could be different.
– May be unsatisfactory, since we don’t know when we will make the mistakes. We 

want a more robust notion of performance in the future.
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Prototypical Concept Learning
• Instance Space:  𝑋𝑋

– Examples
• Concept Space: 𝐶𝐶

– Set of possible target functions: 𝑓𝑓∈𝐶𝐶 is the hidden target function
– All 𝑛𝑛-conjunctions; all 𝑛𝑛-dimensional linear functions

• Hypothesis Space: 
– 𝐻𝐻: set of possible hypotheses

• Training instances S:
– positive and negative examples of the target concept 𝑓𝑓∈𝐶𝐶

< 𝑥𝑥1,𝑓𝑓 𝑥𝑥1 >, < 𝑥𝑥2, 𝑓𝑓 𝑥𝑥2 >, … , < 𝑥𝑥𝑛𝑛,𝑓𝑓 𝑥𝑥𝑛𝑛 >
• Determine:

– A hypothesis ℎ∈𝐻𝐻 such that ℎ 𝑥𝑥 = 𝑓𝑓(𝑥𝑥)
– A hypothesis ℎ∈𝐻𝐻 such that ℎ 𝑥𝑥 = 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥∈𝑆𝑆 ?
– A hypothesis ℎ∈𝐻𝐻 such that ℎ 𝑥𝑥 = 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥∈𝑋𝑋 ? 

ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
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Prototypical Concept Learning
– Instance Space:  𝑋𝑋

• Examples
– Concept Space: 𝐶𝐶

• Set of possible target functions: 𝑓𝑓∈𝐶𝐶 is the hidden target function
• All 𝑛𝑛-conjunctions; all 𝑛𝑛-dimensional linear functions. 

– Hypothesis Space:
• 𝐻𝐻: set of possible hypotheses

– Training instances S:
• positive and negative examples of the target concept 𝑓𝑓∈𝐶𝐶 . Training instances are 

generated by a fixed unknown probability distribution 𝐷𝐷 over 𝑋𝑋
< 𝑥𝑥1, 𝑓𝑓 𝑥𝑥1 >, < 𝑥𝑥2, 𝑓𝑓 𝑥𝑥2 >, … , < 𝑥𝑥𝑛𝑛, 𝑓𝑓 𝑥𝑥𝑛𝑛 >

– Determine: 
• A hypothesis ℎ∈𝐻𝐻 that estimates 𝑓𝑓, evaluated by its performance on subsequent instances 

x∈𝑋𝑋 drawn according  to 𝐷𝐷
ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100
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PAC Learning – Intuition 
• We have seen many examples 

(drawn according to D ). Since in all 
the positive examples 𝑥𝑥1 was active,  
it is very likely that it will be active in 
future positive examples. If not, in 
any case, 𝑥𝑥1 is active only in a small 
percentage of the examples so our 
error will be small 

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 = Pr
𝑥𝑥 𝜖𝜖 𝐷𝐷

[𝑓𝑓 𝑥𝑥 ≠ ℎ 𝑥𝑥 ]

• ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

f and h disagree

f
h+

+
-

-

-
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The notion of error
• Can we bound the Error?
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 = Pr

𝑥𝑥 𝜖𝜖 𝐷𝐷
[𝑓𝑓 𝑥𝑥 ≠ ℎ 𝑥𝑥 ]

given what we know about the 
training instances?

ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

f
h

f and h disagree

+
+

-

-

-

Is this the right picture? 
Why? Why not?
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Learning Conjunctions– Analysis (1)
• Claim 1: Let 𝑧𝑧 be a literal. Let 𝑝𝑝(𝑧𝑧) be the probability that, in D-

sampling an example, the example is positive and 𝑧𝑧 is false in it. 
Then: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ ≤ ∑𝑧𝑧 𝜖𝜖𝜖 𝑝𝑝 𝑧𝑧
• Proof:

– During learning 𝑝𝑝(𝑧𝑧) is the probability that a randomly chosen example is 
positive and 𝑧𝑧 is deleted from ℎ. 

– If 𝑧𝑧 is in the target concept, than 𝑝𝑝(𝑧𝑧) = 0.
– Note that ℎ will make mistakes only on positive examples. 

• A mistake is made only if a literal 𝑧𝑧, that is in ℎ but not in 𝑓𝑓, is  false in a 
positive example. In this case, ℎ will say NEG, but the example is POS.

– Thus, 𝑝𝑝(𝑧𝑧) is also the probability that 𝒛𝒛 causes 𝒉𝒉 to make a mistake on a 
randomly drawn example from D .

• There may be overlapping reasons for mistakes, but the sum 
clearly bounds it.

ℎ = 𝑥𝑥1 ∧ 𝑥𝑥2 ∧ 𝑥𝑥3 ∧ 𝑥𝑥4 ∧ 𝑥𝑥5 ∧ 𝑥𝑥100

f
h+ +
-

-

-
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Learning Conjunctions– Analysis (2)
Step 2 of the analysis:
• Call a literal 𝑧𝑧 in the hypothesis ℎ bad if 𝑝𝑝 𝑧𝑧 > 𝜀𝜀

𝑛𝑛
.

• A bad literal is a literal that is not in the target concept and has a significant probability to appear false 
with a positive example.  

• Claim: If there are no bad literals, than  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ < 𝜀𝜀.  Reason: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ℎ ≤ ∑𝑧𝑧 𝜖𝜖𝜖 𝑝𝑝(𝑧𝑧)
• What if there are bad literals ? 

– Let z be a bad literal.  
– What is the probability that it will not be eliminated by a given example?
Pr(𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 1 − Pr(𝑧𝑧 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

≤ 1 − 𝑝𝑝 𝑧𝑧 < 1 − 𝜀𝜀
𝑛𝑛

• The probability that z will not be eliminated by m examples is therefore:

Pr(𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 1 − 𝑝𝑝 𝑧𝑧 𝑚𝑚 < 1 − 𝜀𝜀
𝑛𝑛

𝑚𝑚

• There are at most n bad literals, so the probability that some bad literal survives m examples is 
bounded by 𝑛𝑛(1 − 𝜀𝜀/𝑛𝑛)𝑚𝑚
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Step 3 of the analysis:
• We want  this probability to be small. Say,  we want to choose m large enough such that the probability 

that some z survives m examples is less than δ.  
• (I.e., that z remains in h, and makes it different from the target function)

Pr(𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑛𝑛 1 − 𝜀𝜀
𝑛𝑛

𝑚𝑚
< 𝛿𝛿

• Using 1 − 𝑥𝑥 < 𝑒𝑒−𝑥𝑥 (𝑥𝑥 > 0)  it is sufficient to require that  𝑛𝑛 𝑒𝑒−
𝑚𝑚𝑚𝑚
𝑛𝑛 < δ

• Therefore, we need :  

𝑚𝑚 >
𝑛𝑛
𝜀𝜀 {ln 𝑛𝑛 + ln

1
𝛿𝛿

}

examples to guarantee a probability of failure (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 𝜖𝜖) of less than δ.
• Theorem: If m is as above, then: 

– With probability > 1 − δ, there are no bad literals; equivalently, 
– With probability > 1 − δ, 𝐸𝐸𝐸𝐸𝐸𝐸(ℎ) < 𝜀𝜀

• With δ = 0.1, ε = 0.1, and 𝑛𝑛 = 100, we need  6907 examples.
• With δ = 0.1, ε = 0.1, and 𝑛𝑛 = 10, we need  only 460 example, only 690 for δ = 0.01

24

Learning Conjunctions– Analysis (3)
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More Generally: Formulating Prediction Theory
• Instance Space  𝑋𝑋, Input to the Classifier;  Output Space 𝑌𝑌 = {−1, +1}
• Making predictions with: ℎ: 𝑋𝑋 → 𝑌𝑌
• 𝐷𝐷: An unknown distribution over 𝑋𝑋 × 𝑌𝑌
• 𝑆𝑆: A set of examples drawn independently from D; 𝑚𝑚 = |𝑆𝑆|, size of sample.
Now we can define:
• True Error: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 = Pr

𝑥𝑥,𝑦𝑦 ∈𝐷𝐷
[ℎ 𝑥𝑥 ≠ 𝑦𝑦]

• Empirical Error: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆 = Pr
(𝑥𝑥,𝑦𝑦) ∈ 𝑆𝑆

[ℎ 𝑥𝑥 ≠ 𝑦𝑦] = ∑1,𝑚𝑚[ℎ 𝑥𝑥𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖]

– (Empirical Error == Observed Error) 
This will allow us to ask:  (1) Can we describe/bound  ErrorD given ErrorS ?
• Function Space: C – A set of possible target concepts; target is: 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌
• Hypothesis Space: H – A set of possible hypotheses
This will allow us to ask:  (2) Is 𝐶𝐶 learnable?

– Is it possible to learn a given function in C using functions in H, given the supervised protocol? 
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Requirements of Learning
• Cannot expect a learner to learn a concept exactly, since 

– There will generally be multiple concepts consistent with the available 
data (which represent a small fraction of the available instance space).

– Unseen examples could potentially have any label    
– We “agree” to misclassify uncommon examples that do not show up in the 

training set.
• Cannot always expect to learn a close approximation to the target 

concept since 
– Sometimes (only in rare learning situations, we hope) the training set   will 

not be representative (will contain uncommon examples).  
• Therefore, the only realistic expectation of a good learner is that 

with high probability it will learn a close approximation to the target 
concept.
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Those of you who cannot vote (and those who can): 
A documentary: All In

https://www.amazon.com/All-Fight-Democracy-Stacey-Abrams/dp/B08FRQQKD5
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Administration (11/2/20)

• Remember that all the lectures are available on the website before the class
– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more details, 

examples and, (when relevant) some code. 

• HW 3: Due on 11/16/ 
– You cannot solve all the problems yet.
– Less time consuming; no programming

• Mid-term: 
– Average: 43.4/81= 53.5%
– Median: 43.5/81
– Standard Deviation: 7.7

Are we recording? YES!

Available on the web site

Expectation: 
– Top 35-40% of the students = A 
– Next 40% = B 
– Next 20% = C
– Very few (hopefully none) who stop doing the work < C.
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Projects
• CIS 519 students need to do a team project

– Teams will be of size 2-4
– We will help grouping if needed

• There will be 3 projects. 
– Natural Language Processing (Text)
– Computer Vision (Images)
– Speech (Audio)

• In all cases, we will give you datasets and initial ideas
– The problem will be multiclass classification problems
– You will get annotated data only for some of the labels, but will also have to predict other labels
– 0-zero shot learning; few-shot learning; transfer learning

• A detailed note will come out today. 

• Timeline:
– 11/9: Choose a project and team up
– 11/23 Initial proposal describing what your team plans to do 
– 12/2 Progress report
– 12/15-20 (TBD) Final paper + short video

• Try to make it interesting! 
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Probably Approximately Correct

• Cannot expect a learner to learn a concept exactly.
• Cannot always expect to learn a close approximation to the target 

concept 
• Therefore, the only realistic expectation of a good learner is that with 

high probability it will learn a close approximation to the target 
concept.

• In Probably Approximately Correct (PAC) learning, one requires that 
given small parameters ε and δ,  with probability at least (1 − δ) a 
learner produces a hypothesis with error at most  ε

• The reason we can hope for that is the Consistent Distribution 
assumption.

f h+ + -
-

-We want a theory, so that we understand 
(1) what observed performance says about future performance, and 
(2) what contributes to this (gap in performance) . 
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PAC Learnability
• Consider a  concept class 𝐶𝐶 defined over an instance space X (containing 

instances of length n),  and a learner L using a hypothesis space H.  
• 𝐶𝐶 is PAC learnable by L using H if

– for all 𝑓𝑓 𝜖𝜖 𝐶𝐶,
– for all distributions D  over X, and fixed 0 < ε, δ < 1, 

• L, given a collection of m examples sampled independently according to D 
produces 
– with probability at least (1 − δ) a hypothesis ℎ ∈ 𝐻𝐻 with error at most ε, 
(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 = 𝑃𝑃𝑟𝑟𝐷𝐷[𝑓𝑓 𝑥𝑥 ≠ ℎ(𝑥𝑥)]) where m is polynomial in 1/ ε, 1/ δ, 𝑛𝑛 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐻𝐻)

• 𝐶𝐶 is efficiently learnable if L can produce the hypothesis in time 
polynomial in 1/ ε, 1/ δ, 𝑛𝑛 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐻𝐻)
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PAC Learnability
• We impose two limitations: 

– Polynomial sample complexity  (a condition on m; information theoretic constraint)
• Is there enough information in the sample to distinguish a hypothesis ℎ that approximate 𝑓𝑓 ?  

– Polynomial time complexity (a condition on the efficiency of L; computational 
complexity)

• Is there an efficient algorithm that can process the sample and produce a good hypothesis ℎ ? 

• To be PAC learnable, there must be a hypothesis ℎ ∈ 𝐻𝐻 with arbitrary small 
error for every 𝑓𝑓 ∈ 𝐶𝐶. We generally assume 𝐻𝐻 ⊇ 𝐶𝐶. (Properly PAC learnable if 
𝐻𝐻 = 𝐶𝐶) 

• Worst Case definition: the algorithm must meet its accuracy 
– for every distribution (The distribution free assumption)
– for every target function 𝑓𝑓 in the class 𝐶𝐶

We want a theory, so that we understand 
(1) what observed performance says about future 

performance, and 
(2) what contributes to this (gap in performance) . 
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Note that this is an ideal situation – the learner is perfect on the training data. 
We call it the “consistent learner scheme”. 
First, we will ask “how good are we going to be in the future if we are perfect in 
training”; then we’ll generalize to a more realistic scenario. 

33

Occam’s Razor (1)
Claim: The probability that there exists a hypothesis ℎ 𝜖𝜖 𝐻𝐻 that 

(1) is consistent with 𝑚𝑚 examples and 
(2) satisfies 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ > ε ( 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷(ℎ) = 𝑃𝑃𝑃𝑃𝑥𝑥 𝜖𝜖 𝐷𝐷 [𝑓𝑓 𝑥𝑥 ≠ ℎ(𝑥𝑥)] )

is  less than   |𝐻𝐻|(1 − ε )𝑚𝑚 .

Proof: Let ℎ be such a bad hypothesis. 
- The probability that ℎ is consistent with one example of 𝑓𝑓 is

𝑃𝑃𝑟𝑟𝑥𝑥 𝜖𝜖𝜖𝜖 𝑓𝑓 𝑥𝑥 = ℎ 𝑥𝑥 < 1 − 𝜀𝜀

- Since the 𝑚𝑚 examples are drawn independently of each other, 
The probability that ℎ is consistent with 𝑚𝑚 example of 𝑓𝑓 is less than 1 − 𝜀𝜀 𝑚𝑚

- The probability that some hypothesis in 𝐻𝐻 is consistent with 𝑚𝑚 examples
is less than 𝐻𝐻 1 − 𝜀𝜀 𝑚𝑚

So, what is m? Note that we don’t need a true 𝑓𝑓 for 
this argument; it can be done with ℎ, 
relative to a distribution over 𝑋𝑋 × 𝑌𝑌. 

Key Theorem (simple case): 
Generalizing the example we 
showed for conjunctions



CIS 419/519 Fall’20 34

Occam’s Razor (1)
• We want this probability to be smaller than δ, that is: 

𝐻𝐻 1 − 𝜀𝜀 𝑚𝑚 < δ

𝑙𝑙𝑙𝑙(|𝐻𝐻|) + 𝑚𝑚 𝑙𝑙𝑙𝑙(1 − 𝜀𝜀) < 𝑙𝑙𝑙𝑙(δ)

(with 𝑒𝑒−𝑥𝑥 = 1 − 𝑥𝑥 + 𝑥𝑥2

2
+ ⋯ ; 𝑒𝑒−𝑥𝑥 > 1 − 𝑥𝑥; → ln 1 − ε < − ε; gives a safer δ)

𝑚𝑚 >
1
𝜀𝜀

{ln 𝐻𝐻 + ln
1
𝛿𝛿

}

(gross over estimate)
It is called Occam’s razor, because it indicates a preference towards small 
hypothesis spaces. 

• What kind of hypothesis spaces do we want ?  Large ?  Small ?
• To guarantee consistency we need 𝐻𝐻 ⊇ 𝐶𝐶. But do we want the smallest 𝐻𝐻 possible ?

We showed that a  m-consistent 
hypothesis generalizes well 
(𝑒𝑒𝑒𝑒𝑒𝑒 < ε)
(The appropriate m is a function 
of |H|)

What do we know now 
about the Consistent 
Learner scheme?
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Why Should We Care?
• We now have a theory of generalization

– We know what the important complexity parameters are,
– We understand the dependence in the number of examples and in the size 

of the hypothesis class.

• We have a generic procedure for learning that is guaranteed to 
generalize well
– Draw a sample of size 𝑚𝑚.
– Develop an algorithm that is consistent with it.
– It will be good

• If 𝑚𝑚 was large enough. 
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Consistent Learners
• Immediately from the definition, we get the following general scheme for PAC learning:
• Given a sample D of 𝑚𝑚 examples

– Find some ℎ ∈ 𝐻𝐻 that is consistent with all 𝑚𝑚 examples
• We showed that if 𝑚𝑚 is large enough, a consistent hypothesis must be close enough to 𝑓𝑓

– Check that 𝑚𝑚 is not too large (polynomial in the relevant parameters): 
• we showed that the “closeness” guarantee requires that 

𝑚𝑚 > 1
ε (ln 𝐻𝐻 + ln 1

𝛿𝛿
)

– Show that the consistent hypothesis ℎ ∈ 𝐻𝐻 can be computed efficiently

• In the case of conjunctions 
– We used the Elimination algorithm to find a hypothesis h that is consistent with the training set  (easy to 

compute) 
– We showed directly that if we have sufficiently many examples (polynomial in the parameters), than h is 

close to the target function.
We did not need to show it directly.  As 

shown above we could have just relied on the 
fact the H is not too large.
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Examples
• Conjunction (general):  The size of the hypothesis space is 3n

– Since there are 3 choices for each feature (not appear, appear positively or appear negatively)

𝑚𝑚 > 1
𝜀𝜀
𝑙𝑙𝑙𝑙 3𝑛𝑛 + 𝑙𝑙𝑙𝑙 1

𝛿𝛿
= 1

𝜀𝜀
{n ln 3 + ln 1

𝛿𝛿
}

(slightly different than previous bound) 
•
• If we want to guarantee a 95% chance of learning a hypothesis of at least 90%

accuracy, with 𝑛𝑛 = 10 Boolean variable, 
– 𝑚𝑚 > (𝑙𝑙𝑙𝑙(1/0.05) + 10𝑙𝑙𝑙𝑙(3))/0.1 = 140.

• If we go to 𝑛𝑛 = 100, this goes just to 1130,  (linear with n) 
• but changing the confidence to 1% it goes just to 1145 (logarithmic with δ)
• These results hold  for any consistent learner.
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Why Should We Care?
• We now have a theory of generalization.

– We know what are the important complexity parameters
– We understand the dependence in the number of examples and in the size of the 

hypothesis class

• We have a generic procedure for learning that is guaranteed to generalize 
well.
– Draw a sample of size 𝑚𝑚.
– Develop an algorithm that is consistent with it.
– It will be good.

• We have tools to prove that some hypothesis classes are learnable and 
some are not.
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Example: K-CNF
• We will show that the class of K-CNF functions is PAC learnable. 

– Here is an example of a member of this class of functions: 

𝑓𝑓 = �
𝑖𝑖=1

𝑟𝑟

(𝑙𝑙𝑖𝑖1 ∨ 𝑙𝑙𝑖𝑖2 ∨ ⋯∨ 𝑙𝑙𝑖𝑖𝑘𝑘)

• We will develop an Occam Algorithm (Consistent Learner algorithm) for a hidden 𝑓𝑓 𝜖𝜖 𝑘𝑘 − 𝐶𝐶𝐶𝐶𝐶𝐶
• Draw a sample 𝐷𝐷 of size 𝑚𝑚
• Find a hypothesis ℎ that is consistent with  all the examples in 𝐷𝐷
• Determine sample complexity:

𝑓𝑓 = 𝐶𝐶1 ∧ 𝐶𝐶2 ∧ ⋯∧ 𝐶𝐶𝑚𝑚; … … … ;𝐶𝐶𝑖𝑖 = 𝑙𝑙1 ∨ 𝑙𝑙2 ∨ ⋯∨ 𝑙𝑙𝑘𝑘
ln 𝑘𝑘 − 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂 𝑛𝑛𝑘𝑘 … … … 2 2𝑛𝑛 𝑘𝑘 … … … 2𝑛𝑛 𝑘𝑘

(that is, log|H| is polynomial in n; remember that k is just a fixed number)

(1) Due to the sample complexity result ℎ is guaranteed to be a PAC hypothesis, if we can use the m examples to learn 
a consistent hypothesis. 

How about an algorithm? how do we find the consistent hypothesis ℎ?
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Example: K-CNF (cont.)

𝑓𝑓 = �
𝑖𝑖=1

r

(𝑙𝑙𝑖𝑖1 ∨ 𝑙𝑙𝑖𝑖2 ∨ ⋯∨ 𝑙𝑙𝑖𝑖𝑘𝑘)

(2) How do we find the consistent hypothesis ℎ?
Define a new set of features (literals), one for each clause of size 𝑘𝑘

𝑦𝑦𝑗𝑗 = 𝑙𝑙𝑖𝑖1 ∨ 𝑙𝑙𝑖𝑖2 ∨ ⋯∨ 𝑙𝑙𝑖𝑖𝑘𝑘; 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑘𝑘

• Use the algorithm for learning monotone conjunctions, over the new set of literals.  We know that 
the algorithm is efficient. 

Example: 𝑛𝑛 = 4, 𝑘𝑘 = 2; monotone k-CNF
𝑦𝑦1 = 𝑥𝑥1 ∨ 𝑥𝑥2 𝑦𝑦2 = 𝑥𝑥1 ∨ 𝑥𝑥3 𝑦𝑦3 = 𝑥𝑥1 ∨ 𝑥𝑥4 𝑦𝑦4 = 𝑥𝑥2 ∨ 𝑥𝑥3 𝑦𝑦5 = 𝑥𝑥2 ∨ 𝑥𝑥4 𝑦𝑦6 = 𝑥𝑥3 ∨ 𝑥𝑥4

• Original examples:  (0000, 𝑙𝑙) (1010, 𝑙𝑙) (1110, 𝑙𝑙) (1111, 𝑙𝑙)
• New examples: (000000, 𝑙𝑙) (111101, 𝑙𝑙) (111111, 𝑙𝑙) (111111, 𝑙𝑙)

Distribution?
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Negative Results – Examples 
– Two types of non-learnability results:
– Complexity Theoretic (Time complexity, applies to the Efficient PAC condition)

• Showing that various concepts classes cannot be learned, based on well-
accepted assumptions from computational complexity theory. 

• E.g. : 𝐶𝐶 cannot be learned unless 𝑃𝑃 = 𝑁𝑁𝑁𝑁
– Information Theoretic (Sample Complexity, applies to the basic PAC condition)

• The concept class is sufficiently rich that a polynomial number of examples 
may not be sufficient to distinguish a particular target concept. 

• Both type involve “representation dependent” arguments.
• The proof shows that a given class cannot be learned by algorithms using 

hypotheses from the same class.  (So?)
– Usually proofs are for EXACT learning, but apply for the distribution free 

case.
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Negative Results for Learning
• Complexity Theoretic: 

– 𝑘𝑘-term DNF, for 𝑘𝑘 > 1 (𝑘𝑘-clause CNF, 𝑘𝑘 > 1)
– Neural Networks of fixed architecture (3 nodes; 𝑛𝑛 inputs)
– “read-once” Boolean formulas
– Quantified conjunctive concepts 

• Information Theoretic: 
– DNF Formulas;  CNF Formulas 
– Deterministic Finite Automata
– Context Free Grammars

We need to extend the theory in two ways:
(1) What if we cannot be completely consistent with the training data?
(2) What if the hypothesis class we work with is not finite? 
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Agnostic Learning
• Assume we are trying to learn a concept 𝑓𝑓 using hypotheses in 𝐻𝐻, but 𝑓𝑓 ∉ 𝐻𝐻
• In this case, our goal should be to find a hypothesis ℎ ∈ 𝐻𝐻,   with a small training error:

𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ =
1
𝑚𝑚

𝒙𝒙 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;𝑓𝑓 𝒙𝒙 ≠ ℎ 𝒙𝒙

• We want a guarantee that a hypothesis with a small training error will have a good  accuracy on unseen examples 
𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 ℎ = Pr

𝑥𝑥∈𝐷𝐷
[ 𝑓𝑓 𝒙𝒙 ≠ ℎ 𝒙𝒙 ]

• We get a generalization bound – a bound on how much will the true error 𝐸𝐸𝐷𝐷 deviate from the observed (training) 
error 𝐸𝐸𝑇𝑇𝑇𝑇.

• For any distribution 𝐷𝐷 generating training and test instances, with probability at least 1 − δ over the choice of the 
training set of size 𝑚𝑚, (drawn IID), for all ℎ∈𝐻𝐻

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 < 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ +
log 𝐻𝐻 + log 1

𝛿𝛿
2𝑚𝑚

1
2

• See slide 102 in the On-line Lecture
• So, what should m be? 

Generalization: a function of the 
Hypothesis class size 

Error on the training data
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Agnostic Learning [Details]
• Assume we are trying to learn a concept 𝑓𝑓 using hypotheses in 𝐻𝐻, but 𝑓𝑓 ∉ 𝐻𝐻
• In this case, our goal should be to find a hypothesis ℎ ∈ 𝐻𝐻,   with a small training error:

𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ =
1
𝑚𝑚

𝒙𝒙 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; 𝑓𝑓 𝒙𝒙 ≠ ℎ 𝒙𝒙

• We want a guarantee that a hypothesis with a small training error will have a good  accuracy on 
unseen examples 

𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 ℎ = Pr
𝑥𝑥∈𝐷𝐷

[ 𝑓𝑓 𝒙𝒙 ≠ ℎ 𝒙𝒙 ]

• Hoeffding bounds characterize the deviation between the true probability of some event and its 
observed frequency over m independent trials. Pr 𝑝𝑝 > 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 +∈ < 𝑒𝑒−2𝑚𝑚∈2

– (p is the underlying probability of the binary variable (e.g., toss is Head) being 1; 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 is what we 
observe empirically – empirical error)
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Agnostic Learning [Details]
• Therefore, the probability that an element in H will have training error which is off by more than 

𝜖𝜖 can be bounded as follows:  

Pr 𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 ℎ > 𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ + 𝜀𝜀 < 𝑒𝑒
−2𝑚𝑚𝜀𝜀2

• Doing the same union bound  game as before, with  δ = 𝐻𝐻 𝑒𝑒−2𝑚𝑚𝜀𝜀2 (from here, we can now isolate 
𝑚𝑚, or 𝜀𝜀) 

• We get a generalization bound – a bound on how much will the true error 𝐸𝐸𝐷𝐷 deviate from the 
observed (training) error 𝐸𝐸𝑇𝑇𝑇𝑇.

• For any distribution 𝐷𝐷 generating training and test instances, with probability at least 1 − δ over the 
choice of the training set of size 𝑚𝑚, (drawn IID), for all ℎ∈𝐻𝐻

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 < 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 ℎ +
log 𝐻𝐻 + log 1

𝛿𝛿
2𝑚𝑚

1
2

Generalization: a function of the 
Hypothesis class size 

Error on the training data
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Agnostic Learning
• An agnostic learner 

– which makes no commitment to whether 𝑓𝑓 is in 𝐻𝐻, and 

• returns the hypothesis with least training error over at least the 
following number of examples 𝑚𝑚

• can guarantee with probability at least (1 − 𝛿𝛿) that its training 
error is not off by more than 𝜀𝜀 from the true error.

𝑚𝑚 >
1

2 𝜀𝜀2
{ln 𝐻𝐻 + ln

1
𝛿𝛿

}

Learnability depends on the log of the size of the hypothesis space
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Learning Rectangles
• Assume the target concept is an axis parallel rectangle 

X

Y
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Learning Rectangles
• Assume the target concept is an axis parallel rectangle 
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Learning Rectangles
• Assume the target concept is an axis parallel rectangle 
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Learning Rectangles
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Learning Rectangles
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Learning Rectangles
• Assume the target concept is an axis parallel rectangle 

• Will we be able to learn the Rectangle?
X

Y

+
+

-

++

+

+
+

+

+
+

+
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Learning Rectangles
• Assume the target concept is an axis parallel rectangle 

• Will  we be able to learn the target rectangle ? 
• Can we come close ? 

X

Y

+
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-
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+
+

+

+
+

+
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Infinite Hypothesis Space
• The previous analysis was restricted to finite hypothesis spaces 
• Some infinite hypothesis spaces are more expressive than others

– E.g., Rectangles, vs. 17- sides convex polygons vs. general convex polygons
– Linear threshold function vs. a conjunction of LTUs

• Need a measure of the expressiveness of an infinite hypothesis 
space other than its size 

• The Vapnik-Chervonenkis dimension (VC dimension)  provides such 
a measure. 

• Analogous to |𝐻𝐻|, there are bounds for sample complexity using 
𝑉𝑉𝑉𝑉(𝐻𝐻)
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Shattering



CIS 419/519 Fall’20 63

Shattering

Linear functions are expressive 
enough to shatter 2 points
(4 options; not all shown)
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Shattering

Linear functions are not expressive 
enough to shatter 13 points

We say that a set S of examples is shattered
by a set of functions H if  for every partition
of the examples in S into positive and negative 
examples there is a function in H that gives 
exactly these labels to the examples
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Shattering
• We say that a set S of examples is shattered by a set of functions H if 

for every partition of the examples in S into positive and negative 
examples there is a function in H that gives exactly these labels to the 
examples

(Intuition:  A rich set of functions shatters large sets of points)
Left bounded intervals on the real axis: [0,𝑎𝑎), for some real number 𝑎𝑎 > 0

0 𝒂𝒂
+ + + + + --
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• We say that a set S of examples is shattered by a set of functions H if  for 
every partition of the examples in S into positive and negative examples   
there is a function in H that gives exactly these labels to the examples

(Intuition:  A rich set of functions shatters large sets of points)
Left bounded intervals on the real axis: [0, 𝑎𝑎), for some real number 𝑎𝑎 > 0

• Sets of two points cannot be shattered (we mean: given two points, you 
can label them in such a way that no concept in this class will be 
consistent with  their labeling)

67

Shattering

0 a
+ + + + + --

0 a
+ + + + +

-
-

+



CIS 419/519 Fall’20 68

Shattering
• We say that a set S of examples is shattered by a set of 

functions H if  for every partition of the examples in S into 
positive and negative examples there is a function in H that 
gives exactly these labels to the examples

Intervals on the real axis: [𝑎𝑎, 𝑏𝑏], for some real numbers 𝑏𝑏 > 𝑎𝑎

a b
+ + + + + ----

This is the set of functions (concept class) considered here
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Shattering
• We say that a set S of examples is shattered by a set of functions H if  for every partition

of the examples in S into positive and negative examples there is a function in H that 
gives exactly these labels to the examples 

• Intervals on the real axis: [𝑎𝑎, 𝑏𝑏], for some real numbers 𝑏𝑏 > 𝑎𝑎

• All sets of one or two points can be shattered but sets of three points cannot be 
shattered

• Why?
– Give a labeling configuration of three points that cannot be expressed by any function in this class of 

functions.  

a b
+ + + + + --

a b
+ + + + +

-
-

+
-- --

+
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Shattering
• We say that a set 𝑆𝑆 of examples is shattered by a set of 

functions 𝐻𝐻 if  for every partition of the examples in 𝑆𝑆 into 
positive and negative examples there is a function in 𝐻𝐻 that 
gives exactly these labels to the examples

• Half-spaces in the plane:

+ ---
-

+
+

+
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Shattering
• We say that a set 𝑆𝑆 of examples is shattered by a set of functions 𝐻𝐻 if for 

every partition of the examples in 𝑆𝑆 into positive and negative examples there 
is a function in 𝐻𝐻 that gives exactly these labels to the examples

• Half-spaces in the plane:

• sets of one, two or three points can be shattered 
but there is no set of  four points that can be shattered

+ ---
-

+
+

+
+ -

- +

1. If the 4 points 
form a convex 
polygon… (if 

not?)
2. If one point is 

inside  the convex 
hull defined by 

the other three…
(if not?)All sets of 

three points?

Some sets of 
three points?
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VC Dimension: Motivation
• An unbiased hypothesis space 𝐻𝐻 shatters the entire instance 

space 𝑋𝑋, i.e,  it is able to induce every possible partition on 
the set of all possible instances. 

• The larger the subset of 𝑋𝑋 that can be shattered, the more 
expressive a hypothesis space is, i.e., the less biased.
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VC Dimension
• We say that a set 𝑆𝑆 of examples is shattered by a set of functions 𝐻𝐻 if for every 

partition of the examples in 𝑆𝑆 into positive and negative examples there is a 
function in 𝐻𝐻 that gives exactly these labels to the examples

• The VC dimension of hypothesis space 𝐻𝐻 over instance space 𝑋𝑋 is the size of  
the largest finite subset of 𝑋𝑋 that is shattered by 𝐻𝐻.

Two steps to proving that 𝑉𝑉𝑉𝑉 𝐻𝐻 = 𝑑𝑑 :
• If  there exists a subset of size d that can be shattered, then 𝑉𝑉𝑉𝑉 𝐻𝐻 ≥ 𝑑𝑑
• If no subset of size 𝑑𝑑 + 1 can be shattered, then 𝑉𝑉𝑉𝑉 𝐻𝐻 < 𝑑𝑑 + 1

VC(Half intervals) = 1                        (no subset of size 2 can be shattered)
VC(Intervals) = 2                                (no subset of size 3 can be shattered)
VC(Half-spaces in the plane) = 3    (no subset of size 4 can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are not
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What if H 
is finite?

75

Sample Complexity & VC Dimension
• Using 𝑉𝑉𝑉𝑉 𝐻𝐻 as a measure of expressiveness, we can get an Occam algorithm for 

infinite hypothesis spaces.

• Given a sample D of 𝑚𝑚 examples, find some ℎ 𝜖𝜖 𝐻𝐻 that is consistent with all 𝑚𝑚 examples

• If    𝑚𝑚 > 1
𝜀𝜀

{8𝑉𝑉𝑉𝑉 𝐻𝐻 log 13
𝜀𝜀

+ 4 log 2
𝛿𝛿

}

• Then with probability at least (1 − 𝛿𝛿), ℎ has error less than 𝜀𝜀. (that is, if 𝑚𝑚 is polynomial we 
have a PAC learning algorithm; to be efficient, we need to produce the hypothesis ℎ efficiently. 

• Note that the notion of VC applies also to finite hypothesis spaces:
• Assume that H shatters 𝑘𝑘 examples.
• Notice that to shatter 𝑘𝑘 examples it must be that: 𝐻𝐻 > 2𝑘𝑘 (why? )

• So,  
log 𝐻𝐻 ≥ 𝑉𝑉𝑉𝑉(𝐻𝐻)
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Learning Rectangles
• Consider axis parallel rectangles in the real plane
• Can we PAC learn it ? 
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Learning Rectangles
• Consider axis parallel rectangles in the real plane
• Can we PAC learn it ? 

(1) What is the VC dimension ? 
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Learning Rectangles
• Consider axis parallel rectangles in the real plane
• Can we PAC learn it ?

(1) What is the VC dimension ?
• Some four instance can be shattered

• (need to consider here 16 different rectangles)  Shows that 
𝑉𝑉𝑉𝑉 𝐻𝐻 ≥ 4
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Learning Rectangles
• Consider axis parallel rectangles in the real plane
• Can we PAC learn it ? 

(1) What is the VC dimension ?
• Some four instance can be shattered          and some cannot

• (need to consider here 16 different rectangles)
• Shows that 𝑉𝑉𝑉𝑉 𝐻𝐻 ≥ 4
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ?

(1) What is the VC dimension ?
• But, no five instances can be shattered
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?
• But, no five instances can be shattered

There can be at most 4 distinct
extreme points (smallest or largest 
along some dimension) and these 
cannot be included (labeled +)
without including the 5th point.

• Therefore 𝑉𝑉𝑉𝑉 𝐻𝐻 = 4 . As far as sample complexity, this guarantees 
PAC learnability.
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Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ?   

(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ? 



CIS 419/519 Fall’20 84

Learning Rectangles
• Consider axis parallel rectangles in the real plan
• Can we PAC learn it ? 

(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ? 

Find the smallest rectangle that 
contains the positive examples 
(necessarily, it will not contain any 
negative example, and the hypothesis
is consistent.

Axis parallel rectangles are efficiently PAC learnable.
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Sample Complexity Lower Bound
• There is also a general lower bound on the minimum number of examples 

necessary  for PAC leaning in the general case.

• Consider any concept class 𝐶𝐶 such that 𝑉𝑉𝑉𝑉 𝐶𝐶 > 2 , any learner 𝐿𝐿 and small 
enough 𝜀𝜀, δ.  Then, there exists  a distribution 𝐷𝐷 and a target function in 𝐶𝐶
such that  if 𝐿𝐿 observes less than   

𝑚𝑚 = max[
1
𝜀𝜀

log
1
𝛿𝛿

, (𝑉𝑉𝑉𝑉 𝐶𝐶 − 1) /32𝜀𝜀]

examples, then with probability at least δ,   𝐿𝐿 outputs a hypothesis having 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ℎ > 𝜀𝜀.

• Ignoring constant factors, the lower bound is the same as the upper bound, 
except for the extra 𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀
factor in the upper bound.
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COLT Conclusions
• The PAC framework provides a reasonable model for theoretically analyzing the effectiveness 

of learning algorithms. 
• The sample complexity for any consistent learner using the hypothesis space, 𝐻𝐻, can be 

determined from a measure of 𝐻𝐻’s expressiveness (|𝐻𝐻|,𝑉𝑉𝑉𝑉(𝐻𝐻))
• If the sample complexity is tractable, then the computational complexity of  finding a 

consistent hypothesis governs the complexity of the problem.
• Sample complexity bounds given here are far from being tight, but separate  learnable classes 

from non-learnable classes (and show what’s important). They also guide us to try and use 
smaller hypothesis spaces.

• Computational complexity results exhibit cases where information theoretic learning is 
feasible, but finding good hypothesis is intractable. 

• The theoretical framework allows for a concrete analysis of the complexity of learning as a 
function of various assumptions (e.g., relevant variables)   



CIS 419/519 Fall’20 87

COLT Conclusions (2)
• Many additional models have been studied as extensions of the 

basic one:      
– Learning with noisy data
– Learning under specific distributions
– Learning probabilistic representations
– Learning neural networks
– Learning finite automata
– Active Learning; Learning with Queries
– Models of Teaching

• An important extension: PAC-Bayesians theory. 
– In addition to the Distribution Free assumption of PAC, makes also an 

assumption of a prior distribution over the hypothesis the learner can 
choose from. 
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COLT Conclusions (3)
• Theoretical results shed light on important issues such as the 

importance of  the bias (representation), sample and computational 
complexity,  importance of interaction, etc.

• Bounds guide model selection even when not practical. 
• A lot of recent work is on data dependent bounds.   
• The impact COLT has had on practical learning system in the last 

few years has been very significant: 
– SVMs; 
– Winnow (Sparsity), 
– Boosting
– Regularization
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