10/21/2020 Quiz: Quiz 2

Quiz 2

(1) This is a preview of the published version of the quiz

Started: Oct 21 at 8:34pm

Quiz Instructions

Question 1 1 pts

We have an attribute set made of two boolean features (A,B) where $A,B\in\{0,1\}$ with boolean labels $y\in\{0,1\}$. In our dataset we have 4 categories of data points with counts:

(i)
$$A = 0, B = 1, y = 0$$
: 30 examples

(ii)
$$A = 0$$
, $B = 0$, $y = 0$: 60 examples

(iii)
$$A=1,\; B=0,\; y=1$$
: 15 examples

(iv)
$$A = 1, B = 1, y = 1$$
: 15 examples

We want to train a decision tree with this data. Look at the data, and determine which of A or B should be at the root of the tree. Then verify your answer by computing the information gain.

Δ	IG:	= ∩	ี 2 1	112

Question 2 1 pts

The Boolean function, $\neg x_1 \land x_2 \land \neg x_3 \land x_4$, is a linear function over the boolean variables, x_1, x_2, x_3, x_4 . Which of the following is a correct "linear" representation for it?

- \bigcirc x1 + x2 + x3 + x4 \ge 2
- \bigcirc x1 + x2 + x3 + x4 \ge 4
- \bigcirc -x1 + x2 x3 + x4 \ge 4
- \bigcirc -x1 + x2 x3 + x4 \ge 2

Question 3 1 pts

We want to show that the Boolean function

y=1 if and only if at least 3 out of 5 variables are 1

can be written as a linear threshold function $w^T \cdot x \geq \theta$, where $x \in \{0,1\}^5$ and $y \in \{0,1\}$. What values of w^T and θ will show this?

- \bigcirc w^T = [1, 1, 1, 1, 1], θ = 3
- \bigcirc w^T = [1, 1, 0, 0, 0], θ = 5
- \bigcirc w^T = [0, 1, 1, 0, 1], θ = 1
- \bigcirc w^T = [1, 1, 1, 0, 0], θ = 3

Question 4 1 pts

Consider the following dataset:

10/21/2020 Quiz: Quiz 2

Example ID	Feature A	Feature B	Label
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	0
4	2	0	0
5	2	1	0
6	3	0	0
7	3	1	0

Each instance has two features, A (with 4 possible values), B (with 2 possible values), and a binary label. If you build a decision tree using ID3 and split on Feature A first, for the node representing (A=0), what is the next step?

O Do nothing, the algorithm stops
○ Split on B, IG=0.5
○ Split on B, IG=0
○ Split on B, IG=1

Question 5 1 pts

We want to learn a classifier over input that consists of a pair of character strings composed of lower case letters {a,b,c,...,z}. For example 'four seasons' or 'bill clinton' are possible input strings. We define two feature types:

- (i) "Whether or not the first character in the first string is a vowel" (This feature will be the x_1 in our feature vector.)
- (ii) "The first character in the second string is _" (These features will be the x_2 , x_3 , ..., x_{27} in our feature vector, corresponding to whether the first character in the second string is 'a', 'b', ..., 'z' respectively.)

10/21/2020 Quiz: Quiz 2

0,0,0,0,0,0	,0,0,0,0,0,0,0,0,0,0,0,1,0,0	,0,0,0,0,0,0	
0,0,0,0,0,0,0	,0,0,0,0,1,0,0,0,0,0,0,0,0,0	,0,0,0,0,0,1	
<u> </u>			
0,0,0,0,0,0,0	,0,0,0,0,1,0,0,0,0,0,0,0,0,0	,0,0,0,0,0,0	

Not saved

Submit Quiz