
CIS 419/519: Applied Machine Learning
Lecture 5: Explaining ML Generalization

Professor: Dan Roth

1 Computational Learning Theory
In this lecture note, we will be discussing generalization guarantees that try to quantify the success
of a learning algorithm on a given learning task. We seek a theory that will relate the probability of
successful learning, the number of training examples, the complexity of the hypothesis space, the
accuracy to which the target concept is approximated, and how training examples are presented.
Such a theory should be able to answer the following fundamental questions:

• What learning problems can be solved?

• When can we trust the output of a learning algorithm?

• What general laws constrain inductive learning?

In the previous lecture, we focused on quantifying the performance of a learning algorithm using
Mistake Bound Theorem 1. In this lecture, we will use probabilistic intuition to discuss the number
of examples one needs to see before we can say that our learned hypothesis is good. To start we
will pose the same learning conjunction problem introduced in Lecture 4 to refresh your mind.

1.1 Learning Conjunction
Assume that you want to learn the following hidden monotone conjunction 2:

f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

Without going into any details think about these questions: How many examples are needed in
order to learn the function? How is it learned from these examples? There are multiple possible
learning protocols, we will cover the following three:

• Protocol I: The learner proposes instances as queries to the teacher3.

• Protocol II: The teacher provides training examples. Since the teacher knows the hidden
function f, it provides good training sets, that allow the learner to learn quickly.

• Protocol III: Some random source (e.g. Nature) provides training examples; the teacher
(Nature) provides the labels (f(x))

1Refer to Lecture 4 notes

1

1.1.1 Protocol III

This protocol is most often studied in machine learning, partially because it’s more natural and
is easier to analyze. In the this protocol, some random source provides training examples and a
teacher provides the labels (f(x)). Some of the given examples can be as follows:

< (1, 1, 1, 1, 1, 1, . . . , 1, 1), 1 >
< (1, 1, 1, 0, 0, 0, . . . , 0, 0), 0 >
< (1, 1, 1, 1, 1, 0, . . . , 0, 1, 1), 1 >
< (1, 0, 1, 1, 1, 0, . . . , 0, 1, 1), 0 >
< (1, 1, 1, 1, 1, 0, . . . , 0, 0, 1), 1 >
< (1, 0, 1, 0, 0, 0, . . . , 0, 1, 1), 0 >
< (1, 1, 1, 1, 1, 1, . . . , 0, 1), 1 >
< (0, 1, 0, 1, 0, 0, . . . , 0, 1, 1), 0 >

One algorithm we can use in this protocol is elimination. Start with the set of all literals as can-
didates, if we see a positive example, and some of the literals are zeros in that example, we can
conclude that those 0 literals are unimportant (given that our conjunction is monotone). These
variables with value 0 can thus be eliminated. But we are not able to conclude anything when the
example is negative.

Table 1: Queries for Protocol III

Example Conclusion
< (1, 1, 1, 1, 1, 1, . . . , 1, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ . . . ∧ x100
< (1, 1, 1, 0, 0, 0, . . . , 0, 0), 0 > learned nothing
< (1, 1, 1, 1, 1, 0, . . . , 0, 1, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x99 ∧ x100
< (1, 0, 1, 1, 0, 0, . . . , 0, 0, 1), 0 > learned nothing
< (1, 1, 1, 1, 1, 0, . . . , 0, 0, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

In this learning approach, each example, either modifies the hypothesis (by eliminating a variable
in some positive examples) or doesn’t change learner’s hypothesis (negative examples). The key
difference between this protocol and the previous two protocols is that the input in this protocol in
random (naturally generated). This means that it is not guaranteed to learn the hidden conjunction
exactly. Given that our target function is a conjunction, however, we can still say something
meaningful about the behavior of the output. We cannot simply use the number of examples to
determine the amount of time it takes before learning a satisfying function since there would be
2100 possible examples. We can analyze the time to learn something useful using two following
approaches:

• Probabilistic Intuition: We consider the probability of one variable in the hidden conjunc-
tion never appearing in the example set. This probability is very small, so we can argue that
the learned concepts perform well on future data that is distributed similarly to our training
data. This approach is a key idea of the Probably Approximately Correct (PAC) framework
that we will go over in this lecture note.

2

• Mistake Driven Learning: We can say something important about the performance of our
learned hypothesis whenever making a mistake on a given example. Intuitively, if we cor-
rect the hypothesis for the mistakenly classified example, we can assume that the modified
hypothesis performs better on future data. Using this approach, we can focus on the number
of mistakes we are going to make until we are satisfied with our hypothesis as a measure of
performance. We already discussed this in lecture 4.

1.2 Prototypical Concept Learning
Before the start we need to define a couple of notations:

• Instance space: X , examples (described by binary attributes)

• Concept space: C, the set of possible target functions where f ∈ C is the hidden target
function (for example all n-conjunctions or n dimensional linear functions)

• Hypothesis space: H , the set of possible hypotheses

• Training instances: Sx{0, 1}, positive and negative examples of the target concept f ∈ C.

< x1, f(x1) >,< x2, f(x2) >, ..., < xn, f(xn) >

Training instances are generated by a fixed unknown probability distribution D over X .

We need to determine a hypothesis h ∈ H such that h(x) = f(x) for all x ∈ Sx and a hypothesis
h ∈ H such that h(x) = f(x) for all x ∈ X .

h = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

This hypothesis h ∈ H will estimate f and be evaluated by its performance on subsequent instances
x ∈ X drawn according to D (we have an inherent assumption that training and testing instances
are drawn according to the same distribution).

1.3 Probably Approximately Correct (PAC) Learning - Intuition
In the hypothesis below:

h = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100
Since feature x1 was active in all of the positive examples x+ ∈ Sx, it is very likely that it will
also be active in future positive examples x+ ∈ X drawn from D. If not, in any case, feature x1 is
active only in a small percentage of the examples so our error will be small. Error is defined as:

ErrorD = Prx∈D[f(x) 6= h(x)]

One way the set of predictions using f(x) and h(x) can be arranged is shown in Figure 1 (positive
prediction are inside the set)

3

Figure 1: One possible arrangement of sets predictions on f(x) and h(x)

Now the question becomes, given what we know about training instances Sx, can we bound the
error?

1.3.1 Learning Conjunctions – PAC Analysis

If we let z be a literal and p(z) be the probability that z is false in positive examples sampled from
D. If z is in the target concept then p(z) = 0. Otherwise, p(z) is the probability that z is deleted
from h in a randomly chosen positive example. Which means we have:

Error(h) ≤
∑
z∈h

p(z)

In this case, then h will make mistakes only on positive examples. A mistake is made only if a
literal z that is in h but not in f is false in a positive example. In this case, h will predict negative,
while the example is actually positive. Thus p(z) is the probability that z causes h to make a
mistake on a randomly drawn example from D. There may be overlapping reasons for mistakes,
but the sum clearly bounds it. Figure 2 shows this case’s set configuration.

Figure 2: Set configuration for analysis 1

Lets call a literal z (in the hypothesis h) bad if p(z) > ε
n

. A bad literal is a literal that is not in the
target concept and has a significant probability to appear false with a positive example. There are
two possibilities:

• There are no bad literals: Since Error(h) ≤
∑

z∈h p(z) then Error(h) ≤ ε

• There are some bad literals:

Let z be a bad literal. The probability that it will not be eliminated by a given example is:

4

Pr(z survives one example) = 1− Pr(z is eliminated by one example)
≤ 1− p(z)

< 1− ε

n

Now the probability that z will not be eliminated by m independent examples is, therefore:

Pr(z survives m independent examples) ≤ (1− p(z))m < (1− ε

n
)m

There are at most n bad literals, so the probability that some bad literal survives m examples
is bounded by n(1− ε

n
)m.

We want Pr(z survives m independent examples) to be small. So we want to choose a large
enough m such that the probability that some z survive m examples is less than δ (that z remains
in h, and makes it different from the target function f). This means we want:

n(1− ε

n
)m < δ

Using the fact that for x > 0 we have 1− x < e−x it is sufficient to require that:

ne−mε/n < δ

By rearranging we have that we need at minimum:

m >
n

ε
{ln(n) + ln(1/δ)}

examples to guarantee a probability of failure (Error(h) > ε) of less than δ. So we have the
theorem that with m > n

ε
{ln(n) + ln(1/δ)} then with probability > 1− δ, either:

• There are no bad literals

or equivalently

• Error(h) < ε

For example to have an error of less than %10 (ε = 0.1) while having δ = 0.1 and n = 100,
we need 6907 examples at a minimum. With δ = 0.1, ε = 0.1, and n = 10, we only need 460
examples (for δ = 0.01 we only need 690).

1.4 Formulating Prediction Theory
Before we continue to generalize our intuition lets reiterate some definitions and define some new
notations:

• Instance space: X , input to the Classifier

5

• Output space: Y = {−1,+1}

• Current hypothesis: h, current hypothesis function h : Y ← X

• Concept space: C, the set of possible target functions where f ∈ C is the hidden target
function

• Hypothesis space: H , the set of possible hypotheses

• D: an unknown distribution over X × Y

• Training instances: S, a set of examples drawn independently from D

• Sample size: m = |S|

We now can define two different errors:

• True Error: ErrorD = Pr(x,y)∈D[h(x) 6= y]

• Empirical Error: ErrorS = Pr(x,y)∈S[h(x) 6= y] =
∑

1,m[h(xi) 6= yi]

Now we can explore to answer the following questions:

• Can we describe/bound ErrorD given ErrorS ?

• Is it possible to learn a given function in C using functions in H , given the supervised
protocol?

1.5 Requirements of Learning
We cannot expect a learner to learn a concept exactly since there will generally be multiple con-
cepts consistent with the available data (which represents a small fraction of the available instance
space.) Also, unseen examples could potentially have any label. We ”agree” to misclassify un-
common examples that do not show up in the training set.

We cannot always expect to learn a close approximation to the target concept since sometimes
(only in rare learning situations we hope) the training set will not be representative (will contain
uncommon examples). Therefore, the only realistic expectation of a good learner in that with high
probability it will learn a close approximation to the target concept.

1.6 Probably Approximately Correct (PAC)
In Probability Approximately Correct (PAC) learning, one requires that given small parameters ε
and δ, with probability at least (1 − δ), a learner produces a hypothesis with an error at most ε.
Consistent Distribution allows us to hope for such a guarantee.

6

1.6.1 PAC Learnability

Consider a concept class C defined over an instance space X (containing instances of length n),
and a learner L using a hypothesis space H .

”C is PAC learnable by L using H if for all f ∈ C, for all distribution D over X , and fixed
0 < ε, δ < 1, L, given a collection of m examples sampled independently according to the

distribution D produces with probability at least (1− δ) a hypothesis h ∈ H with error at most ε
(ErrorD = PrD[f(x) 6= h(x)]) where m is a polynomial in 1/ε, 1/δ, n and size(H)”

We can also say the following about efficient learnability:

”C is efficiently learnable if L can produce the hypothesis in time polynomial in 1
ε
, 1
δ
, n and

size(H)”

In general, there are two limitations:

• Polynomial sample complexity (a condition onm; information-theoretic constraint): Is there
enough information in the sample to distinguish a hypothesis h that approximate f?

• Polynomial time complexity (a condition on the efficiency of L; computational complexity):
Is there an efficient algorithm that can process the sample and produce a good hypothesis h?

To be PAC Learnable there must be a hypothesis h ∈ H with arbitrarily small error for every
f ∈ C. We generally assume H ⊇ C (properly PAC learnable if H = C).

The algorithm must meet its accuracy:

• For every distribution (the distribution free assumption)

• For every target function f in the class C

1.6.2 Occam’s Razor

Using Occam’s Razor 4 we can prove the claim that:

The probability that there exists a hypothesis h ∈ H that:

• is consistent with m examples and

• satisfies Error(h) > ε (ErrorD(h) = PrD[f(x) 6= h(x)]) is less than |H|(1− ε)m

4Occam’s Razor is the problem-solving principle that ”entities should not be multiplied without necessity. When
presented with competing hypotheses about the same prediction, one should select the solution with the fewest as-
sumptions”

7

We can prove the claim using the following logic:

Let h be such a bad hypothesis. The probability that h is consistent with one example of f is

Prx∈D[f(x) = h(x)] < 1− ε

Since the m examples are drawn independantly of each other the probability that h is consistent
withm examples of f is less than (1−ε)m. The probability that some hypothesis inH is consistent
with m examples is less than |H| (1− ε)m. We want this probability to be smaller than δ, that is:

|H| (1− ε)m < δ

ln(|H|) +m ln(1− ε) < ln(δ)

1

− ln(1− ε)
{ln(|H|) + ln(1/δ)} > m

m >
1

ε
{ln(|H|) + ln(1/δ)}

Last step is true because e−x = 1− x+ x2/2 + . . . ; e−x < 1− x thus ln(1− ε) < −ε. It is called
Occam’s razor because this indicates a preference toward small hypothesis spaces.

1.6.3 Consistent Learners

Using the definitions from earlier, we get the following general scheme for PAC learning (to be a
consistent leaner):

Given a sample D of m examples:

• Find some h ∈ H that is consistent with all m examples:

– Show that if m is large enough a consistent hypothesis must be close enough to f .

– Check that we don’t have too many examples (polynomial in the relevant parameters),
that h we showed that the closeness to the target function guarantee requires m that
satisfies m > 1

ε
{ln(|H|) + ln(1/δ)}

• Show that the consistent hypothesis ∈ H can be computed efficiently

We have a consistent learner in the case of our conjunction example mentioned earlier. In the
conjunction case since we showed that if we have sufficiently many examples (polynomial in the
parameters), then h is close to the target function. We also used the Elimination algorithm to find
a hypothesis h that is consistent with the training set (easy to compute).

1.6.4 Examples

Here are some examples:

8

• Conjunction:

The size of the hypothesis space is 3n since there are 3 choices for each feature (appear as a
positive, appear as a negative, not appear at all).

m >
1

ε

{
ln(3n) + ln(

1

δ
)

}
1

ε

{
n ln 3 + ln(

1

δ
)

}
If we want to guarantee a 95% chance of learning a hypothesis of at least 90% accuracy, with
n = 10 Boolean variable, m > 140. Minimum number of examples increases to 1130 when
we change n = 100. Since the number of examples grows logarithmic with δ, changing the
confidence to 99% only increases the number of required examples to 1145. These results
hold for any consistent learner.

• K-CNF

We want to show that the class of K-CNF functions is PAC learnable. Here is an example of
a member of this class of functions:

f =
m∧
i=1

(li1 ∨ li2 ∨ . . . ∨ lik)

To develop an Occam Algorithm (Consistent Learner algorithm) for a hidden f ∈ K-CNF
we draw a sample D of size m:

– Determine sample complexity:
f = C1 ∧ C2 ∧ ... ∧ Cm where Ci = l1 ∨ l2 ∨ ... ∨ lk:

ln(|K-CNF|) ≈ ln(2(2n)
k

)

O(2n)k

which means that log(|H|) is polynomial in n since k is a fix (constant) number. Due
to the sample complexity result, h is guaranteed to be a PAC hypothesis if we can use
the m examples to learn a consistent hypothesis.

– Find a hypothesis h that is consistent with all the examples in D:
Define a new set of features (literals), one for each clause of size k:

yj = li1 ∨ li2 ∨ . . . ∨ lik ; j = 1, 2, . . . , nk

use the algorithm for learning monotone conjunctions, over the new set of literals. We
know that the algorithm is efficient. For example for n = 4 and k = 2 we have:
y1 = x1 ∨ x2, y2 = x1 ∨ x3, y3 = x1 ∨ x4, y4 = x2 ∨ x3, y5 = x2 ∨ x4, y6 = x3 ∨ x4
which means we do the following transformation:

9

Original examples: (0000, 1), (1010, 1), (1110, 1), (1111, 1)
New examples: (000000, 1)(111101, 1)(111111, 1)(111111, 1)

1.6.5 Why Should We Care?

We now have a theory of generalization in which we know what the important complexity pa-
rameters are. We also understand the dependence in the number of examples and in the size of
the hypothesis class. In addition, we have a generic procedure for learning that is guaranteed to
generalize well:

1. Draw a sample of size m

2. Develop an algorithm that is consistent with it

3. It will be good.

Finally, we have tools to prove that some hypothesis classes are learnable and some are not which
is quite powerful.

1.6.6 Negative Results for Learning

There are two types of nonlearnability results:

• Complexity theoretic: It is about showing that various concept classes cannot be learned
based on well accepted assumptions from computational complexity theory. For example,
determining that C cannot be learned unless P=NP. Examples:

– k-term DNF, for k > 1 (k-clause CNF, k > 1)

– Neural Networks of fixed architecture (3 nodes; n inputs)

– Boolean formulas that are “read-once”

– Quantified conjunctive concepts

• Information-Theoretic: The concept class is sufficiently rich that a polynomial number of
examples may not be sufficient to distinguish a particular target concept. The proof shows
that a given class cannot be learned by algorithms using hypotheses from the same class.
Examples:

– DNF Formulas

– CNF Formulas

– Deterministic Finite Automata

– Context-Free Grammars

Both unlearnability types involve “representation dependent” arguments. Usually, proofs are for
EXACT learning but apply for the distribution free case.

10

1.7 Agnostic Learning
In many cases, you may not be able to find a hypothesis that is completely consistent with the
training data. We still want to be able to say something rigorous about accuracy over unseen
data. This is where Agnostic learning comes in. Assume we are trying to learn a concept f using
hypotheses in H , but f /∈ H . In this case, our goal should be to find a hypothesis h /∈ H , with a
small training error on our training dataXT (since we won’t be able to find a hypothesis completely
consistent with the training data):

ErrorTRAIN(h) =
1

m
|{x ∈ XT ; f(x) 6= h(x)}|

We want a guarantee that a hypothesis with a small training error will have a good performance
on unseen examples,ErrorD(h) = Prx∈D[f(x) 6= h(x)]. Hoeffding bounds allow us to get such
guarantee since it characterizes the deviation between the true probability of some event and its
observed frequency over m independent trials (where p is the underlying probability of the binary
variable being 1 and pemp is the probability of what we observe empirically):

Pr[p > pemp + ε] < e−2mε
2

Therefore, the probability that an element in H will have a training error off by more than ε can be
bounded as follows:

Pr[ErrorD(h) > ErrorTRAIN(h) + ε] < e−2mε
2

Using the same analysis as explained in section 1.3.1, with δ = |H|e−2mε2 , we get a generalized bound
– a bound on how much the true error, ErrorD will deviate from the observed error, TRAIN. For
any distribution D generating training and test instances, with probability at least 1 − δ over the
choice of the training set of size m, (drawn ——D), for all h ∈ H:

ErrorD(h) < ErrorTRAIN(h) +

√
log |H|+ log(1

δ

2m

An agnostic learner which makes no commitment to whether f is in H and returns the hypothesis
with the least training error over at least m number of examples can guarantee with a probability
of at least (1− δ) that its training error is not off by more than ε from the true error. We then have
the following bound on the number of examples m (notice that learnability depends upon the log
of the size of the hypothesis space similar to the consistent learners discussed earlier):

m >
1

2ε2

{
ln(|H|) + ln(

1

δ
)

}

1.8 Infinite Hypothesis Space
So far all of our analysis has been on finite hypothesis spaces. The way our bounds used the size
of the hypothesis space as a measure of expressiveness is not going to hold valuable in the case of
infinite hypothesis spaces. Some infinite hypothesis spaces are more expressive than others. For
example, hypothesis space of 17 side convex polygons is more expressive than space of rectangles.

11

To be able to update our bounds for cases in which hypothesis space is infinite, we need to come
up with a measure that can determine expressiveness of various infinite hypothesis spaces. The
Vapnik-Chervonenkis dimension (VC dimension) provides such a measure. Analogous to |H|,
there are bounds for sample complexity using V C(H).

1.8.1 Shattering

We can measure V C(H) of hypothesis space H using a concept called Shattering. We say that a
set S of examples is shattered by a set of functions H if for every partition of the examples in S
into positive and negative examples there is a function in H that gives exactly these labels to the
examples. The intuition here is that a rich set of functions shatters large sets of points (thus is more
expressive).

1.8.2 Examples

Here are some example concept classes with explanation on the max set number of points they can
shatter:

• Left bounded intervals on the real axis: [0, a), for some real number a > 0. In here set of all
possible a that define our hypothesis space is infinite.

Sets of two points cannot be shattered (we mean: given two points, you can label them in
such a way that no concept in this class will be consistent with their labeling) while sets of
one point can be shattered. Figure 3 shows why sets of two points cannot be shattered by
this concept class.

Figure 3: Left image shows that sets of one point can be shattered while the right image shows
that sets of two cannot

• Intervals on the real axis: [a, b], for some real numbers b > a:

Sets of three points cannot be shattered (we mean: given three points, you can label them in
such a way that no concept in this class will be consistent with their labeling) while sets of
one and two points can. Figure 4 shows why sets of three points cannot be shattered by this
concept class.

Figure 4: Left image shows that sets of two point can be shattered while the right image shows
that sets of three cannot

12

• Half-spaces in the plane:

In this case sets of four points cannot be shattered while sets of up to three can be shattered.
Figure 4 shows why sets of four points cannot be shattered by this concept class. This is
because the fourth point doesn’t necessarily have to be in the convex hull of the other three
points.

Figure 5: A counter example that shows sets of four cannot be shattered by half-space in the plane
concept class

1.8.3 VC Dimension

The VC Dimension of hypothesis space H over instance space X is the size of the largest finite
subset ofX that is shattered byH . This means that there are two steps to proving that V C(H) = d:

• If there exists a subset of size d that can be shattered, then V C(H) ≥ d

• If no subset of size d+ 1 can be shattered, then V C(H) < d+ 1

This means that the hypothesis examples H given above have VC dimensions as below:

• Left bounded intervals on the real axis: V C(H) = 1

• Intervals on the real axis: V C(H) = 2

• Half-spaces in the plane: V C(H) = 3

Since an unbiased hypothesis space H shatters the entire instance space X , i.e, it is able to induce
every possible partition on the set of all possible instances, the larger the subset of X that can be
shattered, the more expressive a hypothesis space is, i.e., the less biased. This way we can see that
V C(H) can be used as a measure of expressiveness of hypothesis space.

1.8.4 Sample Complexity Bounds

Using V C(H) as a measure of expressiveness we have an Occam algorithm for infinite hypothesis
spaces. Given a sample D of m examples, find some h ∈ H that is consistent with all m examples
if,

m >
1

ε

{
8V C(H) log

13

ε
+ 4 log(

2

δ
)

}
Then with probability, at least (1− δ), h has an error less the ε (that is, if m is polynomial we have
a PAC learning algorithm. To be efficient we need to produce the hypothesis h efficiently. Notice
that to shatter m examples it must be that |H| > 2m, which means log(|H|) ≥ V C(H).

13

1.8.5 Learning Axis Parallel Rectangles

Consider axis-parallel rectangles in the real plane. We want to determine whether this infinite
hypothesis is PAC learnable or not. We need to determine its VC dimension first:

• There is a subset of 4 points that can be shattered (we need to consider 16 different rectangles
here.). This means V C(H) ≥ 4

• But there is no subset of size five that can be shattered. You can see one subset in which the
subset is not shattered by the hypothesis space in Figure 6

Figure 6: A counter example that shows sets of five cannot be shattered by the defined rectangles
concept class

The two points above mean that V C(H) = 4. Since the V C dimension is finite, as far as sample
complexity, the hypothesis space is guaranteed to be PAC learnable. Now we have to check if we
can find an algorithm to efficiently learn the target function. we can use the following algorithm:
Find the smallest rectangle that contains the positive examples (necessarily, it will not contain any
negative example, and the hypothesis is consistent). Using this algorithm we can see that axis
parallel rectangles are efficiently PAC learnable.

1.8.6 Sample Complexity Lower Bound

Similar to the finite hypothesis case, there is a general lower bound on the minimum number of
examples necessary for PAC learning in the general case. Consider any concept class C such that
V C(C) > 2, any learner L and small enough ε, δ. Then there exists a distribution D and a target
function in C such that if L observes less than

m = max[
1

ε
log(

1

δ
),
V C(C)− 1

32ε
]

examples, then with probability at least δ, L outputs a hypothesis having Error(h) > ε. Ignoring
the constant factors, the lower bound is the same as the upper bound, except for the extra log(1

ε
)

factor in the upper bound.

14

1.9 Computational Learning Theory Conclusions
The PAC framework provides a reasonable model for theoretically analyzing the effectiveness of
learning algorithms. The sample complexity for any consistent learner using the hypothesis space,
H , can be determined from a measure of H’s expressiveness (|H| for the finite case, V C(H) for
the infinite case). If the sample complexity is tractable, then the computational complexity of
finding a consistent hypothesis governs the complexity of the problem. Sample complexity bounds
given in this case are far from being tight, but they do separate learnable classes from non-learnable
classes (and show what’s important). Computational complexity results also exhibit cases where
information-theoretic learning is feasible, but finding a good hypothesis is intractable.

The theoretical framework allows for a concrete analysis of the complexity of learning as a func-
tion of various assumptions (e.g., relevant variables). Many additional models have been studied as
extensions of this basic framework and they include: learning with noisy data, learning under spe-
cific distributions, learning probabilistic representations, learning neural networks, learning finite
automata, active learning (learning with queries) and, models of teaching. One important exten-
sion that we didn’t talk about in this lecture is the PAC-Bayesians theory. PAC-Bayesians theory,
in addition to the Distribution Free assumption of PAC, makes also an assumption of a prior distri-
bution over the hypothesis the learner can choose from.

Theoretical results also shed light on important issues to consider in learning. These issues include
the importance of bias (representation), sample and computational complexity, interaction, etc. The
Bounds we talked about in this lecture can guide model selection even when they seem impractical
at the first sight. A lot of the recent work on the Computational Learning Theory has been on
finding data-dependent bounds that are usually tighter. The impact the theory of learning has had
on practical learning systems in the last few years has been very significant since it has helped
to develop algorithms such as SVMs, Winnow, and popularized concepts such as Boosting and
Regularization.

15

	Computational Learning Theory
	Learning Conjunction
	Protocol III

	Prototypical Concept Learning
	Probably Approximately Correct (PAC) Learning - Intuition
	Learning Conjunctions – PAC Analysis

	Formulating Prediction Theory
	Requirements of Learning
	Probably Approximately Correct (PAC)
	PAC Learnability
	Occam’s Razor
	Consistent Learners
	Examples
	Why Should We Care?
	Negative Results for Learning

	Agnostic Learning
	Infinite Hypothesis Space
	Shattering
	Examples
	VC Dimension
	Sample Complexity Bounds
	Learning Axis Parallel Rectangles
	Sample Complexity Lower Bound

	Computational Learning Theory Conclusions

