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Where are we?
• Algorithms

– DTs
– Perceptron + Winnow
– Gradient Descent
– SVM

• Theory
– Mistake Bound
– PAC Learning 

• We have a formal notion of “learnability”
– We understand Generalization

• How will your algorithm do on the next example?
– How it depends on the hypothesis class (VC dim)

• and other complexity parameters
• Algorithmic Implications of the theory?
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Boosting
• Boosting is (today) a general learning paradigm for putting together a 

Strong Learner, given a collection (possibly infinite) of Weak Learners.
• The original Boosting Algorithm was proposed as an answer to a 

theoretical question in PAC learning. [The Strength of Weak Learnability; 
Schapire, 89]

• Consequently, Boosting has interesting theoretical implications, e.g., on 
the relations between PAC learnability and compression.
– If a concept class is efficiently PAC learnable then it is efficiently PAC learnable by 

an algorithm whose required memory is bounded by a polynomial in 𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐 and 
log(1

ε
).

– There is no concept class for which efficient PAC learnability requires that the 
entire sample be contained in memory at one time – there is always another 
algorithm that “forgets” most of the sample. 
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Boosting Notes

• However, the key contribution of Boosting has been practical, 
as a way to compose a good learner from many weak 
learners.

• It is a member of a family of Ensemble Algorithms, but has 
stronger guarantees than others.

• A Boosting demo is available at 
http://cseweb.ucsd.edu/~yfreund/adaboost/

• Example
• Theory of Boosting

– Simple & insightful  

http://cseweb.ucsd.edu/%7Eyfreund/adaboost/
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Boosting Motivation
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The Boosting Approach
– Algorithm

• Select a small subset of examples
• Derive a rough rule of thumb
• Examine 2nd set of examples
• Derive 2nd rule of thumb
• Repeat T times
• Combine the learned rules into a single hypothesis

– Questions:
• How to choose subsets of examples to examine on each round?
• How to combine all the rules of thumb into single prediction rule?

– Boosting 
• General method of converting rough rules of thumb into highly accurate 

prediction rule
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Theoretical Motivation
– “Strong” PAC algorithm:

• for any distribution
• ∀𝛿𝛿, 𝜀𝜀 > 0
• Given polynomially many random examples 
• Finds hypothesis with 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝜀𝜀 with 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ (1 − 𝛿𝛿)

– “Weak” PAC algorithm 
• Same, but only for some 𝜀𝜀 ≤ ½ − ϒ

– [Kearns & Valiant ’88]: 
• Does weak learnability imply strong learnability?
• Anecdote: the importance of the distribution free assumption

– It does not hold if PAC is restricted to only the uniform distribution, say
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History
• [Schapire ’89]:

– First provable boosting algorithm
– Call weak learner three times on three modified distributions 
– Get slight boost in accuracy 
– apply recursively

• [Freund ’90]:
– “Optimal” algorithm that “boosts by majority”

• [Drucker, Schapire & Simard ’92]:
– First experiments using boosting
– Limited by practical drawbacks

• [Freund & Schapire ’95]:
– Introduced “AdaBoost” algorithm
– Strong practical advantages over previous boosting algorithms

• AdaBoost was followed by a huge number of papers and practical applications

Some lessons for Ph.D. students



CIS 419/519 Fall’20 9

A Formal View of Boosting
• Given training set (𝒙𝒙1,𝑦𝑦1), … (𝒙𝒙𝑚𝑚,𝑦𝑦𝑚𝑚)
• 𝑦𝑦𝑖𝑖 ∈ {−1, +1} is the correct label of instance 𝒙𝒙𝑖𝑖 ∈ 𝑿𝑿
• For 𝑡𝑡 = 1, … ,𝑇𝑇

– Construct a distribution 𝐷𝐷𝑡𝑡 on {1, …𝑚𝑚}
– Find weak hypothesis (“rule of thumb”)

ℎ𝑡𝑡 ∶ 𝑿𝑿 → {−1, +1}
with small error 𝜀𝜀𝑡𝑡 on Dt:

𝜀𝜀𝑡𝑡 = Pr
𝐷𝐷

[ℎ𝑡𝑡 𝒙𝒙𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖]

• Output: final hypothesis 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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𝑍𝑍𝑡𝑡 = �
𝑖𝑖

𝐷𝐷𝑡𝑡 𝑖𝑖 exp(−𝛼𝛼𝑡𝑡 𝑦𝑦𝑖𝑖ℎ𝑡𝑡 𝒙𝒙𝑖𝑖 )

10

Adaboost

< 1; smaller weight

> 1; larger weight

Notes about αt:               
 Positive due to the weak learning assumption
 Examples that we predicted correctly are 

demoted, others promoted
 Sensible weighting scheme:   better hypothesis 

(smaller error)  larger weight

Think about unwrapping it all 
the way to 1/𝑚𝑚

𝑒𝑒+𝛼𝛼𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1 − 𝜀𝜀𝑡𝑡
𝜀𝜀𝑡𝑡

> 1

• Constructing 𝐷𝐷𝑡𝑡 on {1, …𝑚𝑚}:
– 𝐷𝐷1(𝑖𝑖) = 1/𝑚𝑚
– Given 𝐷𝐷𝑡𝑡 and  ℎ𝑡𝑡 : 

• 𝐷𝐷𝑡𝑡+1 = 𝐷𝐷𝑡𝑡(𝑖𝑖)/𝑧𝑧𝑡𝑡 × 𝑒𝑒−𝛼𝛼𝑡𝑡 if 𝑦𝑦𝑖𝑖 = ℎ𝑡𝑡 𝒙𝒙𝑖𝑖
𝐷𝐷𝑡𝑡(𝑖𝑖)/𝑧𝑧𝑡𝑡 × 𝑒𝑒+𝛼𝛼𝑡𝑡 if 𝑦𝑦𝑖𝑖 ≠ ℎ𝑡𝑡 𝒙𝒙𝑖𝑖

=
𝐷𝐷𝑡𝑡 𝑖𝑖
𝑧𝑧𝑡𝑡

× exp −𝛼𝛼𝑡𝑡 𝑦𝑦𝑖𝑖 ℎ𝑡𝑡 𝒙𝒙𝑖𝑖
where 𝑧𝑧𝑡𝑡 = normalization constant
and  𝛼𝛼𝑡𝑡 = ½ ln{ (1 − 𝜀𝜀𝑡𝑡)/𝜀𝜀𝑡𝑡 }

• Final hypothesis: 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝒙𝒙) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (∑𝑡𝑡 𝛼𝛼𝑡𝑡 ℎ𝑡𝑡(𝒙𝒙) )
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Administration (11/11/20)

• Remember that all the lectures are available on the website before the class
– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more 

details, examples and, (when relevant) some code. 

• HW 3: Due on 11/16/20 
– You cannot solve all the problems yet.
– Less time consuming; no programming

• Cheating
– Several problems in HW1 and HW2

Are we recording? YES!

Available on the web site
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Projects
• CIS 519 students need to do a team project: Read the project descriptions

– Teams will be of size 2-4
– We will help grouping if needed

• There will be 3 projects. 
– Natural Language Processing (Text)
– Computer Vision (Images)
– Speech (Audio)

• In all cases, we will give you datasets and initial ideas
– The problem will be multiclass classification problems
– You will get annotated data only for some of the labels, but will also have to predict other labels
– 0-zero shot learning; few-shot learning; transfer learning

• A detailed note will come out today. 

• Timeline:
– 11/11 Choose a project and team up
– 11/23 Initial proposal describing what your team plans to do 
– 12/2 Progress report
– 12/15-20 (TBD) Final paper + short video

• Try to make it interesting! 

https://www.seas.upenn.edu/%7Ecis519/fall2020/cis519-fall20-projects.pdf
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A Toy Example

D1
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A Toy Example

𝜀𝜀1 = 0.3
𝛼𝛼1 = 0.42

D2

h1
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A Toy Example

𝜀𝜀2 = 0.21
𝛼𝛼2 = 0.65

D3

h2



CIS 419/519 Fall’20 16

A Toy Example

𝜀𝜀3 = 0.14
𝛼𝛼3 = 0.92

h3
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A Toy Example

A cool and important note 
about the final hypothesis: 
it is possible that the 
combined hypothesis 
makes no mistakes on the 
training data, but boosting 
can still learn, by adding 
more weak hypotheses.

Hfinal

0.42 +0.65 +0.92=sign
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Analyzing Adaboost
1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want?
2. What does the bound mean?



CIS 419/519 Fall’20 19



CIS 419/519 Fall’20 20



CIS 419/519 Fall’20 21

Analyzing Adaboost
1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want?
2. What does the bound mean?

𝜖𝜖𝑡𝑡(1 − 𝜖𝜖𝑡𝑡) = (1/2 − ϒ𝑡𝑡)(1/2 + ϒ𝑡𝑡))
= 1/4 − ϒ𝑡𝑡2

1 − (2ϒ𝑡𝑡)2 ≤ exp(−(2ϒ𝑡𝑡)2)

Need to prove 
only the first 
inequality, the rest 
is algebra.
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AdaBoost Proof (1)
• Let 𝑓𝑓 𝒙𝒙 = ∑𝑡𝑡 𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝒙𝒙 → 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒙𝒙 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓 𝒙𝒙 )
• Step 1: the final weight of an example (via unwrapping recursion)

𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =
exp −𝑦𝑦𝑖𝑖 ∑𝑡𝑡 𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝒙𝒙𝑖𝑖

∏𝑡𝑡 𝑍𝑍𝑡𝑡
⋅

1
𝑚𝑚

=
𝑒𝑒−𝑦𝑦𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖

∏𝑡𝑡 𝑍𝑍𝑡𝑡
⋅

1
𝑚𝑚

The final “weight” of 
the i-th example
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AdaBoost Proof (2)
• Step 2: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ ∏𝑡𝑡 𝑍𝑍𝑡𝑡
• Proof:

– 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒙𝒙 ≠ 𝑦𝑦 → 𝑦𝑦𝑦𝑦 𝒙𝒙 ≤ 0 → 𝑒𝑒−𝑦𝑦𝑦𝑦 𝒙𝒙 ≥ 1
So: 
– 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

=
1
𝑚𝑚

�
𝑖𝑖

1 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 ≠ 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝒙𝒙𝑖𝑖)

=
1
𝑚𝑚

�
𝑖𝑖

0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

≤
1
𝑚𝑚
�
𝑖𝑖

𝑒𝑒−𝑦𝑦𝑖𝑖𝑓𝑓 𝒙𝒙𝑖𝑖

= �
𝑖𝑖

𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 �
𝑡𝑡

𝑍𝑍𝑡𝑡

= �
𝑡𝑡

𝑍𝑍𝑡𝑡

The definition 
of training 
error

Always holds for 
mistakes (see above)

Using Step 1

D is a distribution 
over the m examples
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AdaBoost Proof(3)

• Step 3: 𝑍𝑍𝑡𝑡 = 2 (𝜖𝜖𝑡𝑡 1 − 𝜖𝜖𝑡𝑡)
1
2

• Proof:

𝑍𝑍𝑡𝑡 = �
𝑖𝑖

𝐷𝐷𝑡𝑡 𝑖𝑖 exp(−𝛼𝛼𝑡𝑡𝑦𝑦𝑖𝑖ℎ𝑡𝑡 𝒙𝒙𝑖𝑖 )

= �
𝑖𝑖:𝑦𝑦𝑖𝑖≠ℎ𝑡𝑡(𝒙𝒙𝑖𝑖)

𝐷𝐷𝑡𝑡 𝑖𝑖 𝑒𝑒𝛼𝛼𝑡𝑡 + �
𝑖𝑖:𝑦𝑦𝑖𝑖=ℎ𝑡𝑡(𝒙𝒙𝑖𝑖)

𝐷𝐷𝑡𝑡 𝑖𝑖 𝑒𝑒−𝛼𝛼𝑡𝑡

= 𝜖𝜖𝑡𝑡𝑒𝑒𝛼𝛼𝑡𝑡 + 1 − 𝜖𝜖𝑡𝑡 𝑒𝑒−𝛼𝛼𝑡𝑡

= 2 (𝜖𝜖𝑡𝑡 1 − 𝜖𝜖𝑡𝑡)
1
2

Splitting the sum to 
“mistakes” and no-
mistakes”

The definition of 𝜖𝜖𝑡𝑡

The definition of αt

By definition of Zt; it’s a 
normalization term

Step 2 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ ∏𝑡𝑡 𝑍𝑍𝑡𝑡
and step 3 together prove the Theorem.
The error of the final hypothesis can be as low as 
you want.

𝑒𝑒+𝛼𝛼𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

> 1

A strong assumption due to 
the “for all distributions”.
But – works  well in practice

Why does it work? 
The Weak Learning 
Hypothesis
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Summary of Ensemble Methods 
• Boosting
• Bagging
• Random Forests



CIS 419/519 Fall’20 28

Boosting
• Initialization:

– Weigh all training samples equally
• Iteration Step:

– Train model on (weighted) train set
• Choose your favorite hypothesis space & learning algorithm

– Compute error of model on train set
– Update the distribution: 

• Increase/decrease weights on training cases model gets wrong/correct.

• Typically requires 100’𝑠𝑠 to 1000’𝑠𝑠 of iterations
• Return final model: 

– Carefully weighted prediction of each model
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Boosting: Different Perspectives
• Boosting is a maximum-margin method  (Schapire et al. 1998, Rosset et al. 

2004)
– Trades lower margin on easy cases for higher margin on harder cases

• Boosting is an additive logistic regression model  (Friedman, Hastie and 
Tibshirani 2000)
– Tries to fit the logit of the true conditional probabilities

• Boosting is an equalizer  (Breiman 1998) (Friedman, Hastie, Tibshirani
2000)
– Weighted proportion of times example is misclassified by base learners tends to be 

the same for all training cases

• Boosting is a linear classifier, over an incrementally acquired “feature 
space”.
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Bagging
• Bagging predictors is a method for generating multiple versions of a predictor 

and using these to get an aggregated predictor.
– The aggregation averages over the versions when predicting a numerical outcome and 

does a plurality vote when predicting a class.
• The multiple versions are formed by making bootstrap replicates of the 

learning set and using these as new learning sets.
– That is, use samples of the data, with repetition

• Tests on real and simulated data sets using classification and regression trees 
and subset selection in linear regression show that bagging can give 
substantial gains in accuracy.

• The vital element is the instability of the prediction method. If perturbing the 
learning set can cause significant changes in the predictor constructed, then 
bagging can improve accuracy.
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Example: Bagged Decision Trees
• Draw 100 bootstrap samples of data
• Train trees on each sample  100 trees
• Average prediction of trees on out-of-bag samples

…

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24
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Random Forests (Bagged Trees++)
• Draw 1000 + bootstrap samples of data
• Draw sample of available attributes at each split
• Train trees on each sample/attribute set  1000 + trees
• Average prediction of trees on out-of-bag samples

…

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24
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So Far: Classification
• So far, we focused on Binary Classification
• For linear models: 

– Perceptron, Winnow, SVM, GD, SGD

• The prediction is simple: 
– Given an example 𝒙𝒙, 
– Prediction = sgn(𝒘𝒘𝑇𝑇𝒙𝒙)
– Where 𝒘𝒘 is the learned model

• The output is a single bit
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Multi-Categorical Output Tasks
– Multi-class Classification (𝑦𝑦 ∈ {1, … ,𝐾𝐾})

• character recognition (‘6’)
• document classification (‘homepage’)

– Multi-label Classification (𝑦𝑦 ⊆ {1, … ,𝐾𝐾})
• document classification (‘(homepage,facultypage)’)

– Category Ranking (𝑦𝑦 ∈ 𝜋𝜋(𝐾𝐾))
• user preference (‘(love > like > hate)’)
• document classification (‘hompage > facultypage > sports’)

– Hierarchical Classification (𝑦𝑦 ⊆ {1, … ,𝐾𝐾})
• cohere with class hierarchy
• place document into index where ‘soccer’ is-a ‘sport’
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Setting
– Learning:

• Given a data set 𝐷𝐷 = {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)}1
𝑚𝑚

• Where 𝒙𝒙𝑖𝑖 ∈ 𝑹𝑹𝑛𝑛, 𝑦𝑦𝑖𝑖 ∈ {1,2, … , 𝑘𝑘}.
– Prediction (inference):

• Given an example 𝒙𝒙, and a learned function (model),
• Output a single class labels 𝑦𝑦.
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Binary to Multiclass
• Most schemes for multiclass classification work by reducing the 

problem to that of binary classification.
• There are multiple ways to decompose the multiclass prediction 

into multiple binary decisions
– One-vs-all
– All-vs-all
– Error correcting codes

• We will then talk about a more general scheme:
– Constraint Classification

• It can be used to model other non-binary classification schemes and 
leads to Structured Prediction.
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One-Vs-All
• Assumption: Each class can be separated from all the rest using a binary 

classifier in the hypothesis space.
• Learning: Decomposed to learning 𝑘𝑘 independent binary classifiers, one 

for each class label.
• Learning: 

– Let 𝐷𝐷 be the set of training examples. 
– ∀ label 𝑙𝑙, construct a binary classification problem as follows:

• Positive examples: Elements of 𝐷𝐷 with label 𝑙𝑙
• Negative examples: All other elements of 𝐷𝐷

– This is a binary learning problem that we can solve, producing 𝑘𝑘 binary classifiers 
𝒗𝒗1,𝒗𝒗2, …𝒗𝒗𝑘𝑘

• Decision: Winner Takes All (WTA): 
– 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 𝒗𝒗𝑖𝑖𝑇𝑇𝒙𝒙
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Solving MultiClass with 1 vs All learning

• MultiClass classifier
– Function  𝑓𝑓 ∶ 𝑹𝑹𝑛𝑛 {1,2,3, … , 𝑘𝑘}

• Decompose into binary problems

• Not always possible to learn 
• No theoretical justification 

– Also: need to make sure the range of all classifiers is the same (for the argmax)
• Note: in high dimensional spaces, it’s likely that things are separable
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Learning via One-Versus-All (OvA) Assumption
• Find 𝒗𝒗𝒓𝒓,𝒗𝒗𝒃𝒃,𝒗𝒗𝒈𝒈,𝒗𝒗𝒚𝒚∈ 𝑹𝑹𝑛𝑛 such that 

𝒗𝒗𝒓𝒓.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟 ⊗
𝒗𝒗𝒃𝒃.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝒗𝒗𝒈𝒈.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝒗𝒗𝒚𝒚.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

• Classification: 𝑓𝑓 𝒙𝒙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖𝒗𝒗𝒊𝒊 𝒙𝒙

𝑯𝑯 = 𝑹𝑹𝑛𝑛𝑛𝑛

Real 
Problem
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All-Vs-All
• Assumption: There is a separation between every pair of classes using a binary 

classifier in the hypothesis space.
• Learning: Decomposed to learning [𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2] ~ 𝑘𝑘2 independent binary 

classifiers, one corresponding to each pair of class labels. For the pair (𝑖𝑖, 𝑗𝑗):
– Positive example: all examples with label 𝑖𝑖
– Negative examples: all examples with label 𝑗𝑗

• Decision: More involved, since output of binary classifier may not cohere. 
Each label gets 𝑘𝑘 − 1 votes.

• Decision Options: 
– Majority: classify example 𝐱𝐱 to take label 𝑖𝑖 if 𝑖𝑖 wins on 𝐱𝐱 more often than 𝑗𝑗 (𝑗𝑗 = 1, … 𝑘𝑘)
– A tournament: start with  𝑛𝑛

2
pairs; continue with winners .
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Learning via All-Verses-All (AvA) Assumption
• Find 𝒗𝒗𝒓𝒓𝒃𝒃,𝒗𝒗𝒓𝒓𝒈𝒈,𝒗𝒗𝒓𝒓𝒚𝒚,𝒗𝒗𝒃𝒃𝒈𝒈,𝒗𝒗𝒃𝒃𝒚𝒚,𝒗𝒗𝒈𝒈𝒚𝒚 ∈ 𝑹𝑹𝑑𝑑 such that 

– 𝒗𝒗𝒓𝒓𝒃𝒃.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟
< 0 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

– 𝒗𝒗𝒓𝒓𝒈𝒈.𝒙𝒙 > 0 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟
< 0 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

– ... (for all pairs)

Individual 
Classifiers

Decision 
Regions

𝑯𝑯 = 𝑹𝑹𝑘𝑘𝑘𝑘𝑘𝑘

How to 
classify?

It is possible to 
separate all 𝑘𝑘 classes 
with the 
𝑂𝑂(𝑘𝑘2) classifiers
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Classifying with AvA

Tournament

1 red, 2 blue, 2 green
 ?

Majority Vote

All are post-learning and might cause weird stuff
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One-vs-All vs. All vs. All
• Assume m examples, 𝑘𝑘 class labels. 

– For simplicity, say, 𝑚𝑚
𝑘𝑘

in each.
• One vs. All:

– Classifier 𝑓𝑓𝑖𝑖: 
𝑚𝑚
𝑘𝑘

(+) and 𝑘𝑘−1 𝑚𝑚
𝑘𝑘

(-)
– Decision: 
– Evaluate 𝑘𝑘 linear classifiers and do Winner Takes All (WTA): 
– 𝑓𝑓(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖 𝒗𝒗𝑖𝑖𝑇𝑇𝒙𝒙

• All vs. All:
– Classifier 𝑓𝑓𝑖𝑖𝑖𝑖: 𝑚𝑚

𝑘𝑘
(+) and 𝑚𝑚

𝑘𝑘
(-)

– More expressivity, but less examples to learn from.
– Decision: 
– Evaluate 𝑘𝑘2 linear classifiers; decision sometimes unstable.  

• What type of learning methods would prefer All vs. All (efficiency-wise)?  

(Think about Dual/Primal)
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Problems with Decompositions

• Learning optimizes over local metrics
– Does not guarantee good global performance
– We don’t care about the performance of the local classifiers

• Poor decomposition ⇒ poor performance
– Difficult local problems
– Irrelevant local problems

• Especially true for Error Correcting Output Codes
– Another (class of) decomposition
– Difficulty: how to make sure that the resulting problems are separable.

• Efficiency: e.g., All vs. All vs. One vs. All
• Former has advantage when working with the dual space.

• Nevertheless, the most dominant approach in applications is One Vs. All.
• Not clear how to generalize it well to problems with a very large # of labels.
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1 Vs All:  Learning Architecture
• 𝑘𝑘 label nodes; 𝑛𝑛 input features, 𝑛𝑛𝑛𝑛 weights.
• Evaluation: Winner Take All
• Training: Each set of  𝑛𝑛 weights, corresponding to the 𝑖𝑖-th label, is trained 

– Independently, given its performance on example 𝑥𝑥, and 
– Independently of the performance of label 𝑗𝑗 on 𝑥𝑥. 

• Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).
• However, this architecture allows multiple learning algorithms, including those the are “global”

– e.g., see the implementation in the SNoW/LbJava Multi-class Classifier 

Targets (each an LTU)

Features

Weighted edges 
(weight vectors)
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Another View on Binary Classification

• Rather than a single binary variable at the output

• Represent 2 weights per feature; 
– Decision: using the “effective weight”, 

the difference between 𝒘𝒘 + and 𝒘𝒘 −

– This is equivalent to the Winner take all decision 
– Learning: In principle, it is possible to use the 1-vs-all rule and update each set of 𝑛𝑛 weights separately, 

but we suggest a “balanced” Update rule that takes into account how both sets of 𝑛𝑛 weights predict on 
example 𝑥𝑥

If (𝒘𝒘+ − 𝒘𝒘− ⋅ 𝒙𝒙 ≥ 𝜃𝜃] ≠ 𝑦𝑦, 𝒘𝒘𝑖𝑖
+ ← 𝒘𝒘𝑖𝑖

+𝑟𝑟𝑦𝑦𝑥𝑥𝑖𝑖 , 𝒘𝒘𝑖𝑖
−← 𝒘𝒘𝑖𝑖

−𝑟𝑟−𝑦𝑦𝑥𝑥𝑖𝑖

Positive
𝑤𝑤 +

Negative
𝑤𝑤 −

Can this be generalized to the 
case of 𝑘𝑘 labels, 𝑘𝑘 > 2? 

We need a 
“global” learning 
approach
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Where are we?

• Introduction

• Combining binary classifiers
– One-vs-all

– All-vs-all

– Error correcting codes

• Training a single (global) classifier
– Multiclass SVM

– Constraint classification
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Recall: Margin for binary classifiers
• The margin of a hyperplane for a dataset is the distance 

between the hyperplane and the data point nearest to it.

+
+

+
+

+++
+

-
- -
-

-
- -
- -
-

-
-
-
- -
-

-
-

Margin with respect to this hyperplane
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Multiclass Margin
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Multiclass SVM (Intuition)
• Recall: Binary SVM

– Maximize margin
– Equivalently, 

Minimize norm of weight vector, while keeping the closest points to the hyperplane 
with a score ±1

• Multiclass SVM
– Each label has a different weight vector (like one-vs-all)

• But, weight vectors are not learned independently 
– Maximize multiclass margin
– Equivalently,

Minimize total norm of the weight vectors while making sure  that the true label 
scores at least 1 more than the second best one.
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Multiclass SVM in the separable case

Recall hard binary SVM

The score for the true label is higher 
than the score for any other label by 1

Size of the weights. 
Effectively, regularizer
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Multiclass SVM: General case

Size of the weights. 
Effectively, regularizer

The score for the true label is higher 
than the score for any other label by 1

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint. 

Total slack. Effectively, 
don’t allow too many 
examples to violate 

the margin constraint

Slack variables can 
only be positive
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Multiclass SVM: General case

The score for the true label is higher 
than the score for any other label by 1 -
ξi

Size of the weights. 
Effectively, regularizer

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint. 

Total slack. Effectively, 
don’t allow too many 
examples to violate 

the margin constraint

Slack variables can 
only be positive
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Multiclass SVM
• Generalizes binary SVM algorithm

– If we have only two classes, this reduces to the binary (up to scale)

• Comes with similar generalization guarantees as the binary 
SVM

• Can be trained using different optimization methods
– Stochastic sub-gradient descent can be generalized 
– Try as exercise



CIS 419/519 Fall’20 59

Multiclass SVM: Summary
• Training:

– Optimize the “global” SVM objective
• Prediction:

– Winner takes all
• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖 𝒘𝒘𝑖𝑖

𝑇𝑇𝒙𝒙
• With 𝐾𝐾 labels and inputs in 𝐑𝐑𝑛𝑛, we have 𝑛𝑛𝑛𝑛 weights in all

– Same as one-vs-all
• Why does it work?

– Why is this the “right” definition of multiclass margin?
• A theoretical justification, along with extensions to other algorithms 

beyond SVM is given by “Constraint Classification”
– Applies also to multi-label problems, ranking problems, etc. 
– [Zimak et al. NeurIPS 2003]

Skip the rest of the notes
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Constraint Classification
• The examples we give the learner are pairs 𝒙𝒙,𝑦𝑦 ,𝑦𝑦 ∈ {1, … 𝑘𝑘}
• The “black box learner” (1 vs. all) we described might be thought of as a  function of 𝒙𝒙 only but, actually, we 

made use of the labels 𝑦𝑦
• How is 𝑦𝑦 being used?

– 𝑦𝑦 decides what to do with the example 𝒙𝒙; that is, which of the 𝑘𝑘 classifiers should take the example as 
a positive example (making it a negative to all the others).

• How do we predict?
– Let: 𝑓𝑓𝑦𝑦(𝒙𝒙) = 𝒘𝒘𝑦𝑦

𝑇𝑇 𝒙𝒙
– Then, we predict using: 𝑦𝑦 ∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦=1,…,𝑘𝑘 𝑓𝑓𝑦𝑦(𝒙𝒙)

• Equivalently, we can say that we predict as follows:
– Predict 𝑦𝑦 iff ∀𝑦𝑦𝑦 ∈ {1, … ,𝑘𝑘},𝑦𝑦𝑦 ≠ 𝑦𝑦 (𝒘𝒘𝑦𝑦

𝑇𝑇 – 𝒘𝒘𝑦𝑦𝑦
𝑇𝑇 ) 𝒙𝒙 ≥ 0 (∗∗)

• So far, we did not say how we learn the 𝑘𝑘 weight vectors 𝒘𝒘𝑦𝑦 (𝑦𝑦 = 1, … 𝑘𝑘)
– Can we train in a way that better fits the way we predict? 
– What does it mean? 

Is it better in any well defined way?
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• We are learning 𝑘𝑘 𝑛𝑛-dimensional weight vectors, so we can concatenate the 𝑘𝑘 weight vectors into 
– 𝒘𝒘 = 𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑘𝑘 ∈ 𝑹𝑹𝑛𝑛𝑛𝑛

• Key Construction: (Kesler Construction; Zimak’s Constraint Classification)
– We will represent each example (𝒙𝒙,𝑦𝑦), as an 𝑛𝑛𝑛𝑛-dimensional vector, 𝒙𝒙𝑦𝑦, with 𝒙𝒙 embedded in the 𝑦𝑦-th part of it 

(𝑦𝑦 = 1,2, …𝑘𝑘) and the other coordinates are 0.
• E.g.,     𝒙𝒙𝑦𝑦 = (𝟎𝟎,𝒙𝒙,𝟎𝟎,𝟎𝟎) ∈ 𝑹𝑹𝑘𝑘𝑘𝑘 (ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = 4,𝑦𝑦 = 2)
• Now we can understand the 𝑛𝑛-dimensional decision rule: 
• Predict 𝑦𝑦 iff ∀ 𝑦𝑦𝑦 ∈ 1, …𝑘𝑘 , 𝑦𝑦𝑦 ≠ 𝑦𝑦

𝒘𝒘𝑦𝑦
𝑇𝑇 – 𝒘𝒘𝑦𝑦′

𝑇𝑇 ⋅ 𝒙𝒙 ≥ 0 (**)
• Equivalently, in the 𝑛𝑛𝑛𝑛-dimensional space
• Predict 𝑦𝑦 iff ∀ 𝑦𝑦𝑦 ∈ {1, …𝑘𝑘},𝑦𝑦𝑦 ≠ 𝑦𝑦

𝒘𝒘𝑇𝑇 𝒙𝒙𝑦𝑦 – 𝒙𝒙𝑦𝑦′ ≡𝒘𝒘𝑇𝑇 𝒙𝒙𝑦𝑦𝑦𝑦′ ≥ 0

• Conclusion: The set (𝒙𝒙𝑦𝑦𝑦𝑦′ , + ) ≡ (𝒙𝒙𝑦𝑦 – 𝒙𝒙𝑦𝑦′ , +) is linearly separable from the  set (−𝒙𝒙𝑦𝑦𝑦𝑦′ ,− ) using the 
linear separator 𝒘𝒘 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘 ,

– We solved the voroni diagram challenge. 
61

Linear Separability for Multiclass
Notice: This is just a representational trick. 
We did not say how to learn the weight 
vectors. 

We showed: if pairs of labels 
are separable (a reasonable 
assumption) than in some 

higher dimensional space, the 
problem is linearly separable. 
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Constraint Classification
– Training: 

• We first explain via Kesler’s construction; then show we don’t need it
• Given a data set {(𝐱𝐱, 𝑦𝑦)}, (𝑚𝑚 examples) with 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛,𝑦𝑦 ∈ {1,2, …𝑘𝑘}

create a binary classification task (in 𝐑𝐑𝑘𝑘𝑘𝑘):
(𝐱𝐱𝑦𝑦 − 𝐱𝐱𝑦𝑦′ , +), (𝐱𝐱𝑦𝑦’ – 𝐱𝐱𝑦𝑦,−),  for all 𝑦𝑦𝑦 ≠ 𝑦𝑦 [2𝑚𝑚(𝑘𝑘 − 1) examples]

Here 𝒙𝒙𝑦𝑦 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

• Use your favorite linear learning algorithm to train a binary classifier. 
– Prediction: 

• Given an 𝑛𝑛𝑛𝑛 dimensional weight vector 𝒘𝒘 and a new example 𝒙𝒙, predict:                      
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦 𝒘𝒘𝑇𝑇 𝒙𝒙𝑦𝑦
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Details: Kesler Construction & Multi-Class Separability

• Transform Examples

2 > 1
2 > 3
2 > 4

2 > 1

2 > 3

𝑖𝑖 > 𝑗𝑗 𝑓𝑓𝑖𝑖(𝒙𝒙) − 𝑓𝑓𝑗𝑗(𝒙𝒙) > 0
𝒘𝒘𝑖𝑖 ⋅ 𝒙𝒙 − 𝒘𝒘𝑗𝑗 ⋅ 𝒙𝒙 > 0
𝑾𝑾 ⋅ 𝑿𝑿𝑖𝑖 −𝑾𝑾⋅ 𝑿𝑿𝑗𝑗 > 0
𝑾𝑾 ⋅ (𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑗𝑗) > 0
𝑾𝑾 ⋅ 𝑿𝑿𝑖𝑖𝑖𝑖 > 0

𝑿𝑿𝑖𝑖 = 𝟎𝟎,𝒙𝒙,𝟎𝟎,𝟎𝟎 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

𝑿𝑿𝑗𝑗 = 𝟎𝟎,𝟎𝟎,𝟎𝟎,𝒙𝒙 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

𝑿𝑿𝑖𝑖𝑖𝑖 = 𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑗𝑗 = (𝟎𝟎,𝒙𝒙,𝟎𝟎,−𝒙𝒙)
𝑾𝑾 = 𝒘𝒘1,𝒘𝒘2,𝒘𝒘3,𝒘𝒘4 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

2 > 4

If (𝒙𝒙, 𝑖𝑖) was a given n-dimensional 
example (that is, 𝒙𝒙 has is labeled 𝑖𝑖, then 
𝒙𝒙𝑖𝑖𝑖𝑖, ∀ 𝑗𝑗 = 1, …𝑘𝑘, 𝑗𝑗 ≠ 𝑖𝑖, are positive 
examples in the 𝑛𝑛𝑛𝑛-dimensional space. 
–𝒙𝒙𝑖𝑖𝑖𝑖 are negative examples. 
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Kesler’s Construction (1)
• 𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖=(𝑟𝑟,𝑏𝑏,𝑔𝑔,𝑦𝑦) 𝒘𝒘𝑖𝑖.𝒙𝒙

– 𝒘𝒘𝑖𝑖 ,𝒙𝒙 ∈ 𝑹𝑹𝑛𝑛

• Find 𝒘𝒘𝒓𝒓,𝒘𝒘𝒃𝒃,𝒘𝒘𝒈𝒈,𝒘𝒘𝒚𝒚 ∈ 𝑹𝑹𝑛𝑛 such that
– 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒃𝒃.𝒙𝒙
– 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒈𝒈.𝒙𝒙
– 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒚𝒚.𝒙𝒙

𝑯𝑯 = 𝑹𝑹𝑘𝑘𝑘𝑘
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Kesler’s Construction (2)

• Let 𝒘𝒘 = 𝒘𝒘𝒓𝒓,𝒘𝒘𝒃𝒃,𝒘𝒘𝒈𝒈,𝒘𝒘𝒚𝒚 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

• Let 𝟎𝟎𝑛𝑛, be the n-dim zero vector

• 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒃𝒃.𝒙𝒙𝒘𝒘. (𝑥𝑥,−𝑥𝑥,𝟎𝟎𝑛𝑛,𝟎𝟎𝑛𝑛) > 0𝒘𝒘. (−𝑥𝑥, 𝑥𝑥,𝟎𝟎𝑛𝑛,𝟎𝟎𝑛𝑛) < 0
• 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒈𝒈.𝒙𝒙𝒘𝒘. (𝑥𝑥,𝟎𝟎𝑛𝑛,−𝑥𝑥,𝟎𝟎𝑛𝑛) > 0𝒘𝒘. (−𝑥𝑥,𝟎𝟎𝑛𝑛, 𝑥𝑥,𝟎𝟎𝑛𝑛) < 0
• 𝒘𝒘𝒓𝒓.𝒙𝒙 > 𝒘𝒘𝒚𝒚.𝒙𝒙𝒘𝒘. (𝑥𝑥,𝟎𝟎𝑛𝑛,𝟎𝟎𝑛𝑛,−𝑥𝑥) > 0𝒘𝒘. (−𝑥𝑥,𝟎𝟎𝑛𝑛,𝟎𝟎𝑛𝑛, 𝑥𝑥) < 0

x -x -x x
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Kesler’s Construction (3)
• Let

– 𝒘𝒘 = 𝒘𝒘1, … ,𝒘𝒘𝑘𝑘 ∈ 𝑹𝑹𝑛𝑛 × ⋯× 𝑹𝑹𝑛𝑛 = 𝑹𝑹𝑘𝑘𝑘𝑘

– 𝒙𝒙𝑖𝑖𝑖𝑖 = 𝟎𝟎 𝑖𝑖−1 𝑛𝑛,𝒙𝒙,𝟎𝟎 𝑘𝑘−𝑖𝑖 𝑛𝑛 – 𝟎𝟎 𝑗𝑗−1 𝑛𝑛, –𝒙𝒙,𝟎𝟎 𝑘𝑘−𝑗𝑗 𝑛𝑛 ∈ 𝑹𝑹𝑘𝑘𝑘𝑘

• Given 𝒙𝒙,𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛 × {1, … ,𝑘𝑘}
– For all 𝑗𝑗 ≠ 𝑦𝑦 (all other labels)

• Add to 𝑷𝑷 + (𝑥𝑥,𝑦𝑦), (𝒙𝒙𝑦𝑦𝑦𝑦, 1)
• Add to 𝑷𝑷 − (𝑥𝑥,𝑦𝑦), (–𝒙𝒙𝑦𝑦𝑦𝑦,−1)

• 𝑷𝑷 + (𝑥𝑥,𝑦𝑦) has 𝑘𝑘 − 1 positive examples (∈ 𝑹𝑹𝑘𝑘𝑘𝑘)
• 𝑷𝑷 − (𝑥𝑥,𝑦𝑦) has 𝑘𝑘 − 1 negative examples (∈ 𝑹𝑹𝑘𝑘𝑘𝑘)

-xx
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Learning via Kesler’s Construction
• Given (𝐱𝐱1,𝑦𝑦1), … , (𝐱𝐱𝑁𝑁,𝑦𝑦𝑁𝑁) ∈ 𝑹𝑹𝑛𝑛 × {1, … , 𝑘𝑘}
• Create 

– 𝑷𝑷+ = ∪ 𝑷𝑷+(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
– 𝑷𝑷– = ∪ 𝑷𝑷–(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

• Find 𝒘𝒘 = (𝐰𝐰1, … ,𝐰𝐰𝑘𝑘) ∈ 𝑹𝑹𝑘𝑘𝑘𝑘, such that 
– 𝒘𝒘.𝒙𝒙 separates 𝑷𝑷+ from 𝑷𝑷–

• One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.
• To understand how to update the weight vector in the 𝑛𝑛-dimensional space, 

we note that
𝐰𝐰𝑇𝑇 𝐱𝐱𝑦𝑦𝑦𝑦′ ≥ 0 (in the 𝑛𝑛𝑛𝑛-dimensional space)

• is equivalent to: 
(𝐰𝐰𝑦𝑦

𝑇𝑇 – 𝐰𝐰𝑦𝑦′
T ) 𝐱𝐱 ≥ 0 (in the 𝑛𝑛-dimensional space)
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Perceptron in Kesler Construction 
• A perceptron update rule applied in the 𝑛𝑛𝑛𝑛-dimensional space due to a mistake in 

𝐰𝐰𝑇𝑇 𝐱𝐱𝑖𝑖𝑖𝑖 ≥ 0
• Or, equivalently to  (𝐰𝐰𝑖𝑖

𝑇𝑇 – 𝐰𝐰𝑗𝑗𝑇𝑇 )𝐱𝐱 ≥ 0 (in the 𝑛𝑛-dimensional space)
• Implies the following update:

• Given example (𝐱𝐱, 𝑖𝑖) (example 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛, labeled 𝑖𝑖)
– ∀ (𝑖𝑖, 𝑗𝑗), 𝑖𝑖, 𝑗𝑗 = 1, … 𝑘𝑘, 𝑖𝑖 ≠ 𝑗𝑗 (***)
– If  (𝒘𝒘𝑖𝑖

𝑇𝑇 − 𝒘𝒘𝑗𝑗𝑇𝑇 ) 𝒙𝒙 < 0 (mistaken prediction; equivalent to 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖𝑖𝑖 < 0 )
– 𝒘𝒘𝑖𝑖𝒘𝒘𝑖𝑖 + 𝒙𝒙 (promotion)           and              𝒘𝒘𝑗𝑗𝒘𝒘𝑗𝑗 – 𝒙𝒙 (demotion)

• Note that this is a generalization of balanced Winnow rule.

• Note that we promote 𝒘𝒘𝑖𝑖 and demote 𝑘𝑘 − 1 weight vectors 𝒘𝒘𝑗𝑗
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Conservative update
– The general scheme suggests: 
– Given example (𝒙𝒙, 𝑖𝑖) (example 𝒙𝒙 ∈ 𝑹𝑹𝑛𝑛, labeled 𝑖𝑖)

• ∀ 𝑖𝑖, 𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 = 1, … 𝑘𝑘, 𝑖𝑖 ≠ 𝑗𝑗 (***)
• If  (𝒘𝒘𝑖𝑖

𝑇𝑇 − 𝒘𝒘𝑗𝑗𝑇𝑇 ) 𝒙𝒙 < 0 (mistaken prediction; equivalent to 𝒘𝒘𝑇𝑇 𝒙𝒙𝑖𝑖𝑖𝑖 < 0 )
• 𝒘𝒘𝑖𝑖𝒘𝒘𝑖𝑖 + 𝒙𝒙 (promotion)           and              𝒘𝒘𝑗𝑗𝒘𝒘𝑗𝑗 – 𝒙𝒙 (demotion)

– Promote 𝒘𝒘𝑖𝑖 and demote 𝑘𝑘 − 1 weight vectors 𝒘𝒘𝑗𝑗
– A conservative update: (SNoW and LBJava’s implementation):

• In case of a mistake: only the weights corresponding to the target node 𝑖𝑖 and  that 
closest node 𝑗𝑗 are updated. 

• Let: 𝑗𝑗∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑗𝑗=1,…,𝑘𝑘 𝒘𝒘𝑗𝑗𝑇𝑇 𝒙𝒙 (highest activation among competing labels) 
• If  (𝒘𝒘𝑖𝑖

𝑇𝑇 – 𝒘𝒘𝑗𝑗∗
𝑇𝑇 ) 𝒙𝒙 < 0 (mistaken prediction) 

– 𝒘𝒘𝑖𝑖𝒘𝒘𝑖𝑖 + 𝒙𝒙 (promotion)           and              𝒘𝒘𝑗𝑗∗𝒘𝒘𝑗𝑗∗ – 𝒙𝒙 (demotion)
• Other weight vectors are not being updated.
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Multiclass Classification Summary 1:
Multiclass Classification

From the full dataset, construct three 
binary classifiers, one for each class

𝒘𝒘𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝑇𝑇𝒙𝒙 > 0 for 

blue inputs
𝒘𝒘𝒐𝒐𝒐𝒐𝒐𝒐

𝑇𝑇𝒙𝒙 > 0 𝑓𝑓or 
orange inputs

𝒘𝒘𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝑇𝑇𝒙𝒙 > 0 for 

black inputs

Winner Take All will predict the right answer. Only 
the correct label will have a positive score

Notation: 
Score for blue 
label
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Multiclass Classification Summary 2:
One-vs-all may not always work

Red points are not separable with a single 
binary classifier
The decomposition is not expressive enough!

𝒘𝒘𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝑇𝑇𝒙𝒙 > 0 for 

blue inputs
𝒘𝒘𝒐𝒐𝒐𝒐𝒐𝒐

𝑇𝑇𝒙𝒙 > 0 for 
orange inputs

𝒘𝒘𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
𝑇𝑇𝒙𝒙 > 0 for 

black inputs
???
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Summary 3: 
• Local Learning: One-vs-all classification
• Easy to learn

– Use any binary classifier learning algorithm
• Potential Problems

– Calibration issues
• We are comparing scores produced by 𝐾𝐾 classifiers trained independently. No 

reason for the scores to be in the same numerical range!
– Train vs. Train

• Does not account for how the final predictor will be used
• Does not optimize any global measure of correctness

– Yet, works fairly well 
• In most cases, especially in high dimensional problems (everything is already 

linearly separable).  
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Summary 4:

• Global Multiclass Approach [Constraint Classification, Har-Peled et. 
al ‘02]
– Create 𝐾𝐾 classifiers: 𝐰𝐰1,𝐰𝐰2, … ,𝐰𝐰𝐾𝐾 ; 
– Predict with WTA: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖 𝒘𝒘𝑖𝑖

𝑇𝑇𝒙𝒙
– But, train differently: 

• For examples with label 𝑖𝑖, we want  
𝒘𝒘𝑖𝑖
𝑇𝑇𝒙𝒙 > 𝒘𝒘𝑗𝑗𝑇𝑇𝒙𝒙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗

• Training: For each training example (𝒙𝒙𝑖𝑖 ,𝒚𝒚𝑖𝑖) :         
�𝑦𝑦 ← 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑗𝑗
𝒘𝒘𝑗𝑗𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)

if �𝑦𝑦 ≠ 𝑦𝑦𝑖𝑖
• 𝒘𝒘𝑦𝑦𝑖𝑖 ← 𝒘𝒘𝑦𝑦𝑖𝑖 + 𝜂𝜂𝒙𝒙𝑖𝑖 (promote)
• 𝒘𝒘�𝑦𝑦 ← 𝒘𝒘�𝑦𝑦 − 𝜂𝜂𝒙𝒙𝑖𝑖 (demote)

𝜂𝜂: learning rate
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Significance  
• The hypothesis learned above is more expressive than when the OvA

assumption is used. 
• Any linear learning algorithm can be used, and algorithmic-specific properties 

are maintained (e.g., attribute efficiency if using winnow.)
• E.g., the multiclass support vector machine can be implemented by learning a 

hyperplane to separate 𝑃𝑃(𝑆𝑆) with maximal margin.

• As a byproduct of the linear separability observation, we get a natural notion 
of a margin in the multi-class case, inherited from the  binary separability in 
the 𝑛𝑛𝑛𝑛-dimensional space. 

– Given example  𝐱𝐱𝑖𝑖𝑖𝑖 ∈ 𝐑𝐑𝑛𝑛𝑛𝑛,    
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐱𝐱𝑖𝑖𝑖𝑖 ,𝐰𝐰 = min

𝑖𝑖𝑖𝑖
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖𝑖𝑖

– Consequently, given 𝐱𝐱 ∈ 𝐑𝐑𝑛𝑛, labeled 𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐱𝐱,𝐰𝐰 = min

𝑗𝑗
(𝒘𝒘𝑖𝑖

𝑇𝑇 −𝒘𝒘𝑗𝑗𝑇𝑇)𝒙𝒙
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Margin
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Multiclass Margin
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Constraint Classification
• The scheme presented can be generalized to provide a uniform 

view for multiple types of problems: multi-class, multi-label, 
category-ranking 

• Reduces learning to a single binary learning task
• Captures theoretical properties of binary algorithm
• Experimentally verified
• Naturally extends Perceptron, SVM, etc...
• It is called “constraint classification” since it does it all by 

representing labels as a set of constraints or preferences among 
output labels.
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Multi-category to Constraint Classification

• The unified formulation is clear from the following examples:
• Multiclass

– (𝑥𝑥,𝐴𝐴) ⇒ (𝑥𝑥, (𝐴𝐴 > 𝐵𝐵,𝐴𝐴 > 𝐶𝐶,𝐴𝐴 > 𝐷𝐷) )
• Multilabel

– (𝑥𝑥, (𝐴𝐴,𝐵𝐵)) ⇒ (𝑥𝑥, ( (𝐴𝐴 > 𝐶𝐶,𝐴𝐴 > 𝐷𝐷,𝐵𝐵 > 𝐶𝐶,𝐵𝐵 > 𝐷𝐷) )
• Label Ranking

– (𝑥𝑥, (5 > 4 > 3 > 2 > 1)) ⇒ (𝑥𝑥, ( (5 > 4, 4 > 3, 3 > 2, 2 > 1) )

• In all cases, we have examples (𝑥𝑥, 𝑦𝑦) with  𝑦𝑦 ∈ 𝑺𝑺𝒌𝒌
• Where 𝑺𝑺𝒌𝒌 : partial order over class labels {1, … , 𝑘𝑘}

– defines “preference” relation ( > ) for class labeling
• Consequently, the Constraint Classifier is:  ℎ: 𝑿𝑿→ 𝑺𝑺𝒌𝒌

– ℎ(𝑥𝑥) is a partial order
– ℎ(𝑥𝑥) is consistent with 𝑦𝑦 if 𝑖𝑖 < 𝑗𝑗 ∈ 𝑦𝑦 → 𝑖𝑖 < 𝑗𝑗 ∈ ℎ(𝑥𝑥)

Just like in the multiclass 
we learn one 𝒘𝒘𝑖𝑖 ∈ 𝑹𝑹𝑛𝑛 for 
each label, the same is 
done for multi-label and 
ranking. The weight vectors 
are updated according with 
the requirements from 

𝑦𝑦 ∈ 𝑆𝑆𝑘𝑘
(Consult the Perceptron in Kesler construction slide)
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Properties of Construction (Zimak et. al 2002, 2003)

• Can learn any 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒗𝒗𝑖𝑖 ⋅ 𝒙𝒙 function (even when 𝑖𝑖 isn’t linearly separable 
from the union of the others) 

• Can use any algorithm to find linear separation
– Perceptron Algorithm

• ultraconservative online algorithm [Crammer, Singer 2001]
– Winnow Algorithm

• multiclass winnow [ Masterharm 2000 ] 
• Defines a multiclass margin

– by binary margin in 𝑹𝑹𝑘𝑘𝑘𝑘
– multiclass SVM [Crammer, Singer 2001]



CIS 419/519 Fall’20 80

Margin Generalization Bounds
• Linear Hypothesis space: 

– ℎ 𝒙𝒙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝒗𝒗𝑖𝑖 ⋅ 𝒙𝒙
• 𝒗𝒗𝑖𝑖 ,𝒙𝒙 ∈𝑹𝑹𝑑𝑑

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 returns permutation of {1, … , 𝑘𝑘}

• CC margin-based bound
– γ = min

𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑺𝑺
min
𝑖𝑖 <𝑗𝑗 𝜖𝜖 𝑦𝑦

𝒗𝒗𝑖𝑖 ⋅ 𝒙𝒙 – 𝒗𝒗𝑗𝑗 ⋅ 𝒙𝒙

– 𝑒𝑒𝑒𝑒𝑟𝑟𝐷𝐷 ℎ ≤ Θ 𝐶𝐶
𝑚𝑚

𝑅𝑅2

𝛾𝛾2
− ln 𝛿𝛿

 𝑚𝑚 - number of examples
 𝑅𝑅 - 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 ||𝑥𝑥||
 δ - confidence
 𝐶𝐶 - average # constraints
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VC-style Generalization Bounds
• Linear Hypothesis space: 

– ℎ 𝐱𝐱 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐯𝐯𝑖𝑖 ⋅ 𝐱𝐱
• 𝐯𝐯𝑖𝑖 , 𝐱𝐱 ∈𝑹𝑹𝑑𝑑

• 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 returns permutation of {1, … , 𝑘𝑘}

• CC VC-based bound

𝑒𝑒𝑒𝑒𝑟𝑟𝐷𝐷 ℎ ≤ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆,ℎ + 𝜃𝜃
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚

𝑑𝑑 −𝑙𝑙𝑙𝑙𝑙𝑙

𝑚𝑚

1
2

 𝑚𝑚 - number of examples
 𝑑𝑑 - dimension of input space
 𝛿𝛿 - confidence
 𝑘𝑘 - number of classes

Performance: even though this is the right 
thing to do, and differences can be observed 
in low dimensional cases, in high dimensional 
cases, the impact is not always significant. 
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Beyond MultiClass Classification
– Ranking

• category ranking (over classes)
• ordinal regression (over examples)

– Multilabel
• 𝒙𝒙 is both red and blue

– Complex relationships
• 𝒙𝒙 is more red than blue, but not green

– Millions of classes
• sequence labeling (e.g. POS tagging)
• The same algorithms can be applied to these problems, namely, to Structured 

Prediction
• This observation is the starting point for CS546.
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(more) Multi-Categorical Output Tasks
• Sequential Prediction (𝑦𝑦 ∈ 1, … ,𝐾𝐾 +)

– e.g. POS tagging (‘(NVNNA)’)
• “This is a sentence.” ⇒ D V D N 

– e.g. phrase identification
– Many labels: 𝐾𝐾𝐿𝐿 for length 𝐿𝐿 sentence

• Structured Output Prediction (𝑦𝑦 ∈ 𝐶𝐶( 1, … ,𝐾𝐾 +))
– e.g. parse tree, multi-level phrase identification
– e.g. sequential prediction
– Constrained by: 

• domain, problem, data, background knowledge, etc...
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