10/21/2020 Quiz: Quiz 1

Quiz 1

(!) This is a preview of the published version of the quiz

Started: Oct 21 at 8:12pm

Quiz Instructions

You will get two attempts at this quiz. You will get a chance to change your answers in the second attempt. After the second try you cannot update it again.

Question 1 1 pts

Let
$$f(x) = 5x^2 + 10x + 6$$

What value of x will minimize the function f(x)? Please input your answer as a decimal number.

Question 2 1 pts

Assume you have three training instances, each with 3 features:

example id	input features x	label y
0	[1, 0, 1]	1
1	[0, 1, 1]	0
2	[1, 0, 0]	1

You will apply the Gradient algorithm with the LMS loss, to an initial $w=[0,\ 0,\ 0]$. That is, you will find a w that minimizes the error $E(w)=\frac{1}{2}\sum_{d\in D}(y_d-w\cdot x_d)^2$, where D is the dataset above.

10/21/2020 Quiz: Quiz 1

What is the first update vector	Δw you will add to $w = [0,\ 0,\ 0]$?
○ [2, 0, 1]	
○ [-1, 0, 1]	
○ [3, 1, 3]	
○ [1, 0, 2]	

Question 3	1 pts
Which of the following are true about gradient descent? (select all statements the true.)	at are
☐ After each iteration, we modify the weight vector in the direction of the gradient.	
☐ We have to choose a non-variable learning rate.	
After each iteration, we modify the weight vector in the direction of the negative gradient	t.
In the gradient descent algorithm each update of the weight vector depends on all the training examples.	

Question 4 1 pts

Suppose we have an instance space consisting of 4 features X_1 , X_2 , X_3 , X_4 , and a label y such that y is determined by a function of x, $y = f(X_1, X_2, X_3, X_4)$. X_1 and X_2 can take 3 different values, while X_3 and X_4 can take 4 different values. The label y can take 2 different values. What is the number of possible functions?

O 2^144

10/21/2020 Quiz: Quiz 1

○ 2^14 ○ 2^84		
○ 2^81		
○ 2^56		
Question 5		1 pts
As seen in question 4 the space of all possible functions is his, learners usually consider only a subset of all the possine he hypothesis space H.		
over 4 Boolean input features, X_1 , X_2 , X_3 , X_4 . For example the hypothesis space. $X_2 \vee X_3$ is not. What is the cardinality	e, $X_1 \wedge X_3$ is an ele	ement in
over 4 Boolean input features, X_1 , X_2 , X_3 , X_4 . For example the hypothesis space. $X_2 \vee X_3$ is not. What is the cardinality	e, $X_1 \wedge X_3$ is an ele	ement in
over 4 Boolean input features, X_1 , X_2 , X_3 , X_4 . For example the hypothesis space. $X_2 \vee X_3$ is not. What is the cardinality \mathbf{H} ?	e, $X_1 \wedge X_3$ is an ele	ement in
over 4 Boolean input features, X_1 , X_2 , X_3 , X_4 . For example the hypothesis space. $X_2 \vee X_3$ is not. What is the cardinality \mathbf{H} ?	e, $X_1 \wedge X_3$ is an ele	ement in
over 4 Boolean input features, X_1 , X_2 , X_3 , X_4 . For example the hypothesis space. $X_2 \vee X_3$ is not. What is the cardinality \mathbf{H} ?	e, $X_1 \wedge X_3$ is an ele	ement in
○ 8○ 16	e, $X_1 \wedge X_3$ is an ele	ement in