10/18/2020 Quiz: Quiz 5

Quiz 5

(!) This is a preview of the published version of the quiz

Started: Oct 18 at 5:45pm

Quiz Instructions

Question 1	1 pts
Let $(x_1,\ y_1),\ldots,(x_t,\ y_t)$ be a sequence of labeled examples where $x_i\in\mathbb{R}^n$	n,
$ x_i \leq 10$, and $y_i \in \{1, -1\}$ for all i . Suppose there exists some $u \in \mathbb{R}^n, u = 1$ such that	
$y_i(u^Tx_i) \geq 5$ for all i .	
Then Perceptron makes at most 100 mistakes on this example sequence.	
○ True	
○ False	

Question 2 1 pts

You are tasked with learning a new function over 5 Boolean variables. The function's output is either 0 or 1 and it is given to you that this function belongs to the at least *mof-n* class of functions. Your friend suggests that they have a good learning algorithm that can learn linear threshold units and suggests that you use it. Is this a good choice?

O No, since only neural networks can express the type of functions you care about
○ Yes, since all Boolean functions can be represented as LTUs.
○ Yes, since m-of-n functions can be represented as LTUs.
 No, since the class of LTUs over 5 variables may not express all the functions you care about.

Question 3 1 pts

Let $D=\{(x_1,\ y_1)\,,\ (x_2,\ y_2)\,,\ \dots\,,\ (x_n,\ y_n)\}$ be a dataset where each x_i is a feature vector and $y_i\in\{-1,\ 1\}$ be the corresponding binary label.

If D is linearly separable, which of the following conditions must be true? Select all that apply.

$$y_i(w^Tx_i + heta) \geq c$$

$$y_i(w^Tx_i+ heta)\geq 0$$

$$y_i(w^Tx_i+ heta)\leq 0$$

 \Box There exist exactly one weight vector \boldsymbol{w} and bias $\boldsymbol{\theta}$ such that for all \boldsymbol{i} ,

$$y_i(w^Tx_i+ heta)\geq 0$$

Question 4 1 pts

Regarding the learning algorithms that we have learned so far, which statement(s) of the following are true? Select all that apply.

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
☐ The final weight vector of the averaged perceptron algorithm weighs each of the earlier weight vectors by a weight that is inversely proportional to the "quality" of the weight vector
The perceptron algorithm updates its weight vector by adding an example (times some constant) to the current weight vector.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\Box When the examples presented to the Winnow algorithm are Boolean vectors, all coordinate of the weight vector w are being updated (changed to a different value) when the algorithm

Question 5 1 pts

Consider the following data points:

$$x_1 = [1, -1, 3]$$

$$x_2 = [4, \ 0, \ 0]$$

$$x_3=[0,\,1,\,-2]$$

$$x_4 = [2, \ 2, \ 0]$$

Assume we have a weight vector and bias

$$w=[1,-1,\ 0]$$

$$\theta = 2$$

The distance between a point $oldsymbol{x}$ and the hyperplane defined by $oldsymbol{w}$ and $oldsymbol{ heta}$ is

$$\frac{|w^Tx{+}\theta|}{||w||}$$

which example $x_i, i \in [1,4]$ above is the <code>farthest</code> to the hyperplane?

 $\bigcirc x_1$

Not saved Submit Quiz