
CIS 4190/5190: Applied Machine Learning Fall 2022

Homework 2

Handed Out: September 14 Due: October 3, 8:00 p.m.

• You are encouraged to format your solutions using LATEX. Handwritten solutions are
permitted, but remember that you bear the risk that we may not be able to read your
work and grade it properly — we will not accept post hoc explanations for illegible
work. You will submit your solution manuscript for written HW 2 as a single PDF file.

• The homework is due at 8:00 PM on the due date. We will be using Gradescope
for collecting the homework assignments. Please submit your solution manuscript as a
PDF file via Gradescope. Post on Ed Discussion and contact the TAs if you are having
technical difficulties in submitting the assignment.

1 Multiple Choice & Written Questions

Note: You do not need to show work for multiple choice questions. If formatting your answer
in LATEX, use our LaTeX template hw2 template.tex (This is a read-only link. You’ll
need to make a copy before you can edit. Make sure you make only private copies.).

1. [Bias-Variance Tradeoff] (3pts) Suppose we have an L2-regularized linear regression
model, which has loss L(β) = 1

n

∑n
i=1(fβ(xi)− yi)

2 + λ∥β∥22. For each of the following,
indicate whether it tends to increase or decrease bias, and similarly for variance:

A) Increase the number of training examples n

B) Increase the regularization parameter λ

C) Increase the dimension d of the features ϕ(x) ∈ Rd

In addition, suppose you fit a model and find that it has low loss on the training data
but high loss on the test data; for each of the above three values n, λ, and d, indicate
whether you should increase or decrease it to reduce the test loss.

2. [Gradient Ascent] (2pts) A function L(β) is concave if F (β) := −L(β) is convex.
Gradient ascent takes steps of the form β ← β+ η · ∇βL(β) (whereas gradient descent
takes steps β ← β−η ·∇βL(x)). If L(β) is concave, what does gradient ascent converge
to? [Hint: Rewrite the gradient ascent formula in terms of F (β); what does it look
like?]

A) global maximum

B) global minimum

C) local minimum

D) local maximum
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https://www.overleaf.com/read/rqtfbwjpyfxy


3. [Regularization/Sparsity] (4 pts) In class, we demonstrated the intuition behind L1 and
L2 regularization through two dimensional ellipsoid visualizations. In this problem we
will take a different angle, and try to see why L1 regularization helps create sparsity
from the perspective of gradient descent.

A) (2pts) Write down the partial derivative of the L1 and L2 regularization terms with
respect to some weight βj (you can ignore the case βj = 0 where the gradient may

be undefined). [Recall that the L1 regularization term is R1(β) = λ
∑d

j′=1 |βj′|,
and the L2 regularization term is R2(β) = λ

∑d
j′=1 β

2
j′ .]

B) (2pts) Based on these results, which regularizer does a better job “pushing” βj

to zero? [Hint: Consider what happens when βj is already small. For simplicity,
you can assume that the partial derivative ∂

∂βj
of the MSE term is zero.]

4. [Linear Regression] (4 pts) Suppose the true function we are trying to approximate is
y = max{x, 0}. Furthermore, suppose we use unregularized linear regression with the
MSE loss function to fit a function y = ax + b. In the following scenarios, assume we
are always sampling training inputs x uniformly at random from the given intervals,
and assume we take n→∞, where n is the number of training examples.

A) (2pts) Suppose we train on points sampled from x ∈ [0, 1]. Then, what is the
learned model? Write out the coefficients a and b. What is the MSE on points
sampled from x ∈ [−1, 0]?

B) (2pts) Suppose we train on points sampled from x ∈ [−1, 0]. Then, what is the
learned model? Write out the coefficients a and b What is the MSE on points
sampled from x ∈ [0, 1]?

5. [Logistic Regression/Regularization] (4 pts) Suppose the input dimension is d = 2 (i.e.,

x =
[
x1 x2

]⊤ ∈ R2, and suppose we have the following true model and dataset:

𝑥!

𝑥"

Here, the green line depicts the true model y = 1(x1 + x2 ≥ 1), the circles are labeled
y = 1, and the solid squares are labeled y = 0. Recall that the accuracy is acc(β;Z) =

2



1
n

∑n
i=1 1 (yi = fβ(xi)), where fβ(x) = 1(β⊤x ≥ 0). Note that if we train a logistic

regression model without a feature map and with no regularization, then β =
[
1 1

]⊤
fits the training data with a single error, so its accuracy is 11

12
. By inspection, it is

impossible to do better, so the best possible accuracy we can achieve is 11
12
.

A) (1 pt) Suppose we train a logistic regression model with an intercept feature map
ϕ(x) =

[
x1 x2 1

]
(in this parameterization, β3 is the intercept term). What is

the best possible training accuracy of the model if we use no regularization?

B) (3 pts) Suppose we use the same intercept feature map as above, and furthermore,
we use regularization

R(β) = λ1β1 + λ2β2 + λ3β3.

What is the best possible training accuracy if (i) λ1 = λ2 = 0 and λ3 → ∞; (ii)
λ1 = λ3 = 0 and λ2 →∞; and (iii) λ2 = λ3 = 0, and λ1 →∞?

6. [Linear Regression; Mandatory for CIS 5190, Optional for CIS 4190] (6 pts) Recall
that a closed form solution for the linear regression parameters is β̂ = (X⊤X)−1X⊤Y ,
where Z = (X, Y ), and for a new example x, the predicted label is fβ̂(x) = β̂⊤x. Find
a function ki(x;X) depending only on x, X, and i such that

fβ̂(x) =
n∑

i=1

ki(x;X)yi.

In other words, the model fβ̂(x) can be expressed as a weighted combination of the
training labels yi.

2 Python Programming Questions

A IPython notebook is linked on the class website. It will tell you everything you need to
do, and provide starter code. Remember to include the plots and answer the questions in
your written homework submission!
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