Quiz 1

(!) This is a preview of the published version of the quiz

Started: Oct 21 at 8:12pm

Quiz Instructions

You will get two attempts at this quiz. You will get a chance to change your answers in the second attempt. After the second try you cannot update it again.

Question 1

Let $f(x)=5 x^{2}+10 x+6$
What value of x will minimize the function $f(x)$? Please input your answer as a decimal number.

Question 2

Assume you have three training instances, each with 3 features:

example id	input features x	label y
0	$[1,0,1]$	1
1	$[0,1,1]$	0
2	$[1,0,0]$	1

You will apply the Gradient algorithm with the LMS loss, to an initial $w=[0,0,0]$.
That is, you will find a w that minimizes the error $E(w)=\frac{1}{2} \sum_{d \in D}\left(y_{d}-w \cdot x_{d}\right)^{2}$, where D is the dataset above.

Consult the class notes for the update rule of the algorithm, and use a step size $\mathrm{R}=$ 1. What is the first update vector Δw you will add to $w=[0,0,0]$?$[2,0,1]$$[-1,0,1]$
$[3,1,3]$$[1,0,2]$

Question 3

Which of the following are true about gradient descent? (select all statements that are true.)After each iteration, we modify the weight vector in the direction of the gradient.We have to choose a non-variable learning rate.After each iteration, we modify the weight vector in the direction of the negative gradient.In the gradient descent algorithm each update of the weight vector depends on all the training examples.

Question 4

Suppose we have an instance space consisting of 4 features $X_{1}, X_{2}, X_{3}, X_{4}$, and a label y such that y is determined by a function of $x, y=f\left(X_{1}, X_{2}, X_{3}, X_{4}\right) . X_{1}$ and X_{2} can take 3 different values, while X_{3} and X_{4} can take 4 different values. The label y can take 2 different values. What is the number of possible functions?

```
2^144
```\(2^{\wedge 14}\)
\(2^{\wedge} 81\)
\(2^{\wedge} 56\)

\section*{Question 5}

As seen in question 4 the space of all possible functions is far too large! To deal with this, learners usually consider only a subset of all the possible functions. This is called the hypothesis space \(\mathbf{H}\).

Suppose the hypothesis space we are considering is the space of all conjunctions over 4 Boolean input features, \(X_{1}, X_{2}, X_{3}, X_{4}\). For example, \(X_{1} \wedge X_{3}\) is an element in the hypothesis space. \(X_{2} \vee X_{3}\) is not. What is the cardinality of the hypothesis space H?

○ 4
816

256

Not saved```

