Quiz 3

(!) This is a preview of the published version of the quiz

Started: Oct 6 at 12am

Quiz Instructions

Question 1

You work at a bank and want to impress your boss, so you develop a binary classification model that predicts whether a customer will pay back their loan or not. You run your model and find out that the model has a recall of 80%. Determine which of the following options is the correct implication of using the classifier.

Out of all the loans our bank gave to customers, 80% will pay them back.Out of all the loans our bank gave to customers, 20% will pay them back.We missed 20% of people that would have paid us back by rejecting them.We missed 80% of people that would have paid us back by rejecting them.

Question 2

Suppose you have two models A and B evaluated on the same test data of a classification task and you observe the following results:
\# of examples misclassified by both models $N_{00}=45$
\# of examples misclassified by A but not B $N_{01}=25$
\# of examples misclassified by B but not A $N_{10}=8$
\# of examples misclassified by neither A nor B $N_{11}=150$

Use the McNemar's test and a significance threshold of 0.05 to determine which one of the following statements is correct.The test statistic is around 8 , model A is significantly better than model B.The test statistic is around 8 , model B is significantly better than model A.The test statistic is around 5 , model A is significantly better than model B.The test statistic is around 5 , model B is significantly better than model A.

Question 3

Determine the recall, precision, and accuracy (rounded to the nearest hundredth) of a binary classifier given that its performance is provided in the following confusion matrix:

		Actual Label	
		True	False
Predicted Label	True	100	10
	False	20	110

Recall $=0.91$, Precision $=0.83, F 1=0.87$Recall $=0.83$, Precision $=0.91, \mathrm{~F} 1=0.87$Recall $=0.83$, Precision $=0.88, F 1=0.85$Recall $=0.88$, Precision $=0.91, \mathrm{~F} 1=0.89$

Select all strategies below that can help prevent or reduce overfitting in decision trees:

Restricting the depth of the decision tree.Pruning the decision tree based on a validation set accuracy.Use more features to represent each examples.Use less features to represent each examples.

Question 5

We run the ID3 algorithm for learning decision trees on 800 instances $<(A, B, C, D)$, $y>$ where y is a binary label and A, B, C, D are binary attributes. It so happens that :
(i) 300 of the data points have $A=0$, and they split evenly between positive $(y=1)$ and negative $(y=0)$ examples. But when $A=1$, all the examples are negative.
(ii) 500 of the data points have $B=0$, but only 400 of them are negative ($\mathrm{y}=0$) and the rest are positive ($y=1$) examples. Similarly, when $B=1$, only 50 of them are positive, and the rest are negative.
(iii) C and D take only the value 1 , in all the examples.

Determine which of the following statements is correct:
18.75% of the examples are positive and A is chosen to be the root node.18.75% of the examples are positive and B is chosen to be the root node.25% of the examples are positive and there is a tie between C and D on who is the root node.

