

## Neural Networks and Deep Learning Part II

Dan Roth & Ben Zhou danroth@seas.upenn.edu|http://www.cis.upenn.edu/~danroth/|461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Daniel Khashabi, Nitish Gupta and Ben Zhou (or by other authors who have made their ML slides available.)



# Administration (11/18/20)

Are we recording?YES!

Available on the web site

- Remember that all the lectures are available on the website before the class
  - Go over it and be prepared
  - A new set of written notes will accompany most lectures, with some more details, examples and, (when relevant) some code.
- HW4 is out NNs and Bayesian Learning
  - Due 12/3
  - Recitations will be devoted to introducing you to PyTorch
- Projects
  - Most of you have chosen a project and a team.

## Projects

- CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage
  - Teams will be of size 2-4
  - We will help grouping if needed
- There will be 3 options for projects.
  - Natural Language Processing (Text)
  - Computer Vision (Images)
  - Speech (Audio)
- In all cases, we will give you datasets and initial ideas
  - The problem will be multiclass classification problems
  - You will get annotated data only for some of the labels, but will also have to predict other labels
  - O-zero shot learning; few-shot learning; transfer learning
- A detailed note will come out today.
- Timeline:

| - | 11/11 | Choose a project and team up                                |
|---|-------|-------------------------------------------------------------|
|   | 11/22 | ومتوامر ومروط مندويد فوطني ومناطئتهم واورا وموجره والمتفاصل |

- 11/23 Initial proposal describing what your team plans to do
- 12/2 Progress report
- 12/15-20 (TBD) Final paper + short video
- Try to make it interesting!

## Recap: Multi-Layer Perceptrons

- Multi-layer network
  - A global approximator
  - Different rules for training it
- The Back-propagation
  - Forward step
  - Back propagation of errors



- Congrats! Now you know the most important algorithm in neural networks!
- Today:
  - Convolutional Neural Networks
  - Recurrent Neural Networks
  - Attention and Transformers

## **Receptive Fields**

- The receptive field of an individual sensory neuron is the particular region of the sensory space (e.g., the body surface, or the retina) in which a stimulus will trigger the firing of that neuron.
  - In the auditory system, receptive fields can correspond to wave amplitudes in auditory space
- Designing "proper" receptive fields for the input Neurons is a significant challenge.



## **Image Classification**

Consider a task with image inputs

- Receptive fields should give expressive features from the raw input to the system
- How would you design the receptive fields for this problem?



- A <u>fully connected layer</u>:
  - Example:
    - $100 \times 100$  sized image
    - 1000 units in the hidden layer
  - Problems:
    - 10<sup>7</sup> edges!
    - Spatial correlations lost!
    - Variables sized inputs.
    - Potential overfitting



## **Convolutional Layer**

- A solution:
  - Filters to capture different patterns in the input space.



CIS 419/519 Fall'20

Slide Credit: Marc'Aurelio Ranzato

## Convolution Operator (2)

- Convolution in two dimension:
  - Example: Sharpen kernel:



Try other kernels: http://setosa.io/ev/image-kernels/

## Convolution Operator (3)

- Convolution in two dimension:
  - Convolve a filter matrix across the image matrix



## **Convolutional Layer**

- The convolution of the input (vector/matrix) with weights (vector/matrix) results in a response vector/matrix.
- We can have <u>multiple filters</u> in each convolutional layer, each producing an output.
- If it is an intermediate layer, it can have <u>multiple inputs</u>!



## **Pooling Layer**

- How to handle variable sized inputs?
  - A layer which reduces inputs of different size, to a fixed size.
  - Pooling



Slide Credit: Marc'Aurelio Ranzato

## **Pooling Layer**

- How to handle variable sized inputs?
  - A layer which reduces inputs of different size, to a fixed size.
  - Pooling
  - Different variations
    - Max pooling
    - $h_i[n] = \max_{i \in N(n)} \tilde{h}[i]$
    - Average pooling

$$h_i[n] = \frac{1}{n} \sum_{i \in N(n)} \tilde{h}[i]$$

• L2-pooling

$$h_i[n] = \frac{1}{n} \sqrt{\sum_{i \in N(n)} \tilde{h}^2[i]}$$

• etc



### **Convolutional Nets**

• One stage structure:





## Training a ConvNet

- The same procedure from Back-propagation applies here.
  - Remember in backprop we started from the error terms in the last stage, and passed them back to the
    previous layers, one by one.
- Back-prop for the pooling layer:
  - Consider, for example, the case of "max" pooling.
  - This layer only routes the gradient to the input that has the highest value in the forward pass.
  - Hence, during the forward pass of a pooling layer it is common to keep track of the index of the max activation (sometimes also called *the switches*) so that gradient routing is efficient during backpropagation.



#### **Convolutional Nets**



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

## **Demo (Teachable Machines)**

#### https://teachablemachine.withgoogle.com/

| Class 1 🧷          | : |   |     |             |                                                                    |                |
|--------------------|---|---|-----|-------------|--------------------------------------------------------------------|----------------|
| Add Image Samples: |   |   |     |             |                                                                    |                |
| <b>□</b> • <u></u> |   |   |     |             |                                                                    |                |
| Webcam Upload      |   |   |     | Training    | Preview                                                            | ☆ Export Model |
|                    |   |   |     | Train Model |                                                                    |                |
| Class 2 //         |   |   | _ / | Advanced    | You must train a model on the left before you can preview it here. |                |
| Add Image Samples: |   | ) |     |             |                                                                    |                |
| De <u>1</u>        |   |   |     |             |                                                                    |                |
| webcam opioau      |   |   |     |             |                                                                    |                |
| /                  |   | 1 |     |             |                                                                    |                |
| ⊞ Add a class      |   |   |     |             |                                                                    |                |
| ·                  |   | / |     |             |                                                                    |                |

#### **ConvNet roots**

- Fukushima, 1980s designed network with same basic structure but did not train by backpropagation.
- The first successful applications of Convolutional Networks by Yann LeCun in 1990's (LeNet)
  - Was used to read zip codes, digits, etc.
- Many variants nowadays, but the core idea is the same
  - Example: a system developed in Google (GoogLeNet)
    - Compute different filters
    - Compose one big vector from all of them
    - Layer this iteratively



See more: http://arxiv.org/pdf/1409.4842v1.pdf

#### Depth matters



## Natural Language Processing

- Word-level prediction on natural language:
  - Example: Part of Speech tagging words in a sentence



- Challenges:
  - Structure in the input: Dependence between different parts of the inputs
  - Structure in the output: Correlations between labels
  - Variable size inputs: e.g. sentences differ in size

#### Natural Language Processing





How would you go about solving this task?

• Infinite uses of finite structure



- A chain RNN:
  - Each input is replaced with its vector representation  $x_t$
  - Hidden (memory) unit  $h_t$  contain information about previous inputs and previous hidden units  $h_{t-1}$ ,  $h_{t-2}$ , etc
    - Computed from the past memory and current word. It summarizes the sentence up to that time.



• A popular way of formalizing it:

 $h_t = f(W_h h_{t-1} + W_i x_t)$ 

- Where *f* is a nonlinear, differentiable (why?) function.
- Outputs?
  - Many options; depending on problem and computational resource



• Prediction for  $x_t$ , with  $h_t$ :

$$y_t = \operatorname{softmax}(W_o h_t)$$



- Some inherent issues with RNNs:
  - Recurrent neural nets cannot capture phrases without prefix context
  - They focus too much on last words in final vector
    - A slightly more sophisticated solution: Long Short-Term Memory (LSTM) units

#### CIS 419/519 Fall'20

## **Recurrent Neural Networks**

- Multi-layer feed-forward NN: DAG
  - Just computes a fixed sequence of
  - non-linear learned transformations to convert an input patter into an output pattern
- Recurrent Neural Network: Digraph
  - Has cycles.
  - Cycle can act as a memory;
  - The hidden state of a recurrent net can carry along information about a "potentially" unbounded number of previous inputs.
  - They can model sequential data in a much more natural way.





#### Equivalence between RNN and Feed-forward NN

- Assume that there is a time delay of 1 in using each connection.
- The recurrent net is just a layered net that keeps reusing the same weights.



## **Bi-directional RNN**

- One of the issues with RNN:
  - Hidden variables capture only one side context
- A bi-directional structure





RNN

**Bi-directional RNN** 

#### Sequence to sequence models



Works!

What about other endings?

What if prediction depends on the future?

#### Sequence to sequence models



#### How do we train?

CIS 419/519 Fall'20

#### Sequence to sequence models



## Self-Attention and Transformers



Transformers: Many attention layers stacked

#### Seq2seq with attention



Figure Credit: Google Open Source

#### CIS 419/519 Fall'20

• Motivation: representation learning and transfer learning



In part-of-speech: a noun!

- Early works
  - Word embeddings from N-grams (Mikolov 2013)



- Early works
  - Word embeddings from N-grams (Mikolov 2013)
- Contextualized embeddings
  - ELMo (Peters et al. 2018), a bi-directional RNN



In training: only predict next words in the forward run or previous words in the backward run.

- Early works
  - Word embeddings from N-grams (Mikolov 2013)
- Contextualized embeddings
  - ELMo (Peters et al. 2018), a bi-directional RNN
  - Bert (Devlin et al. 2018), a transformer (many layers of attentions)



- Early works
  - Word embeddings from N-grams (Mikolov 2013)
- Contextualized embeddings
  - ELMo (Peters et al. 2018), a bi-directional RNN
  - Bert (Devlin et al. 2018), a transformer (many layers of attentions)
- All of them (any many others)
  - Unsupervised; used as much data as there is
  - Contributed to a big part of NLP progress in the past decade

## Unsupervised (Pre-) training in vision

- The computer vision community also uses a similar spirit to learn general representations of images before a specific task
- ImageNet
  - 14 million images of objects, 21,841 potential fine-grained labels
  - Initializes "good" convolution filters or other layers in a model
- Transfers to many other tasks
  - Even chest radiology!