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Administration (11/16/20)
• Remember that all the lectures are available on the website before the class

– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more details, 

examples and, (when relevant) some code. 

• HW 3: Due Today
• HW4: Out today – NNs, and Bayesian Learning; Due 12/2

– Recitations will be devoted to introducing you to PyTorch

• Cheating
– Several problems in HW1 and HW2

• Projects
– Most of you have chosen a project and a team. 

Are we recording? YES!

Available on the web site
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Functions Can be Made Linear
• Data is not linearly separable in one dimension
• Not separable if you insist on using a specific class of 

functions

𝒙𝒙
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Blown Up Feature Space
• Data are separable in < 𝒙𝒙,𝒙𝒙2 > space

𝒙𝒙

𝒙𝒙2
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Neural Networks
• Multi-layer networks were designed to overcome the 

computational (expressivity) limitation of a single threshold 
element. 

Linear Threshold Unit

Input

Hidden

Output

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑w𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑇𝑇)
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History: Neural Computation 
• McCulloch and Pitts (1943) showed how linear threshold units 

can be used to compute logical functions 

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑w𝑖𝑖𝐼𝐼𝑖𝑖 − 𝑇𝑇)
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History: Neural Computation 
• But XOR?

Two Layered Two Unit Network
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Neural Networks
• Multi-layer networks were designed to overcome the 

computational (expressivity) limitation of a single threshold 
element. 

Linear Threshold Unit

Input

Hidden

Output
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Neural Networks
• Multi-layer networks were designed to overcome the 

computational (expressivity) limitation of a single threshold 
element. 

• The idea is to stack several 
layers of threshold elements, 
each layer using the output of 
the previous layer as input.  

• Multi-layer networks can represent arbitrary functions, but  building 
effective learning methods for such network was [thought to be] 
difficult. 

Input

Hidden

Output
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Neural Networks 
• Neural Networks are functions: 𝑁𝑁𝑁𝑁:𝑿𝑿 → 𝑌𝑌

– where 𝑿𝑿 = 0,1 𝑛𝑛, or ℝ𝑛𝑛 and  𝑌𝑌 = [0,1], {0,1}
– Robust approach to approximating real-valued, discrete-valued and 

vector valued target functions.

𝐻𝐻3 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑤𝑤13𝐼𝐼1 + 𝑤𝑤23𝐼𝐼2 − 𝑇𝑇3)
𝐻𝐻4 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑤𝑤14𝐼𝐼1 + 𝑤𝑤24𝐼𝐼2 − 𝑇𝑇4)

𝑂𝑂5 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑤𝑤35𝐻𝐻3 + 𝑤𝑤45𝐻𝐻4 − 𝑇𝑇5)

Trainable Parameters: 
𝑤𝑤13,𝑤𝑤14,𝑤𝑤23,𝑤𝑤24,𝑤𝑤35,𝑤𝑤45,𝑇𝑇3,𝑇𝑇4, 𝑇𝑇5 𝑇𝑇4

𝑇𝑇5

𝑇𝑇3
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Neural Networks 
• Neural Networks are functions: 𝑁𝑁𝑁𝑁:𝑿𝑿 → 𝑌𝑌

– where 𝑿𝑿 = 0,1 𝑛𝑛, or ℝ𝑛𝑛 and  𝑌𝑌 = [0,1], {0,1}
– Robust approach to approximating real-valued, discrete-valued and vector 

valued target functions.
• Among the most effective general purpose supervised learning 

method currently known.
• Effective especially for complex and hard to interpret input data 

such as real-world sensory data, where a lot of supervision is 
available. 

• Learning:
– The Backpropagation algorithm for neural networks has been shown 

successful in many practical problems
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Motivation for Neural Networks
• Inspired by biological neural network systems

– But are not identical to them

• We are currently on rising part of a wave of interest in NN 
architectures, after a long downtime from the mid-90-ies.
– Better computer architecture (parallelism on GPUs & TPUs) 
– A lot more data than before; in many domains, supervision is 

available.
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Motivation for Neural Networks
• One potentially interesting perspective:

– We used to think about NNs only as function approximators.
• Geoffrey Hinton introduced “Restricted Boltzman Machines” (RBMs) in the 

mid 2000s – method to learn high-level representations of input
• Many other ideas focusing in the Intermediate Representations of NNs 

– Ideas are being developed on the value of these intermediate 
representations for transfer learning, for the meaning they represent etc. 

• We will present in the next two lectures a few of the basic 
architectures and learning algorithms, and provide some 
examples for applications
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Basic Unit in Multi-Layer Neural Network

• Threshold units: 𝑜𝑜𝑗𝑗 = sgn(𝒘𝒘 ⋅ 𝒙𝒙 − 𝑇𝑇) introduce non-linearity
– But not differentiable, 
– Hence unsuitable for learning via Gradient Descent

activation

Input

Hidden

Output
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Logistic Neuron / Sigmoid Activation
• Neuron is modeled by a unit  𝑗𝑗 connected by weighted links 𝑤𝑤𝑖𝑖𝑖𝑖 to other 

units 𝑖𝑖. 

– Use a non-linear, differentiable output function such as the sigmoid or logistic 
function

– Net input to a unit is defined as: 

– Output of a unit is defined as:

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 = 𝜎𝜎 𝑛𝑛𝑛𝑛𝑡𝑡𝑗𝑗 =
1

1 + exp − (net𝑗𝑗−𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥𝑗𝑗
𝑤𝑤1𝑗𝑗

𝑤𝑤6𝑗𝑗
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Representational Power 
• Any Boolean function can be represented by a two layer network 

(simulate a two layer AND-OR network)

• Any bounded continuous function can be approximated with arbitrary 
small error by a two layer network.

• Sigmoid functions provide a set of basis functions from which arbitrary 
function can be composed. 

• Any function can be approximated to arbitrary accuracy by a three 
layer network.



CIS 419/519 Fall’20 18

Quiz Time!
• Given a neural network, how can we make predictions? 

– Given input, calculate the output of each layer (starting from the first 
layer), until you get to the output.

• What is required to fully specify a neural network? 
– The weights.

• Why NN predictions can be quick? 
– Because many of the computations could be parallelized. 

• What makes a neural networks expressive?  
– The non-linear units. 
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Training a Neural Net
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History: Learning Rules 
• Hebb (1949) suggested that if two units are both active (firing) then 

the weights between them should increase:       
𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑜𝑜𝑖𝑖𝑜𝑜𝑗𝑗

– 𝑅𝑅 and is a constant called the learning rate
– Supported by physiological evidence

• Rosenblatt (1959) suggested that when a target output value is 
provided for a single neuron with fixed input, it can incrementally 
change weights and learn to produce the output using the 
Perceptron learning rule.
– assumes binary output units; single linear threshold unit
– Led to the Perceptron Algorithm

• See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html
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Two layer Two Unit Neural Network

𝐻𝐻3 = 𝜎𝜎( 𝑤𝑤13𝐼𝐼1 + 𝑤𝑤23𝐼𝐼2 − 𝑇𝑇3)
𝐻𝐻4 = 𝜎𝜎( 𝑤𝑤14𝐼𝐼1 + 𝑤𝑤24𝐼𝐼2 − 𝑇𝑇4)

𝑂𝑂5 = 𝜎𝜎( 𝑤𝑤35𝐻𝐻3 + 𝑤𝑤45𝐻𝐻4 − 𝑇𝑇5)

Trainable Parameters: 
𝑤𝑤13,𝑤𝑤14,𝑤𝑤23,𝑤𝑤24,𝑤𝑤35,𝑤𝑤45,𝑇𝑇3,𝑇𝑇4, 𝑇𝑇5

𝑇𝑇4

𝑇𝑇5

𝑇𝑇3
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Gradient Descent 
• We use gradient descent to determine the weight vector that  

minimizes some scalar valued loss function 𝐸𝐸𝐸𝐸𝐸𝐸 𝒘𝒘 𝑗𝑗 ;
• Fixing the set 𝐷𝐷 of examples, 𝐸𝐸rr is a function of  𝒘𝒘 𝑗𝑗

• At each step, the weight vector is modified in the direction that 
produces the steepest descent along the error surface.

𝐸𝐸𝐸𝐸𝐸𝐸(𝒘𝒘)

𝒘𝒘𝒘𝒘3 𝒘𝒘2 𝒘𝒘1 𝑤𝑤0
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Backpropagation Learning Rule
• Since there could be multiple output units, we define the error as the sum 

over all the network output units.

• 𝐸𝐸𝐸𝐸𝐸𝐸 𝒘𝒘 = 1
2
∑𝑑𝑑∈𝐷𝐷 ∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘𝑑𝑑 − 𝑜𝑜𝑘𝑘𝑑𝑑 2

– where 𝐷𝐷 is the set of training examples, 
– 𝐾𝐾 is the set of output units

• This is used to derive the (global) learning rule which performs gradient 
descent in the weight space in an attempt to minimize the error function. 

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜1…𝑜𝑜𝑘𝑘

(1, 0, 1, 0, 0)
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Learning with a Multi-Layer  Perceptron
• It’s easy to learn the top layer – it’s just a linear unit. 
• Given feedback (truth) at the top layer, and the activation at the layer 

below it, you can use the Perceptron update rule (more generally, gradient 
descent) to updated these weights.

• The problem is what to do with the other set of weights – we do
not get feedback in the intermediate layer(s). 

activation

Input

Hidden

Output

w2
ij

w1
ij
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Learning with a Multi-Layer  Perceptron
• The problem is what to do with the other set of 

weights – we do not get feedback in the intermediate 
layer(s). 

• Solution: If all the activation functions are 
differentiable, then the output of the network is also 
a differentiable function of the input and weights in 
the network.

• Define an error function (e.g., sum of squares) that is 
a differentiable function of the output, i.e. this error 
function is also a differentiable function of the 
weights. 

• We can then evaluate the derivatives of the error 
with respect to the weights, and use these 
derivatives to find weight values that minimize this 
error function, using gradient descent (or other 
optimization methods). 

• This results in an algorithm called back-propagation.

activation

Input

Hidden

Output

w2
ij

w1
ij
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Chain Rule

𝑑𝑑𝑓𝑓
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑔𝑔

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑
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Some facts from real analysis
• First let’s get the notation right: 

• The arrow shows functional dependence of 𝑧𝑧 on 𝑦𝑦
– i.e. given 𝑦𝑦, we can calculate 𝑧𝑧. 
– e.g., for example: 𝑧𝑧(𝑦𝑦) = 2𝑦𝑦2

The derivative of 𝑧𝑧, with respect to 𝑦𝑦. 
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Some facts from real analysis
• Simple chain rule

– If 𝑧𝑧 is a function of 𝑦𝑦, and 𝑦𝑦 is a function of 𝑥𝑥
• Then 𝑧𝑧 is a function of 𝑥𝑥, as well. 

– Question:  how to find 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

We will use these facts to derive 
the details of the Backpropagation  
algorithm. 

𝑧𝑧 will be the error (loss) function.
- We need to know how to 
differentiate 𝑧𝑧
Intermediate nodes use a logistics 
function (or another differentiable 
step function). 
- We need to know how to 
differentiate it. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕
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Some facts from real analysis
• Multiple path chain rule 

Slide Credit: Richard Socher

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑦𝑦1
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑦𝑦2
𝜕𝜕𝜕𝜕
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Some facts from real analysis
• Multiple path chain rule: general 

Slide Credit: Richard Socher

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = �

𝑖𝑖=1

𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝜕𝜕
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Key Intuitions Required for BP
• Gradient Descent 

– Change the weights in the direction of 
gradient to minimize the error function. 

• Chain Rule 
– Use the chain rule to calculate the weights 

of the intermediate weights 

• Dynamic Programming (Memoization)
– Memoize the weight updates to make the 

updates faster.

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

output

input
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Backpropagation: the big picture
• Loop over instances: 

1. The forward step
• Given the input, make predictions 

layer-by-layer, starting from the first 
layer)

2. The backward step 
• Calculate the error in the output
• Update the weights layer-by-layer, 

starting from the final layer

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

output

input
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Quiz time! 
• What is the purpose of forward step? 

– To make predictions, given an input. 

• What is the purpose of backward step? 
– To update the weights, given an output error. 

• Why do we use the chain rule? 
– To calculate gradient in the intermediate layers. 

• Why backpropagation could be efficient? 
– Because it can be parallelized. 

output

input
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Deriving the update rules
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Reminder: Model Neuron (Logistic)

• Neuron is modeled by a unit  𝑗𝑗 connected by weighted links 𝑤𝑤𝑖𝑖𝑖𝑖 to other 
units 𝑖𝑖. 

– Use a non-linear, differentiable output function such as the sigmoid or logistic 
function

– Net input to a unit is defined as: 

– Output of a unit is defined as:
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖.𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

Note: 
Other gates, beyond Sigmoid, can be used (TanH, ReLu)
Other Loss functions,  beyond LMS, can be used. 
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Derivation of Learning Rule
• The weights are updated incrementally;  the error is computed for

each example and the weight update is then derived.

𝐸𝐸𝑑𝑑 𝒘𝒘 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

• 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output 𝑜𝑜𝑗𝑗 only through  net𝑗𝑗

• Therefore:
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜1…,𝑜𝑜𝑗𝑗 , . . 𝑜𝑜𝑘𝑘

x𝑖𝑖
𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑗𝑗 = 1
1+exp{−(net𝑗𝑗−𝑇𝑇)}

and    net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖. 𝑥𝑥𝑖𝑖
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Derivatives
• Function 1 (error): 

– 𝐸𝐸 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

– 𝜕𝜕𝐸𝐸
𝜕𝜕𝑜𝑜𝑖𝑖

= − 𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖
• Function 2 (linear gate): 

– net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖

– 𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

= 𝑥𝑥𝑖𝑖

• Function 3 (differentiable activation function):

– 𝑜𝑜𝑖𝑖 = 1
1+exp{−(net𝑗𝑗−𝑇𝑇)}

– 𝜕𝜕𝑜𝑜𝑖𝑖
𝜕𝜕net𝑗𝑗

= exp{−(net𝑗𝑗−𝑇𝑇)}
(1+exp{−(net𝑗𝑗−𝑇𝑇)})2

= 𝑜𝑜𝑖𝑖(1− 𝑜𝑜𝑖𝑖)

𝑜𝑜1…,𝑜𝑜𝑗𝑗 , . . 𝑜𝑜𝑘𝑘

x𝑖𝑖
𝑤𝑤𝑖𝑖𝑖𝑖
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= − 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

39

Derivation of Learning Rule (2)
• Weight updates of output units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through net𝑗𝑗
• Therefore: 𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝐸𝐸𝑑𝑑 𝒘𝒘 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2 net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 .𝑥𝑥𝑖𝑖
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

= 𝑜𝑜𝑗𝑗(1− 𝑜𝑜𝑗𝑗)

𝑜𝑜𝑗𝑗

=
1

1 + exp{−(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)}

𝑜𝑜1…𝑜𝑜𝑘𝑘
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Derivation of Learning Rule (3)
• Weights of output units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

Where we defined:  

𝛿𝛿𝑗𝑗 = 𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

= 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗

Δ𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖
= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖
𝑜𝑜𝑗𝑗

𝑥𝑥𝑖𝑖
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𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
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Derivation of Learning Rule (4)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 Influences the output only through all the units whose direct input 
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

𝐸𝐸𝑑𝑑

𝑜𝑜1
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= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑘𝑘

𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
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Derivation of Learning Rule (4)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 Influences the output only through all the units whose direct input 
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑖𝑖 .𝑥𝑥𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖 =

𝑜𝑜1

𝐸𝐸𝑑𝑑
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= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑜𝑜𝑗𝑗(1− 𝑜𝑜𝑗𝑗) 𝑥𝑥𝑖𝑖
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Derivation of Learning Rule (5)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 influences the output only through all the units whose direct input 
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖 =
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Derivation of Learning Rule (6)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑖𝑖 is changed by:

• Where 

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 . ∑𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗𝑗 −𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

• First determine the error for the output units.
• Then, backpropagate this error layer by layer through the network, changing weights appropriately 

in each layer.

𝑘𝑘

𝑗𝑗

𝑖𝑖

𝑤𝑤𝑖𝑖𝑖𝑖

𝑜𝑜𝑘𝑘

Δ𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖

= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖



CIS 419/519 Fall’20 45

The Backpropagation Algorithm
• Create a fully connected three layer network. Initialize weights.
• Until all examples produce the correct output within 𝜖𝜖 (or other criteria)
For each example in the training set do:

1. Compute the network output for this example 
2. Compute the error between the output and target value

𝛿𝛿𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 𝑜𝑜𝑘𝑘 1 − 𝑜𝑜𝑘𝑘
1. For each output unit k, compute error term 

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑗𝑗

1. For each hidden unit, compute error term:  Δ𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖
2. Update network weights with Δ𝑤𝑤𝑖𝑖𝑖𝑖

End epoch
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More Hidden Layers
• The same algorithm holds for more hidden layers. 

output

input
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Demo time!
• Link: https://playground.tensorflow.org/

https://playground.tensorflow.org/
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Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛
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Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑚𝑚

𝒘𝒘𝟏𝟏𝟏𝟏 𝒘𝒘𝟐𝟐𝟐𝟐 𝒘𝒘𝟑𝟑𝟑𝟑 𝒘𝒘𝟒𝟒𝟒𝟒



CIS 419/519 Fall’20 50

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑚𝑚

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏



CIS 419/519 Fall’20 51

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑚𝑚

ℎ2 = 𝜎𝜎(𝑊𝑊2ℎ1) ; 𝑊𝑊2 ∈ 𝑅𝑅𝑑𝑑2ⅹ𝑑𝑑1

𝑦𝑦 = 𝜎𝜎(𝑊𝑊3ℎ2) ; 𝑊𝑊3 ∈ 𝑅𝑅𝑛𝑛ⅹ𝑑𝑑2
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The Backpropagation Algorithm
• Create a fully connected network. Initialize weights.
• Until all examples produce the correct output within 𝜖𝜖 (or other criteria)

For each example (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖) in the training set do:
1. Compute the network output 𝑦𝑦𝑖𝑖 for this example
2. Compute the error between the output and target value

𝐸𝐸 = ∑ 𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑜𝑜𝑖𝑖𝑘𝑘
2

3. Compute the gradient for all weight values, Δ𝑤𝑤𝑖𝑖𝑖𝑖
4. Update network weights with 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 − R ∗ Δ𝑤𝑤𝑖𝑖𝑖𝑖

End epoch

Auto-differentiation packages such as Tensorflow, Torch, etc. help!

Quick example in code
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Comments on Training 
• No guarantee of convergence; neural networks form non-convex 

functions with multiple local minima
• In practice, many large networks can be trained on large amounts of 

data for realistic problems.
• Many epochs (tens of thousands) may be needed for adequate 

training. Large data sets may require many hours of CPU 
• Termination criteria: Number of epochs;  Threshold on training set 

error; No decrease in error; Increased error on a validation set.
• To avoid local minima: several trials with different random initial 

weights with majority or voting techniques
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Over-training Prevention 
• Running too many epochs and/or a NN with many hidden layers 

may lead to an overfit network
• Keep an held-out validation set and test accuracy after every epoch
• Early stopping: maintain weights for best performing network on 

the validation set and return it when performance decreases 
significantly beyond that.

• To avoid losing training data to validation:
– Use 10-fold cross-validation to determine the average number of epochs 

that optimizes validation performance
– Train on the full data set using this many epochs to produce the final 

results
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Over-fitting prevention 
• Too few hidden units prevent the system from adequately fitting 

the data and learning the concept.
• Using too many hidden units leads to over-fitting.
• Similar cross-validation method can  be used to determine an 

appropriate number of hidden units.  (general)
• Another approach to prevent over-fitting is weight-decay: all 

weights are multiplied by some fraction in (0,1) after every epoch.
– Encourages smaller weights and less complex hypothesis
– Equivalently: change Error function to include a term for the sum of the 

squares of the weights in the network. (general)
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Dropout training
• Proposed by (Hinton et al, 2012)

• Each time decide whether to delete one hidden unit with some 
probability 𝑝𝑝
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Dropout training

• Dropout of 50% of the hidden units and 20% of the input units 
(Hinton et al, 2012)
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Dropout training
• Model averaging effect 

– Among 2𝐻𝐻 models, with shared parameters 
• 𝐻𝐻: number of units in the network 

– Only a few get trained 
– Much stronger than the known regularizer

• What about the input space?
– Do the same thing! 
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Recap: Multi-Layer Perceptrons
• Multi-layer network 

– A global approximator 
– Different rules for training it 

• The Back-propagation
– Forward step 
– Back propagation of errors 

• Congrats! Now you know the most important algorithm in neural 
networks!

• Next Time: 
– Convolutional Neural Networks 
– Recurrent Neural Networks  

activation

Input

Hidden

Output
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