(1) This is a preview of the published version of the quiz

Started: Oct 18 at 5:44pm

Quiz Instructions

Question 1	1 pts			
We have examples in the form of 20 boolean variables, $\langle x_1, x_2, \ldots, x_{20} \rangle$, and know the true function $f(X)$ is in the class of monotone conjunctions. Say we have a "teacher" who knows the true function and must teach the true function through a set of examples; the true function is $y(X) = x_1 \wedge x_2 \wedge x_4 \wedge x_9 \wedge x_{13} \wedge x_{18}$. What is the minimum number of examples that are required to learn this function?				
○ 20				
○ 7				
○ 6				
○ 1				

	Question 2	2		1 pts		
Consider a function f that we are trying to learn over the feature space $\{x_1, x_2\}$. Are given the following examples:						
	x_1	x_2	y			
	0	0	0			
	0	1	1			

0

1

1

Quiz: Quiz 4

1

1

Perceptron algorithm can correctly identify a hyperplane for *f* that separates positive from negative examples.

Oracle

False

Question 3	1 pts
Suppose we have a weight vector $w \in R^2$ with input vectors $x_i \in R^2$ and	
$y_i \in \{-1,1\}$, let us initialize our 2-dimensional weight vector to be $w = egin{bmatrix} 0 \ 0 \end{bmatrix}$. Also,
suppose we only have 2 examples in our dataset: $igg(x_1=igg[-1],y_1=-1igg)$),
$igg(x_1=igg[-1]{-1},y_1=1igg)$. After training a model based on the Perceptron a	llgorithm
on the above dataset over 1 epoch, which option represents the correct final s the weight vector if the linear threshold function is $\hat{y} = sgn\{w^T \cdot x \geq 0\}$?	tate of
○ [-1,1]	
○ [0,-1]	
○ [-1,-1]	
○ [0,-2]	

Question 4	1 pts

We have previously introduced the SGD-LMS algorithm with an update rule of

$w_{t+1} = w_t + c \cdot (target_i - output_i) x_i$

The latter part, after the learning rate c, is also called the gradient g_t where t represents the t^{th} update, so the update rule can also be written as

 $w_{t+1} = w_t + c \cdot g_t$

Note that we were using a constant learning rate c. Instead, we now change the algorithm and use (1) a per-feature learning rate, and (2) an adaptive learning rate over time. Specifically, the learning rate at the t^{th} update now becomes a vector r_t , of the same dimensionality as w_t . We can then write the weight update rule as:

$$w_{t+1} = w_t + r_t^T g_t$$

where
$$r_t\left[j
ight] = rac{1}{\sqrt{\sum_{k=1}^t g_k[j]^2}}$$
 , $j \in [0, ext{dimensionality}(r_t))$

Which of the following statement is true?

(The notation x[i] represents the i^{th} element in vector x)

○ The learning rate for features that are more likely to be activated will be smaller over time

○ The learning rate for features that are more likely to be activated will be larger over time

Question 5	1 pts
Consider a perceptron algorithm performed over three training instances e_1 , e_2 in this order, where e_2 and e_3 are identical.	e_3, e_3
If the algorithm makes a mistake on e_2 and an update is performed to the weig vector, will the model correctly predict e_3 next?	ht
⊖ Yes	
⊖ No	

O Unknown

Submit Quiz

No new data to save. Last checked at 5:45pm