(!) Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.

											Poiı	nts 5	5 (🕑 Pub	lished	
[Details	Questions														
		Show Ques	tion Detai	ls												
-	₿ Qu	estion													1 p	ts
	What	statement(s) a	re true ab	out the exp	pectatio	on-max	kimizatio	on (EM)	algorith	nm?						
swer		It requires so	ome assum	ption abo	ut the ur	nderly	ring prob	ability	distribu	tion.						
	0	comparing to a nly find a local	gradient o optima w	escent alg nereas the	gorithm t gradien	that op nt desc	ptimizes cent will	the san always	ne obje find the	ctive f globa	functio al optir	n as El na.	M, E	EM may	,	
swer		The EM algor	rithm max	imizes a lo	ower bou	und of t	the mar	ginal lik	elihood	P(I) ; θ)					
swer																
	T o	he algorithm as bserved.	ssumes so	me that so	ome of th	he data	a genera	ited by t	he prol	babili	ty distr	ibutio	n is	not		

ii Question	1 pts

Quiz 11

	Question					
	Which statement(s) are true about the K-means algorithm?					
Iswer	It is a clustering algorithm.					
Iswer	It is an EM algorithm.					
Iswer	It assumes the data is from a mixture of Gaussian distributions.					
	It is a soft EM algorithm, where all possible hidden attributes are considered in the E step.					

: Question

1 pts

You are presented with a dataset that has hidden/missing variables that influences your data. You are asked to use Expectation Maximization algorithm to best capture the data.

How would you define the E and M in Expectation Maximization?

Iswer

Estimate the Missing/Latent Variables in the Dataset, Maximize the likelihood over the parameters in the model

\bigcirc

Estimate the number of Missing/Latent Variables in the Dataset, Maximize the likelihood over the parameters in the model

\bigcirc

Estimate likelihood over the parameters in the model, Maximize the number of Missing/Latent Variables in the Dataset

..

Estimate the likelihood over the parameters in the model, Maximize the number of parameters in the model

	:: Question	1 pts
	Imagine you have a party on Sunday and an exam on Monday. Too much food on Sunday could lead to lack of concentration on Monday. Consequence of reduced concentration could be stress with your roommate as you forgot to clear the room after dinner!	
	We can form the following graph from this:	
	where Z=Too much food on Sunday, Y= Reduced Concentration on Monday, X=Stress with your roommate.	
	Using the Bayesian Network Concepts chose the correct options:	
iswer	$\square P(X Y,Z) = P(X Y)$	
iswer	$\square P(Z X,Y) = P(Z Y)$	

