
CIS 419/519 Fall’20

Neural Networks and Deep Learning
Part I

Dan Roth,
danroth@seas.upenn.edu|http://www.cis.upenn.edu/~danroth/|461C, 3401 Walnut

1

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), or by
other authors who have made their ML slides available.

CIS 419/519 Fall’20 2

Administration (11/16/20)
• Remember that all the lectures are available on the website before the class

– Go over it and be prepared
– A new set of written notes will accompany most lectures, with some more details,

examples and, (when relevant) some code.

• HW 3: Due Today
• HW4: Out today – NNs, and Bayesian Learning; Due 12/2

– Recitations will be devoted to introducing you to PyTorch

• Cheating
– Several problems in HW1 and HW2

• Projects
– Most of you have chosen a project and a team.

Are we recording? YES!

Available on the web site

CIS 419/519 Fall’20 4

Functions Can be Made Linear
• Data is not linearly separable in one dimension
• Not separable if you insist on using a specific class of

functions

𝒙𝒙

CIS 419/519 Fall’20 5

Blown Up Feature Space
• Data are separable in < 𝒙𝒙,𝒙𝒙2 > space

𝒙𝒙

𝒙𝒙2

CIS 419/519 Fall’20 6

Neural Networks
• Multi-layer networks were designed to overcome the

computational (expressivity) limitation of a single threshold
element.

Linear Threshold Unit

Input

Hidden

Output

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑w𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑇𝑇)

CIS 419/519 Fall’20 7

History: Neural Computation
• McCulloch and Pitts (1943) showed how linear threshold units

can be used to compute logical functions

𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑w𝑖𝑖𝐼𝐼𝑖𝑖 − 𝑇𝑇)

CIS 419/519 Fall’20 8

History: Neural Computation
• But XOR?

Two Layered Two Unit Network

CIS 419/519 Fall’20 9

Neural Networks
• Multi-layer networks were designed to overcome the

computational (expressivity) limitation of a single threshold
element.

Linear Threshold Unit

Input

Hidden

Output

CIS 419/519 Fall’20 10

Neural Networks
• Multi-layer networks were designed to overcome the

computational (expressivity) limitation of a single threshold
element.

• The idea is to stack several
layers of threshold elements,
each layer using the output of
the previous layer as input.

• Multi-layer networks can represent arbitrary functions, but building
effective learning methods for such network was [thought to be]
difficult.

Input

Hidden

Output

CIS 419/519 Fall’20 11

Neural Networks
• Neural Networks are functions: 𝑁𝑁𝑁𝑁:𝑿𝑿 → 𝑌𝑌

– where 𝑿𝑿 = 0,1 𝑛𝑛, or ℝ𝑛𝑛 and 𝑌𝑌 = [0,1], {0,1}
– Robust approach to approximating real-valued, discrete-valued and

vector valued target functions.

𝐻𝐻3 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤13𝐼𝐼1 + 𝑤𝑤23𝐼𝐼2 − 𝑇𝑇3)
𝐻𝐻4 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤14𝐼𝐼1 + 𝑤𝑤24𝐼𝐼2 − 𝑇𝑇4)

𝑂𝑂5 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤35𝐻𝐻3 + 𝑤𝑤45𝐻𝐻4 − 𝑇𝑇5)

Trainable Parameters:
𝑤𝑤13,𝑤𝑤14,𝑤𝑤23,𝑤𝑤24,𝑤𝑤35,𝑤𝑤45,𝑇𝑇3,𝑇𝑇4, 𝑇𝑇5 𝑇𝑇4

𝑇𝑇5

𝑇𝑇3

CIS 419/519 Fall’20 12

Neural Networks
• Neural Networks are functions: 𝑁𝑁𝑁𝑁:𝑿𝑿 → 𝑌𝑌

– where 𝑿𝑿 = 0,1 𝑛𝑛, or ℝ𝑛𝑛 and 𝑌𝑌 = [0,1], {0,1}
– Robust approach to approximating real-valued, discrete-valued and vector

valued target functions.
• Among the most effective general purpose supervised learning

method currently known.
• Effective especially for complex and hard to interpret input data

such as real-world sensory data, where a lot of supervision is
available.

• Learning:
– The Backpropagation algorithm for neural networks has been shown

successful in many practical problems

CIS 419/519 Fall’20 13

Motivation for Neural Networks
• Inspired by biological neural network systems

– But are not identical to them

• We are currently on rising part of a wave of interest in NN
architectures, after a long downtime from the mid-90-ies.
– Better computer architecture (parallelism on GPUs & TPUs)
– A lot more data than before; in many domains, supervision is

available.

CIS 419/519 Fall’20 14

Motivation for Neural Networks
• One potentially interesting perspective:

– We used to think about NNs only as function approximators.
• Geoffrey Hinton introduced “Restricted Boltzman Machines” (RBMs) in the

mid 2000s – method to learn high-level representations of input
• Many other ideas focusing in the Intermediate Representations of NNs

– Ideas are being developed on the value of these intermediate
representations for transfer learning, for the meaning they represent etc.

• We will present in the next two lectures a few of the basic
architectures and learning algorithms, and provide some
examples for applications

CIS 419/519 Fall’20 15

Basic Unit in Multi-Layer Neural Network

• Threshold units: 𝑜𝑜𝑗𝑗 = sgn(𝒘𝒘 ⋅ 𝒙𝒙 − 𝑇𝑇) introduce non-linearity
– But not differentiable,
– Hence unsuitable for learning via Gradient Descent

activation

Input

Hidden

Output

CIS 419/519 Fall’20 16

Logistic Neuron / Sigmoid Activation
• Neuron is modeled by a unit 𝑗𝑗 connected by weighted links 𝑤𝑤𝑖𝑖𝑗𝑗 to other

units 𝑠𝑠.

– Use a non-linear, differentiable output function such as the sigmoid or logistic
function

– Net input to a unit is defined as:

– Output of a unit is defined as:

net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 = 𝜎𝜎 𝑠𝑠𝑛𝑛𝑡𝑡𝑗𝑗 =
1

1 + exp − (net𝑗𝑗−𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥𝑗𝑗
𝑤𝑤1𝑗𝑗

𝑤𝑤6𝑗𝑗

CIS 419/519 Fall’20 17

Representational Power
• Any Boolean function can be represented by a two layer network

(simulate a two layer AND-OR network)

• Any bounded continuous function can be approximated with arbitrary
small error by a two layer network.

• Sigmoid functions provide a set of basis functions from which arbitrary
function can be composed.

• Any function can be approximated to arbitrary accuracy by a three
layer network.

CIS 419/519 Fall’20 18

Quiz Time!
• Given a neural network, how can we make predictions?

– Given input, calculate the output of each layer (starting from the first
layer), until you get to the output.

• What is required to fully specify a neural network?
– The weights.

• Why NN predictions can be quick?
– Because many of the computations could be parallelized.

• What makes a neural networks expressive?
– The non-linear units.

CIS 419/519 Fall’20

Training a Neural Net

CIS 419/519 Fall’20 20

History: Learning Rules
• Hebb (1949) suggested that if two units are both active (firing) then

the weights between them should increase:
𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗 + 𝑅𝑅𝑜𝑜𝑖𝑖𝑜𝑜𝑗𝑗

– 𝑅𝑅 and is a constant called the learning rate
– Supported by physiological evidence

• Rosenblatt (1959) suggested that when a target output value is
provided for a single neuron with fixed input, it can incrementally
change weights and learn to produce the output using the
Perceptron learning rule.
– assumes binary output units; single linear threshold unit
– Led to the Perceptron Algorithm

• See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

http://people.idsia.ch/%7Ejuergen/who-invented-backpropagation.html

CIS 419/519 Fall’20 21

Two layer Two Unit Neural Network

𝐻𝐻3 = 𝜎𝜎(𝑤𝑤13𝐼𝐼1 + 𝑤𝑤23𝐼𝐼2 − 𝑇𝑇3)
𝐻𝐻4 = 𝜎𝜎(𝑤𝑤14𝐼𝐼1 + 𝑤𝑤24𝐼𝐼2 − 𝑇𝑇4)

𝑂𝑂5 = 𝜎𝜎(𝑤𝑤35𝐻𝐻3 + 𝑤𝑤45𝐻𝐻4 − 𝑇𝑇5)

Trainable Parameters:
𝑤𝑤13,𝑤𝑤14,𝑤𝑤23,𝑤𝑤24,𝑤𝑤35,𝑤𝑤45,𝑇𝑇3,𝑇𝑇4, 𝑇𝑇5

𝑇𝑇4

𝑇𝑇5

𝑇𝑇3

CIS 419/519 Fall’20 22

Gradient Descent
• We use gradient descent to determine the weight vector that

minimizes some scalar valued loss function 𝐸𝐸𝐸𝐸𝐸𝐸 𝒘𝒘 𝑗𝑗 ;
• Fixing the set 𝐷𝐷 of examples, 𝐸𝐸rr is a function of 𝒘𝒘 𝑗𝑗

• At each step, the weight vector is modified in the direction that
produces the steepest descent along the error surface.

𝐸𝐸𝐸𝐸𝐸𝐸(𝒘𝒘)

𝒘𝒘𝒘𝒘3 𝒘𝒘2 𝒘𝒘1 𝑤𝑤0

CIS 419/519 Fall’20 23

Backpropagation Learning Rule
• Since there could be multiple output units, we define the error as the sum

over all the network output units.

• 𝐸𝐸𝐸𝐸𝐸𝐸 𝒘𝒘 = 1
2
∑𝑑𝑑∈𝐷𝐷 ∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘𝑑𝑑 − 𝑜𝑜𝑘𝑘𝑑𝑑 2

– where 𝐷𝐷 is the set of training examples,
– 𝐾𝐾 is the set of output units

• This is used to derive the (global) learning rule which performs gradient
descent in the weight space in an attempt to minimize the error function.

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑅𝑅
𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜1…𝑜𝑜𝑘𝑘

(1, 0, 1, 0, 0)

CIS 419/519 Fall’20 24

Learning with a Multi-Layer Perceptron
• It’s easy to learn the top layer – it’s just a linear unit.
• Given feedback (truth) at the top layer, and the activation at the layer

below it, you can use the Perceptron update rule (more generally, gradient
descent) to updated these weights.

• The problem is what to do with the other set of weights – we do
not get feedback in the intermediate layer(s).

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS 419/519 Fall’20 25

Learning with a Multi-Layer Perceptron
• The problem is what to do with the other set of

weights – we do not get feedback in the intermediate
layer(s).

• Solution: If all the activation functions are
differentiable, then the output of the network is also
a differentiable function of the input and weights in
the network.

• Define an error function (e.g., sum of squares) that is
a differentiable function of the output, i.e. this error
function is also a differentiable function of the
weights.

• We can then evaluate the derivatives of the error
with respect to the weights, and use these
derivatives to find weight values that minimize this
error function, using gradient descent (or other
optimization methods).

• This results in an algorithm called back-propagation.

activation

Input

Hidden

Output

w2
ij

w1
ij

CIS 419/519 Fall’20 26

CIS 419/519 Fall’20 27

Chain Rule

𝑑𝑑𝑓𝑓
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑓𝑓
𝑑𝑑𝑔𝑔

𝑑𝑑𝑔𝑔
𝑑𝑑𝑑𝑑

CIS 419/519 Fall’20 28

Some facts from real analysis
• First let’s get the notation right:

• The arrow shows functional dependence of 𝑧𝑧 on 𝑦𝑦
– i.e. given 𝑦𝑦, we can calculate 𝑧𝑧.
– e.g., for example: 𝑧𝑧(𝑦𝑦) = 2𝑦𝑦2

The derivative of 𝑧𝑧, with respect to 𝑦𝑦.

CIS 419/519 Fall’20 29

Some facts from real analysis
• Simple chain rule

– If 𝑧𝑧 is a function of 𝑦𝑦, and 𝑦𝑦 is a function of 𝑥𝑥
• Then 𝑧𝑧 is a function of 𝑥𝑥, as well.

– Question: how to find 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

We will use these facts to derive
the details of the Backpropagation
algorithm.

𝑧𝑧 will be the error (loss) function.
- We need to know how to
differentiate 𝑧𝑧
Intermediate nodes use a logistics
function (or another differentiable
step function).
- We need to know how to
differentiate it.

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑑𝑑

CIS 419/519 Fall’20 30

Some facts from real analysis
• Multiple path chain rule

Slide Credit: Richard Socher

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦1

𝜕𝜕𝑦𝑦1
𝜕𝜕𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦2

𝜕𝜕𝑦𝑦2
𝜕𝜕𝑑𝑑

CIS 419/519 Fall’20 31

Some facts from real analysis
• Multiple path chain rule: general

Slide Credit: Richard Socher

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥 = �

𝑖𝑖=1

𝑛𝑛
𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥

CIS 419/519 Fall’20 32

Key Intuitions Required for BP
• Gradient Descent

– Change the weights in the direction of
gradient to minimize the error function.

• Chain Rule
– Use the chain rule to calculate the weights

of the intermediate weights

• Dynamic Programming (Memoization)
– Memoize the weight updates to make the

updates faster.

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

output

input

CIS 419/519 Fall’20 33

Backpropagation: the big picture
• Loop over instances:

1. The forward step
• Given the input, make predictions

layer-by-layer, starting from the first
layer)

2. The backward step
• Calculate the error in the output
• Update the weights layer-by-layer,

starting from the final layer

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

output

input

CIS 419/519 Fall’20 34

Quiz time!
• What is the purpose of forward step?

– To make predictions, given an input.

• What is the purpose of backward step?
– To update the weights, given an output error.

• Why do we use the chain rule?
– To calculate gradient in the intermediate layers.

• Why backpropagation could be efficient?
– Because it can be parallelized.

output

input

CIS 419/519 Fall’20

Deriving the update rules

CIS 419/519 Fall’20 36

Reminder: Model Neuron (Logistic)

• Neuron is modeled by a unit 𝑗𝑗 connected by weighted links 𝑤𝑤𝑖𝑖𝑗𝑗 to other
units 𝑠𝑠.

– Use a non-linear, differentiable output function such as the sigmoid or logistic
function

– Net input to a unit is defined as:

– Output of a unit is defined as:
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗.𝑥𝑥𝑖𝑖

𝑜𝑜𝑗𝑗 =
1

1 + exp −(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)

∑ 𝑜𝑜𝑗𝑗

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6

𝑥𝑥7
𝑤𝑤17

𝑤𝑤67

Note:
Other gates, beyond Sigmoid, can be used (TanH, ReLu)
Other Loss functions, beyond LMS, can be used.

CIS 419/519 Fall’20 37

Derivation of Learning Rule
• The weights are updated incrementally; the error is computed for

each example and the weight update is then derived.

𝐸𝐸𝑑𝑑 𝒘𝒘 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

• 𝑤𝑤𝑖𝑖𝑗𝑗 influences the output 𝑜𝑜𝑗𝑗 only through net𝑗𝑗

• Therefore:
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜1…,𝑜𝑜𝑗𝑗 , . . 𝑜𝑜𝑘𝑘

x𝑠𝑠
𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜𝑗𝑗 = 1
1+exp{−(net𝑗𝑗−𝑇𝑇)}

and net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗. 𝑥𝑥𝑖𝑖

CIS 419/519 Fall’20 38

Derivatives
• Function 1 (error):

– 𝐸𝐸 = 1
2
∑𝑘𝑘∈𝐾𝐾 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2

– 𝜕𝜕𝐸𝐸
𝜕𝜕𝑜𝑜𝑖𝑖

= − 𝑡𝑡𝑠𝑠 − 𝑜𝑜𝑖𝑖
• Function 2 (linear gate):

– net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑥𝑥𝑖𝑖

– 𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

= 𝑥𝑥𝑠𝑠

• Function 3 (differentiable activation function):

– 𝑜𝑜𝑖𝑖 = 1
1+exp{−(net𝑗𝑗−𝑇𝑇)}

– 𝜕𝜕𝑜𝑜𝑖𝑖
𝜕𝜕net𝑗𝑗

= exp{−(net𝑗𝑗−𝑇𝑇)}
(1+exp{−(net𝑗𝑗−𝑇𝑇)})2

= 𝑜𝑜𝑖𝑖(1− 𝑜𝑜𝑖𝑖)

𝑜𝑜1…,𝑜𝑜𝑗𝑗 , . . 𝑜𝑜𝑘𝑘

x𝑠𝑠
𝑤𝑤𝑖𝑖𝑗𝑗

CIS 419/519 Fall’20

= − 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕o𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

39

Derivation of Learning Rule (2)
• Weight updates of output units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 influences the output only through net𝑗𝑗
• Therefore: 𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗

𝐸𝐸𝑑𝑑 𝒘𝒘 =
1
2
�
𝑘𝑘∈𝐾𝐾

𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 2 net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 .𝑥𝑥𝑖𝑖
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

= 𝑜𝑜𝑗𝑗(1− 𝑜𝑜𝑗𝑗)

𝑜𝑜𝑗𝑗

=
1

1 + exp{−(net𝑗𝑗 − 𝑇𝑇𝑗𝑗)}

𝑜𝑜1…𝑜𝑜𝑘𝑘

CIS 419/519 Fall’20 40

Derivation of Learning Rule (3)
• Weights of output units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 is changed by:

Where we defined:

𝛿𝛿𝑗𝑗 = 𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

= 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑅𝑅 𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 𝑥𝑥𝑖𝑖
= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖

𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗
𝑜𝑜𝑗𝑗

𝑥𝑥𝑖𝑖

CIS 419/519 Fall’20

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

41

Derivation of Learning Rule (4)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 Influences the output only through all the units whose direct input
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜𝑘𝑘

𝐸𝐸𝑑𝑑

𝑜𝑜1

CIS 419/519 Fall’20

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝(𝑗𝑗)

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑘𝑘

𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝜕𝜕net𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=

42

Derivation of Learning Rule (4)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 Influences the output only through all the units whose direct input
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜𝑘𝑘
net𝑗𝑗 = ∑𝑤𝑤𝑖𝑖𝑗𝑗 .𝑥𝑥𝑖𝑖

=
𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖 =

𝑜𝑜1

𝐸𝐸𝑑𝑑

CIS 419/519 Fall’20

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑘𝑘 𝑜𝑜𝑗𝑗(1− 𝑜𝑜𝑗𝑗) 𝑥𝑥𝑖𝑖

43

Derivation of Learning Rule (5)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 influences the output only through all the units whose direct input
include 𝑗𝑗

𝑘𝑘

𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜𝑘𝑘

𝜕𝜕𝐸𝐸𝑑𝑑
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

= �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝(𝑗𝑗)

−𝛿𝛿𝑘𝑘
𝜕𝜕net𝑘𝑘
𝜕𝜕net𝑗𝑗

𝑥𝑥𝑖𝑖 =

CIS 419/519 Fall’20 44

Derivation of Learning Rule (6)
• Weights of hidden units:

– 𝑤𝑤𝑖𝑖𝑗𝑗 is changed by:

• Where

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 . ∑𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 𝑗𝑗 −𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑘𝑘

• First determine the error for the output units.
• Then, backpropagate this error layer by layer through the network, changing weights appropriately

in each layer.

𝑘𝑘

𝑗𝑗

𝑠𝑠

𝑤𝑤𝑖𝑖𝑗𝑗

𝑜𝑜𝑘𝑘

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑅𝑅 𝑜𝑜𝑗𝑗 1− 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑘𝑘 𝑥𝑥𝑖𝑖

= 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖

CIS 419/519 Fall’20 45

The Backpropagation Algorithm
• Create a fully connected three layer network. Initialize weights.
• Until all examples produce the correct output within 𝜖𝜖 (or other criteria)
For each example in the training set do:

1. Compute the network output for this example
2. Compute the error between the output and target value

𝛿𝛿𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘 𝑜𝑜𝑘𝑘 1 − 𝑜𝑜𝑘𝑘
1. For each output unit k, compute error term

𝛿𝛿𝑗𝑗 = 𝑜𝑜𝑗𝑗 1 − 𝑜𝑜𝑗𝑗 . �
𝑘𝑘∈𝑑𝑑𝑜𝑜𝑤𝑤𝑛𝑛𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑗𝑗

−𝛿𝛿𝑘𝑘 𝑤𝑤𝑗𝑗𝑘𝑘

1. For each hidden unit, compute error term: Δ𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑅𝑅𝛿𝛿𝑗𝑗𝑥𝑥𝑖𝑖
2. Update network weights with Δ𝑤𝑤𝑖𝑖𝑗𝑗

End epoch

CIS 419/519 Fall’20 46

More Hidden Layers
• The same algorithm holds for more hidden layers.

output

input

CIS 419/519 Fall’20 47

Demo time!
• Link: https://playground.tensorflow.org/

https://playground.tensorflow.org/

CIS 419/519 Fall’20 48

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

CIS 419/519 Fall’20 49

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑑𝑑

𝒘𝒘𝟏𝟏𝟏𝟏 𝒘𝒘𝟐𝟐𝟏𝟏 𝒘𝒘𝟑𝟑𝟏𝟏 𝒘𝒘𝟒𝟒𝟏𝟏

CIS 419/519 Fall’20 50

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑑𝑑

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟐𝟐

𝒘𝒘𝟏𝟏𝟑𝟑

𝒘𝒘𝟏𝟏𝟒𝟒

𝒘𝒘𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏𝟏𝟏

CIS 419/519 Fall’20 51

Feed-forward (FF) Network / Multi-layer Perceptron (MLP)

𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑

ℎ1 ∈ 𝑅𝑅𝑑𝑑1

ℎ2 ∈ 𝑅𝑅𝑑𝑑2

𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛

ℎ1 = 𝜎𝜎(𝑊𝑊1𝑥𝑥) ; 𝑊𝑊1 ∈ 𝑅𝑅𝑑𝑑1ⅹ𝑑𝑑

ℎ2 = 𝜎𝜎(𝑊𝑊2ℎ1) ; 𝑊𝑊2 ∈ 𝑅𝑅𝑑𝑑2ⅹ𝑑𝑑1

𝑦𝑦 = 𝜎𝜎(𝑊𝑊3ℎ2) ; 𝑊𝑊3 ∈ 𝑅𝑅𝑛𝑛ⅹ𝑑𝑑2

CIS 419/519 Fall’20 52

The Backpropagation Algorithm
• Create a fully connected network. Initialize weights.
• Until all examples produce the correct output within 𝜖𝜖 (or other criteria)

For each example (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖) in the training set do:
1. Compute the network output 𝑦𝑦𝑖𝑖 for this example
2. Compute the error between the output and target value

𝐸𝐸 = ∑ 𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑜𝑜𝑖𝑖𝑘𝑘
2

3. Compute the gradient for all weight values, Δ𝑤𝑤𝑖𝑖𝑗𝑗
4. Update network weights with 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗 − R ∗ Δ𝑤𝑤𝑖𝑖𝑗𝑗

End epoch

Auto-differentiation packages such as Tensorflow, Torch, etc. help!

Quick example in code

CIS 419/519 Fall’20 53

Comments on Training
• No guarantee of convergence; neural networks form non-convex

functions with multiple local minima
• In practice, many large networks can be trained on large amounts of

data for realistic problems.
• Many epochs (tens of thousands) may be needed for adequate

training. Large data sets may require many hours of CPU
• Termination criteria: Number of epochs; Threshold on training set

error; No decrease in error; Increased error on a validation set.
• To avoid local minima: several trials with different random initial

weights with majority or voting techniques

CIS 419/519 Fall’20 54

Over-training Prevention
• Running too many epochs and/or a NN with many hidden layers

may lead to an overfit network
• Keep an held-out validation set and test accuracy after every epoch
• Early stopping: maintain weights for best performing network on

the validation set and return it when performance decreases
significantly beyond that.

• To avoid losing training data to validation:
– Use 10-fold cross-validation to determine the average number of epochs

that optimizes validation performance
– Train on the full data set using this many epochs to produce the final

results

CIS 419/519 Fall’20 55

Over-fitting prevention
• Too few hidden units prevent the system from adequately fitting

the data and learning the concept.
• Using too many hidden units leads to over-fitting.
• Similar cross-validation method can be used to determine an

appropriate number of hidden units. (general)
• Another approach to prevent over-fitting is weight-decay: all

weights are multiplied by some fraction in (0,1) after every epoch.
– Encourages smaller weights and less complex hypothesis
– Equivalently: change Error function to include a term for the sum of the

squares of the weights in the network. (general)

CIS 419/519 Fall’20 56

Dropout training
• Proposed by (Hinton et al, 2012)

• Each time decide whether to delete one hidden unit with some
probability 𝑝𝑝

CIS 419/519 Fall’20 57

Dropout training

• Dropout of 50% of the hidden units and 20% of the input units
(Hinton et al, 2012)

CIS 419/519 Fall’20 58

Dropout training
• Model averaging effect

– Among 2𝐻𝐻 models, with shared parameters
• 𝐻𝐻: number of units in the network

– Only a few get trained
– Much stronger than the known regularizer

• What about the input space?
– Do the same thing!

CIS 419/519 Fall’20 59

Recap: Multi-Layer Perceptrons
• Multi-layer network

– A global approximator
– Different rules for training it

• The Back-propagation
– Forward step
– Back propagation of errors

• Congrats! Now you know the most important algorithm in neural
networks!

• Next Time:
– Convolutional Neural Networks
– Recurrent Neural Networks

activation

Input

Hidden

Output

	Neural Networks and Deep Learning�Part I
	Administration (11/16/20)
	Functions Can be Made Linear
	Blown Up Feature Space
	Neural Networks
	History: Neural Computation
	History: Neural Computation
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Motivation for Neural Networks
	Motivation for Neural Networks
	Basic Unit in Multi-Layer Neural Network
	Logistic Neuron / Sigmoid Activation
	Representational Power
	Quiz Time!
	�������� Training a Neural Net
	History: Learning Rules
	Two layer Two Unit Neural Network
	Gradient Descent
	Backpropagation Learning Rule
	Learning with a Multi-Layer Perceptron
	Learning with a Multi-Layer Perceptron
	Slide Number 26
	Chain Rule
	Some facts from real analysis
	Some facts from real analysis
	Some facts from real analysis
	Some facts from real analysis
	Key Intuitions Required for BP
	Backpropagation: the big picture
	Quiz time!
	���Deriving the update rules
	Reminder: Model Neuron (Logistic)
	Derivation of Learning Rule
	Derivatives
	Derivation of Learning Rule (2)
	Derivation of Learning Rule (3)
	Derivation of Learning Rule (4)
	Derivation of Learning Rule (4)
	Derivation of Learning Rule (5)
	Derivation of Learning Rule (6)
	The Backpropagation Algorithm
	More Hidden Layers
	Demo time!
	Feed-forward (FF) Network / Multi-layer Perceptron (MLP)
	Feed-forward (FF) Network / Multi-layer Perceptron (MLP)
	Feed-forward (FF) Network / Multi-layer Perceptron (MLP)
	Feed-forward (FF) Network / Multi-layer Perceptron (MLP)
	The Backpropagation Algorithm
	Comments on Training
	Over-training Prevention
	Over-fitting prevention
	Dropout training
	Dropout training
	Dropout training
	Recap: Multi-Layer Perceptrons

