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Administration (11/4/20)

• Remember that all the lectures are available on the website before the class
– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more 

details, examples and, (when relevant) some code. 

• HW 3: Due on 11/16/20 
– You cannot solve all the problems yet.
– Less time consuming; no programming

• Projects

Are we recording? YES!

Available on the web site
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Projects
• CIS 519 students need to do a team project

– Teams will be of size 2-4
– We will help grouping if needed

• There will be 3 projects. 
– Natural Language Processing (Text)
– Computer Vision (Images)
– Speech (Audio)

• In all cases, we will give you datasets and initial ideas
– The problem will be multiclass classification problems
– You will get annotated data only for some of the labels, but will also have to predict other labels
– 0-zero shot learning; few-shot learning; transfer learning

• A detailed note will come out today. 

• Timeline:
– 11/11 Choose a project and team up
– 11/23 Initial proposal describing what your team plans to do 
– 12/2 Progress report
– 12/15-20 (TBD) Final paper + short video

• Try to make it interesting! 
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COLT approach to explaining Learning
• No Distributional Assumption
• Training Distribution is the same as the 

Test Distribution
• Generalization bounds depend on this 

view and affects model selection.  
𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷(ℎ) < 𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇(ℎ) + 𝑃𝑃(𝑉𝑉𝑉𝑉(𝐻𝐻), log(

1
ϒ

),
1
𝑚𝑚

)

• This is also called the  
“Structural Risk Minimization” principle. 
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COLT approach to explaining Learning
• No Distributional Assumption
• Training Distribution is the same as the Test Distribution
• Generalization bounds depend on this view and affect model 

selection.  
𝐸𝐸𝐸𝐸𝑟𝑟𝐷𝐷 ℎ < 𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇(ℎ) + 𝑃𝑃(𝑉𝑉𝑉𝑉(𝐻𝐻), log(1/ϒ), 1/𝑚𝑚)

– As presented, the VC dimension is a combinatorial parameter that is associated 
with a class of functions. 

• We know that the class of linear functions has a lower VC dimension 
than the class of quadratic functions. 
– But this notion can be refined to depend on a given data set, and this way directly 

affect the hypothesis chosen for a given data set.  
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Data Dependent VC dimension
• So far, we discussed VC 

dimension in the context of 
a fixed class of functions.  

• We can also parameterize 
the class of functions in 
interesting ways. 

• Consider the class of linear 
functions, parameterized by 
their margin.  Note that this 
is a data dependent notion.
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VC and Linear Classification
• Recall the VC based generalization bound:

𝐸𝐸𝐸𝐸𝐸𝐸 ℎ ≤ 𝑒𝑒𝑒𝑒𝑟𝑟𝑇𝑇𝑇𝑇(ℎ) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑉𝑉𝑉𝑉 𝐻𝐻 ,
1
𝑚𝑚

, log(
1
ϒ

)}

• Here we get the same bound for both classifiers: 
𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 (ℎ1) = 𝐸𝐸𝐸𝐸𝑟𝑟𝑇𝑇𝑇𝑇 (ℎ2) = 0
ℎ1,ℎ2 ∈ 𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 2 ,𝑉𝑉𝑉𝑉(𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 2 ) = 3

• How, then, can we explain our intuition that ℎ2 should give 
better generalization than ℎ1?
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• Although both classifiers separate the data, the distance with 
which the separation is achieved is different: 

9

Linear Classification

h1 h2
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Concept of Margin
• The margin ϒ𝑖𝑖 of a point 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑛𝑛 with respect to a linear classifier 
ℎ(𝒙𝒙) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒘𝒘𝑇𝑇 � 𝒙𝒙 + 𝑏𝑏) is defined as the distance of 𝒙𝒙𝑖𝑖 from 
the hyperplane 𝒘𝒘𝑇𝑇 � 𝒙𝒙 + 𝑏𝑏 = 0:

ϒ𝑖𝑖 = |𝒘𝒘
𝑇𝑇 � 𝒙𝒙𝑖𝑖 +𝑏𝑏

||𝒘𝒘||
|

• The margin of a set of points {𝒙𝒙1, …𝒙𝒙𝑚𝑚} with respect to a 
hyperplane 𝒘𝒘, is defined as the margin of the point closest to the 
hyperplane:

ϒ = min
𝑖𝑖
ϒ𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖|

𝒘𝒘𝑇𝑇 � 𝒙𝒙𝑖𝑖 +𝑏𝑏
||𝒘𝒘||

|
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VC and Linear Classification
• Theorem: If 𝐻𝐻ϒ is the space of all linear classifiers in 𝑹𝑹𝑛𝑛 that 

separate the training data with margin at least ϒ, then: 

𝑉𝑉𝑉𝑉(𝐻𝐻ϒ) ≤ min(𝑅𝑅
2

ϒ2
,𝑛𝑛) + 1,

• Where 𝑅𝑅 is the radius of the smallest sphere (in 𝑹𝑹𝑛𝑛) that 
contains the data.

• Thus, for such classifiers, we have a bound of the form: 

𝐸𝐸𝐸𝐸𝐸𝐸 ℎ ≤ 𝑒𝑒𝑒𝑒𝑟𝑟𝑇𝑇𝑇𝑇(ℎ) +
𝑂𝑂 𝑅𝑅2

ϒ2
+log 4

𝛿𝛿

𝑚𝑚

1/2

In particular, you see here that for “general” linear 
separators of dimensionality n, the VC is n+1
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• First observation: When we consider the class 𝐻𝐻ϒ of linear hypotheses 
that separate a given data set with a margin ϒ, we see that 

– Large Margin ϒ Small VC dimension of 𝐻𝐻ϒ

• Consequently, our goal could be to find a separating hyperplane 𝒘𝒘
that maximizes the margin of the set 𝑆𝑆 of examples. 

• A second observation that drives an algorithmic approach is that:
– Small ||𝒘𝒘|| Large Margin

• Together, this leads to an algorithm: from among all those 𝒘𝒘’s that 
agree with the data, find the one with the minimal size ||𝒘𝒘||

– But, if 𝒘𝒘 separates the data, so does 𝒘𝒘/7….
– We need to better understand the relations between 𝒘𝒘 and the margin 

12

Towards Max Margin Classifiers 

But, how can we do it 
algorithmically? 
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Maximal Margin
• This discussion motivates the notion of a maximal margin.
• The maximal margin of a data set 𝑆𝑆 is defined as:

ϒ 𝑆𝑆 = max
||𝑤𝑤||=1

min
𝒙𝒙,𝑦𝑦 ∈𝑆𝑆

|𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙|
1. For a given 𝒘𝒘: Find the closest point.  
2. Then, across all 𝒘𝒘’s (of size 1), find the 
point for which this closets point is the 
farthest (that gives the maximal margin).

Note: the selection of the point  is in the min
and therefore  the max does not change if we 
scale 𝒘𝒘, so it’s okay to only deal with 
normalized 𝒘𝒘’s. 

The distance between a point 𝒙𝒙 and the hyperplane 
defined by  𝑤𝑤 is:   |𝒘𝒘𝑇𝑇 𝒙𝒙 |/ 𝒘𝒘

How does it help us to derive these ℎ’s? 

𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥 𝒘𝒘 =1 min
(𝒙𝒙,𝑦𝑦) ∈ 𝑆𝑆

|𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙|

A hypothesis 
(𝒘𝒘) has many 

names

Interpretation 1: among all 𝒘𝒘’s, 
choose the one that 

maximizes the margin. 
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Recap: Margin and VC dimension
• Theorem (Vapnik): If 𝐻𝐻ϒ is the space of all linear classifiers in 𝑹𝑹𝑛𝑛

that separate the training data with margin at least ϒ, then
𝑉𝑉𝑉𝑉(𝐻𝐻ϒ) ≤ 𝑅𝑅2/ϒ2

– where 𝑅𝑅 is the radius of the smallest sphere (in 𝑹𝑹𝑛𝑛) that contains the data.

• This is the first observation that will lead to an algorithmic 
approach.

• The second observation is that:   Small ||𝒘𝒘|| Large Margin
• Consequently, the algorithm will be: from among all those 𝒘𝒘’s that 

agree with the data, find the one with the minimal size ||𝒘𝒘||

Believe

We’ll show this
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From Margin to ||𝒘𝒘||
• We want to choose the hyperplane that achieves the largest margin. That is, given a 

data set 𝑆𝑆, find: 
– 𝒘𝒘∗ = argmax| 𝐰𝐰 |=1 min

𝐱𝐱,y ∈𝑆𝑆
|𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙|

• How to find this 𝒘𝒘∗?
• Claim: Define 𝒘𝒘0 to be the solution of the optimization problem:

– 𝒘𝒘0 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 {| 𝒘𝒘 |2 ∶ ∀ 𝒙𝒙,𝑦𝑦 ∈ 𝑆𝑆,𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙 ≥ 1 }.

– Then:
– 𝐰𝐰0/| 𝐰𝐰0 | = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥||𝒘𝒘||=1 min

𝒙𝒙,𝑦𝑦 ∈𝑆𝑆
𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙

• That is, the normalization of 𝒘𝒘0 corresponds to the largest  margin separating 
hyperplane.  

Interpretation 2: among all 𝒘𝒘’s 
that separate the data with 

margin 1, choose the one with 
minimal size. 

The next slide will show that the two interpretations 
are equivalent
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From Margin to ||𝒘𝒘||(2)
• Claim: Define 𝒘𝒘0 to be the solution of the optimization problem:

– 𝒘𝒘0 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 {| 𝒘𝒘 |2 ∶ ∀ 𝒙𝒙,𝑦𝑦 ∈ 𝑆𝑆,𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙 ≥ 1 }(**)
Then:
– 𝒘𝒘0/||𝒘𝒘0|| = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥| 𝒘𝒘 |=1 min

𝒙𝒙,𝑦𝑦 ∈𝑆𝑆
𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙

That is, the normalization of 𝒘𝒘0 corresponds to the largest  margin separating hyperplane.  
• Proof: Define 𝒘𝒘’ = 𝒘𝒘0/||𝒘𝒘0|| and let 𝒘𝒘∗ be the largest-margin separating hyperplane of 

size 1.  We need to show that 𝒘𝒘’ = 𝒘𝒘∗.
Note first that  𝒘𝒘

∗

ϒ 𝑆𝑆
satisfies the constraints in (**); 

therefore:       ||𝒘𝒘0|| ≤ ||𝒘𝒘∗/ ϒ(𝑆𝑆)|| = 1/ ϒ(𝑆𝑆) . 
• Consequently:

∀ 𝒙𝒙,𝑦𝑦 ∈ 𝑆𝑆 𝑦𝑦 𝒘𝒘’𝑇𝑇 𝒙𝒙 = 1
||𝒘𝒘0||

𝑦𝑦𝒘𝒘0
𝑇𝑇 𝒙𝒙 ≥ 1/||𝒘𝒘0|| ≥ ϒ(𝑆𝑆)

But since ||𝒘𝒘’|| = 1 this implies that 𝒘𝒘’ corresponds to the largest margin, that is 
𝒘𝒘’ = 𝒘𝒘∗

Def. of 𝒘𝒘’ Prev. ineq.Def. of 𝒘𝒘0

Def. of 𝒘𝒘0
Def. of 𝒘𝒘∗

𝒘𝒘∗ = argmax| 𝐰𝐰 |=1 min
𝐱𝐱,y ∈𝑆𝑆

|𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙|

Def. of 𝒘𝒘 ∗

And, recall that ϒ 𝑆𝑆 is the
maximal margin for the set S
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Margin of a Separating Hyperplane
• A separating hyperplane: 𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = 0 Distance between 

𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = +1 𝑎𝑎𝑎𝑎𝑎𝑎 − 1 is 2/| 𝒘𝒘 |
What we did: 
1. Consider all possible 𝒘𝒘 with different 

angles
2. Scale 𝒘𝒘 such that the constraints are 

tight (closets points are on the +/-1 
line)

3. Pick the one with largest 
margin/minimal size

𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = 0
𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = −1

𝒘𝒘𝑇𝑇 𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 = 1
𝒘𝒘𝑇𝑇 𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 = −1

→ 𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1

Assumption: data is linearly separable
Let (𝒙𝒙0 ,

𝑦𝑦0) be a point on 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 = 1
Then its distance to the separating plane 
𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = 0 is: |𝒘𝒘𝑇𝑇 𝒙𝒙0 + 𝑏𝑏|/||𝒘𝒘|| =
1/||𝒘𝒘||
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Administration (11/9/20)

• Remember that all the lectures are available on the website before the class
– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more 

details, examples and, (when relevant) some code. 

• HW 3: Due on 11/16/20 
– You cannot solve all the problems yet.
– Less time consuming; no programming

• Cheating
– Several problems in HW1 and HW2

Are we recording? YES!

Available on the web site
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Projects
• CIS 519 students need to do a team project: Read the project descriptions

– Teams will be of size 2-4
– We will help grouping if needed

• There will be 3 projects. 
– Natural Language Processing (Text)
– Computer Vision (Images)
– Speech (Audio)

• In all cases, we will give you datasets and initial ideas
– The problem will be multiclass classification problems
– You will get annotated data only for some of the labels, but will also have to predict other labels
– 0-zero shot learning; few-shot learning; transfer learning

• A detailed note will come out today. 

• Timeline:
– 11/11 Choose a project and team up
– 11/23 Initial proposal describing what your team plans to do 
– 12/2 Progress report
– 12/15-20 (TBD) Final paper + short video

• Try to make it interesting! 

https://www.seas.upenn.edu/%7Ecis519/fall2020/cis519-fall20-projects.pdf
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Hard SVM Optimization
• We have shown that the sought-after weight vector 𝒘𝒘 is the 

solution of the following optimization problem:

SVM Optimization:  (***)

– Minimize:  ½ 𝒘𝒘 2

– Subject to: ∀ 𝒙𝒙,𝑦𝑦 ∈ 𝑆𝑆: 𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙 ≥ 1

• This is a quadratic optimization problem in (𝑛𝑛 + 1) variables, with 
|𝑆𝑆| = 𝑚𝑚 inequality constraints.   

• It has a unique solution.
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Maximal Margin

The margin of a linear separator
𝒘𝒘𝑇𝑇 𝒙𝒙 + 𝑏𝑏 = 0 is 1

||𝒘𝒘||

max 1
||𝒘𝒘||

= min ||𝒘𝒘||
= min ½ 𝒘𝒘𝑇𝑇𝒘𝒘

min
𝒘𝒘,𝑏𝑏

1
2
𝒘𝒘𝑇𝑇𝒘𝒘

s.t 𝑦𝑦𝑖𝑖(𝐰𝐰T𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1,∀ 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ 𝑆𝑆



CIS 419/519 Fall’20 23

Support Vector Machines
• The name “Support Vector Machine” stems from the fact that 𝒘𝒘∗ is 

supported by (i.e. is the linear span of) the examples that are exactly 
at a distance 1/||𝒘𝒘∗|| from the separating hyperplane. These vectors 
are therefore called support vectors. 

• Theorem: Let 𝒘𝒘∗ be the minimizer of
the SVM optimization problem (***)

for 𝑆𝑆 = {(𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖)}.    Let 𝐼𝐼 = {𝑖𝑖: 𝒘𝒘∗𝑇𝑇𝒙𝒙𝑖𝑖 = 1}. 
Then there exists coefficients 𝛼𝛼𝑖𝑖 > 0 such that:

𝒘𝒘 ∗ = ∑𝑖𝑖 ∈ 𝐼𝐼 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖 This representation 
should ring a bell…
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Duality
• This, and other properties of Support Vector Machines are shown 

by moving to the dual problem.

• Theorem: Let 𝒘𝒘∗ be the minimizer of
the SVM optimization problem (***)
for 𝑆𝑆 = {(𝒙𝒙𝑖𝑖,𝑦𝑦𝑖𝑖)}.   
Let 𝐼𝐼 = 𝑖𝑖:𝑦𝑦𝑖𝑖 𝒘𝒘∗𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 = 1 .
Then there exists coefficients 𝛼𝛼𝑖𝑖 > 0
such that:

𝒘𝒘 ∗ = ∑𝑖𝑖 Є 𝐼𝐼 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 𝒙𝒙𝑖𝑖
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Footnote about the threshold

• Similar to Perceptron, we can augment vectors to handle the bias term
�𝒙𝒙 ⇐ 𝒙𝒙 , 1 ; �𝒘𝒘 ⇐ 𝒘𝒘 , 𝑏𝑏 so that �𝒘𝒘𝑇𝑇�𝒙𝒙 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

• Then consider the following formulation 

min
�𝒘𝒘

1
2
�𝒘𝒘𝑇𝑇 �𝒘𝒘 s.t yi �𝒘𝒘T�𝒙𝒙i ≥ 1,∀ 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ S

• However, this formulation is slightly different from (***), because it is equivalent to

min
𝒘𝒘,𝑏𝑏

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 1

2
𝑏𝑏2 s.t yi(𝒘𝒘T𝐱𝐱i + 𝑏𝑏) ≥ 1,∀ 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ S

The bias term is included in the regularization. 
This usually doesn’t matter

For simplicity, we ignore the bias term
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Key Issues
• Computational Issues

– Training of an SVM used to be is very time consuming – solving 
quadratic program.

– Modern methods are based on Stochastic Gradient Descent and 
Coordinate Descent and are much faster.

• Is it really optimal? 
– Is the objective function we are optimizing the “right” one?
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Real Data  
• 17,000 dimensional context sensitive spelling 
• Histogram of distance of points from the hyperplane

In practice, even in the separable 
case, we may not want to depend 
on the points closest to the 
hyperplane but rather on the 
distribution of the distance.  If 
only a few are close, maybe we 
can dismiss them.
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Soft SVM
• The hard SVM formulation assumes linearly separable data.
• A natural relaxation: 

– maximize the margin while minimizing the # of examples that violate the 
margin (separability) constraints. 

• However, this leads to non-convex problem that is hard to solve. 
• Instead, we relax in a different way, that results in optimizing a 

surrogate loss function that is convex.  
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Soft SVM
• Notice that the relaxation of the constraint: 

𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≥ 1

• Can be done by introducing a slack variable 𝜉𝜉𝑖𝑖 (per example) 
and requiring:    

𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0

• Now, we want to solve: 
min
𝒘𝒘,𝜉𝜉𝑖𝑖

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

• A large value of C means that we 
want 𝜉𝜉𝑖𝑖 to be small; that is, 
misclassifications are bad – we focus 
on a small training error (at the 
expense of margin). 

• A small C results in more training 
error, but hopefully better true error.
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Soft SVM (2)

• Now, we want to solve: 

• Which can be written as:

min
𝒘𝒘

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶�

𝑖𝑖

max(0, 1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖) .

• What is the interpretation of this?

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

In  optimum, ξi = max(0, 1 − 𝑦𝑦𝑖𝑖 𝒘𝒘𝑇𝑇 𝒙𝒙𝑖𝑖)

min
𝒘𝒘,𝜉𝜉𝑖𝑖

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t 𝜉𝜉𝑖𝑖 ≥ 1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝑥𝑥𝑖𝑖 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖
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SVM Objective Function

• The problem we solved is:
𝑀𝑀𝑀𝑀𝑀𝑀 ½ ||𝒘𝒘||2 + 𝑐𝑐 ∑ 𝜉𝜉𝑖𝑖

• Where 𝜉𝜉𝑖𝑖 > 0 is called a slack variable, and is defined by:
– 𝜉𝜉𝑖𝑖 = max(0, 1 – 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖)
– Equivalently, we can say that: 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≥1 - 𝜉𝜉𝑖𝑖; 𝜉𝜉𝑖𝑖 ≥ 0

• And this can be written as:
𝑀𝑀𝑀𝑀𝑀𝑀 ½ ||𝒘𝒘||2 + 𝑐𝑐∑𝜉𝜉𝑖𝑖

• General Form of a learning algorithm:
– Minimize empirical loss, and Regularize (to avoid over fitting) 
– Theoretically motivated improvement over the original algorithm we’ve seen at the beginning of the semester.

Can be replaced by 
other loss functions

Can be replaced by other 
regularization functions

Empirical lossRegularization term



CIS 419/519 Fall’20 35

Balance between regularization and empirical loss
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Balance between regularization and empirical loss

(DEMO)

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Underfitting Overfitting

Model complexity

Expected
Error

37

Underfitting and Overfitting

Simple models: 
High bias and low variance

Variance

Bias

Complex models: 
High variance and low bias 

Smaller C Larger C

High Empirical 
Error

Low Empirical 
Error
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What Do We Optimize?
• Logistic Regression 

min
𝒘𝒘

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 �

𝑖𝑖=1

𝑙𝑙

log(1 + 𝑒𝑒−𝑦𝑦𝑖𝑖 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 )

• L1-loss SVM

min
𝒘𝒘

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 �

𝑖𝑖=1

𝑙𝑙

max(0,1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖)

• L2-loss SVM

min
𝒘𝒘

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 ∑𝑖𝑖=1𝑙𝑙 max 0,1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖

2
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What Do We Optimize(2)?
• We get an unconstrained problem. 

We can use the (stochastic) gradient 
descent algorithm! 

• Many other methods
– Iterative scaling; non-linear conjugate 

gradient; quasi-Newton methods; 
truncated Newton methods; trust-
region newton method.

– All methods are iterative methods, that 
generate a sequence 𝒘𝒘𝑘𝑘 that converges 
to the optimal solution of the 
optimization problem above.

• Currently: Limited memory BFGS is 
very popular 
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Optimization: How to Solve
1. Earlier methods used Quadratic Programming. Very slow.
2. The soft SVM problem is an unconstrained optimization problems. It is possible 
to use the gradient descent algorithm. 
• Many options within this category: 

– Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; truncated 
Newton methods; trust-region newton method.

– All methods are iterative methods, that generate a sequence 𝒘𝒘𝑘𝑘 that converges to the 
optimal solution of the optimization problem above.

– Currently: Limited memory BFGS is very popular 
3. 3rd generation algorithms are based on Stochastic Gradient Decent 

– The runtime does not depend on 𝑛𝑛 = #(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒); advantage when 𝑛𝑛 is very large. 
– Stopping  criteria is a problem: method tends to be too aggressive at the beginning and 

reaches a moderate accuracy quite fast, but it’s convergence becomes slow if we are 
interested in more accurate solutions.

4. Dual Coordinated Descent (& Stochastic Version)
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SGD for SVM
• Goal:   min

𝒘𝒘
𝑓𝑓 𝒘𝒘 ≡ 1

2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶

𝑚𝑚
∑𝑖𝑖 max 0, 1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 𝑚𝑚: data size

• Compute sub-gradient of 𝑓𝑓(𝒘𝒘):
𝛻𝛻𝑓𝑓 𝒘𝒘 = 𝒘𝒘− 𝐶𝐶𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖 if  1 − 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≥ 0 ; otherwise 𝛻𝛻𝑓𝑓 𝒘𝒘 = 𝒘𝒘

1. Initialize 𝒘𝒘 = 𝟎𝟎 ∈ 𝑹𝑹𝑛𝑛

2.   For every example (𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖 ) ∈ 𝐷𝐷

If 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 ≤ 1 update the weight vector to 

𝒘𝒘 ← 𝒘𝒘− 𝛾𝛾(𝒘𝒘− 𝐶𝐶𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖) = 1 − 𝛾𝛾 𝒘𝒘 + 𝛾𝛾𝐶𝐶𝐶𝐶𝑖𝑖𝒙𝒙𝑖𝑖 (𝛾𝛾 - learning rate)

Otherwise    𝒘𝒘 ← (1 − 𝛾𝛾)𝒘𝒘

3. Continue until convergence is achieved
This algorithm 
should ring a bell…Convergence can be proved for a slightly 

complicated version of SGD (e.g, Pegasos)

𝑚𝑚 is here for mathematical correctness, it 
doesn’t matter in the view of modeling.
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Nonlinear SVM

• We can map data to a high dimensional space: 𝒙𝒙 → 𝜙𝜙(𝒙𝒙) (DEMO)

• Then use Kernel trick: 𝐾𝐾 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 = 𝜙𝜙 𝒙𝒙𝑖𝑖 𝑇𝑇 𝜙𝜙 𝒙𝒙𝑗𝑗 (DEMO2)

Theorem: Let 𝒘𝒘∗ be the minimizer of the primal problem, 
𝛼𝛼∗ be the minimizer of the dual problem.
Then 𝒘𝒘∗ = ∑𝑖𝑖 𝛼𝛼∗𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖

Primal

min
𝒘𝒘

1
2
𝒘𝒘𝑇𝑇𝒘𝒘 + 𝐶𝐶 �

𝑖𝑖

𝜉𝜉𝑖𝑖

s.t 𝑦𝑦𝑖𝑖𝒘𝒘𝑇𝑇𝜙𝜙 𝒙𝒙𝑖𝑖 ≥ 1 − 𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

Dual

min
𝛼𝛼

1
2
𝛼𝛼𝑇𝑇𝑄𝑄𝛼𝛼 − 𝑒𝑒𝑇𝑇𝛼𝛼

s.t 0 ≤ 𝛼𝛼 ≤ 𝐶𝐶 ∀𝑖𝑖

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝐾𝐾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Nonlinear SVM
• Tradeoff between training time and accuracy
• Complex model vs. simple model

From: 
http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly_journal.pdf
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