Quiz 6

(1) This is a preview of the published version of the quiz

Started: Oct 26 at 10:15am

Quiz Instructions

Question 1	1 pts
Consider $X \in \mathbb{R}^d$ to be our instance space, and a kernel $K(x, y) = (x^T y + Assume that, rather than using this kernel, you will explicitly blow up the feat space to learn the same model as using the kernel. What is the minimal dimensionality of the resulting feature space (including one constant feature)$	ure
$\bigcirc 2^d + 2$	
$\bigcirc d \cdot (d-1)/2$	
$\bigcirc (d^2+3d+2)/2$	
$\bigcirc d^2 + 2$	

Question 2

1 pts

Given a kernel $k(x, y) = (x^T \cdot y + 4)^2$ where $x = [x_1, x_2]$ and $y = [y_1, y_2]$, which of the following shows that it is indeed a valid kernel?

 \bigcirc

Quiz: Quiz 6

$$k(x,y) = \langle \phi(x), \phi(y) \rangle \text{ where } \phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ 2\sqrt{2}x_1 \\ 2\sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \\ 4 \end{bmatrix}, \phi(y) = \begin{bmatrix} y_1^2 \\ y_2^2 \\ 2\sqrt{2}y_1 \\ 2\sqrt{2}y_1 \\ \sqrt{2}y_1y_2 \\ 4 \end{bmatrix}$$

$$(k(x,y) = \langle \phi(x), \phi(y) \rangle \text{ where } \phi(x) = \begin{bmatrix} 4x_1^2 \\ 4x_2^2 \\ \sqrt{2}x_1x_2 \\ 8x_1 \\ 8x_2 \\ 16 \end{bmatrix}, \phi(y) = \begin{bmatrix} 4y_1^2 \\ 4y_2^2 \\ \sqrt{2}y_1y_2 \\ 8y_1 \\ 8y_2 \\ 16 \end{bmatrix}$$

$$(k(x,y) = \langle \phi(x), \phi(y) \rangle \text{ where } \phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ 4 \end{bmatrix}, \phi(y) = \begin{bmatrix} y_1^2 \\ y_2^2 \\ 4 \end{bmatrix}$$

$$(None of the above.$$

Question 31 ptsLet
$$x, z \in R^n$$
. Then $K(x, z)$ is a valid kernel if there exists a transformation
 $\phi: R^n \to R^m, \phi(x), \phi(z) \in R^m$ such that: $\bigcirc K(x, z) = \phi(x)\phi(z)$ $\bigcirc K(x, z) = \phi(x)^T \phi(z)$ $\bigcirc K(x, z) = \phi(x)\phi(z)^T$ $\bigcirc K(x, z) = \phi(x) + \phi(z)$

Question 4	1 pts
If we want to map sample points to a very high-dimensional feature space, the trick can save us from having to compute those features explicitly, saving us a time.	
⊖ True	
⊖ False	

Question 5	1 pts
$K(x,z)=(x^Tz)^2$ is not a valid kernel.	
⊖ True	
⊖ False	