We have an attribute set made of two boolean features (A, B) where $A, B \in\{0,1\}$ with boolean labels $y \in\{0,1\}$. In our dataset we have 4 categories of data points with counts:
(i) $A=0, B=1, y=0: 30$ examples
(ii) $A=0, B=0, y=0: 60$ examples
(iii) $A=1, B=0, y=1: 15$ examples
(iv) $A=1, B=1, y=1$: 15 examples

We want to train a decision tree with this data. Look at the data, and determine which of A or B should be at the root of the tree. Then verify your answer by computing the information gain.

A, IG $=0.8112$
$B, I G=0.8112$
$\mathrm{A}, \mathrm{IG}=0.562$
$B, I G=0.562$

Question 2

The Boolean function, $\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge x_{4}$, is a linear function over the boolean variables, $x_{1}, x_{2}, x_{3}, x_{4}$. Which of the following is a correct "linear" representation for it?

$$
x 1+x 2+x 3+x 4 \geq 2
$$

```
x1 + x2 + x3 + x4 \geq4
```

$-x 1+x 2-x 3+x 4 \geq 4$

```
-x1 + x2 - x3 + x4 \geq2
```


Question 3

We want to show that the Boolean function

$$
y=1 \text { if and only if at least } 3 \text { out of } 5 \text { variables are } 1
$$

can be written as a linear threshold function $w^{T} \cdot x \geq \theta$, where $x \in\{0,1\}^{5}$ and $y \in\{0,1\}$. What values of w^{T} and θ will show this?

$$
\begin{aligned}
& w^{\wedge} T=[1,1,1,1,1], \theta=3 \\
& w^{\wedge} T=[1,1,0,0,0], \theta=5 \\
& w^{\wedge} T=[0,1,1,0,1], \theta=1 \\
& w^{\wedge} T=[1,1,1,0,0], \theta=3
\end{aligned}
$$

Question 4

Consider the following dataset:

Example ID	Feature A	Feature B	Label
0	0	0	0
1	0	1	1
2	1	0	0

3	1	1	0
4	2	0	0
5	2	1	0
6	3	0	0
7	3	1	0

Each instance has two features, A (with 4 possible values), B (with 2 possible values), and a binary label. If you build a decision tree using ID3 and split on Feature A first, for the node representing ($A=0$), what is the next step?

Do nothing, the algorithm stops

Split on B, IG=0.5

Split on B, IG=0

Split on B, IG=1

Question 5

We want to learn a classifier over input that consists of a pair of character strings composed of lower case letters \{a,b,c,.., z\}. For example 'four seasons' or 'bill clinton' are possible input strings. We define two feature types:
(i) "Whether or not the first character in the first string is a vowel" (This feature will be the x_{1} in our feature vector.)
(ii) "The first character in the second string is _" (These features will be the $\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{27}$ in our feature vector, corresponding to whether the first character in the second string is 'a', 'b', ..., 'z' respectively.)

Which of the following examples is the feature-based representation of 'aditi rao'?
(-) $1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0$
$0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1$

1, 1

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Quiz Score: 5 out of 5

