Announcements

* Quiz 4 is due Monday, October 10 at 8pm
* Quiz 5 posted Today evening

* Project Teams Update

* Most likely allowing teams of 2 (will confirm shortly)
* Let us know if you prefer to split up and be reassigned
* Similar expectations on novel contributions but proportionally less work

e HW 3 Posted

 Due Wednesday, October 19 (2 weeks from today), lease start early!
* Also, HW 2 late deadline is tonight at 8pm!

Application of KNN

Define "middle ear" (x)

Question Answering:
Question Query

Barack Obama was
born in Hawaii. (x)

Fact Verification: Fact Query

The Divine
Comedy (x)

Jeopardy Question
Generation:
Answer Query

€ - e e e e e e e e -m—-m-————-———-—

End-to-End Backprop through q and pg

/ Query
Encoder

q(x)

Retriever Pn
(Non-Parametric)

Document

d(2)

Index

r4

4

Generator PB\

(Parametric)

Margin-
alize

J

The middle ear includes
the tympanic cavity and
the three ossicles.

()
Question Answering:
Answer Generation

supports (y)

Fact Verification:
Label Generation

This 14th century work
is divided into 3

sections: "Inferno",
"Purgatorio" &
"Paradiso" (y)

Question Generation

https://ai.facebook.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/

Recap: Ensembles

* Meta-algorithms for combining models to improve their performance

* For an ensemble learning algorithm, two design decisions:
e How to learn base models?
e How to combine learned base models?

Recap: Ensemble Design Decisions

* How to learn the base models f; (x), ..., fi (x)?
* Intuition: Need diversity
* Handcrafted models
* Bagging: Subsample examples and/or features
* Boosting: Iteratively upweight currently incorrect examples

e How to combine the learned base models?
* Average or majority vote

* Learn a model gﬁ(fl(x), ...,fk(x)) treating f1(x), ..., fr(x) as “features”

Recap: Ensembles of Decision Trees

Recap: Random Forests

* Ensemble strategy
* Bagging applied to unpruned decision trees

« Randomly subsample Vd features at each split
* Average random trees

* Intuition
* Unpruned decision trees have high variance
 Randomness enables us to “average away” excess variance
e Cannot “overfit” by using too many trees

Recap: Boosting

* Ensemble strategy
* Train depth-limited decision tree on weighted dataset
* |teratively upweight incorrectly classified examples

* Intuition
* Depth-limited decision trees have high bias
* Learning many models increases variance
* Can overfit by learning too many trees (but often does not in practice)

Lecture 10: Ensembles (Part 2)

CIS 4190/5190
Fall 2022

AdaBoost (Freund & Schapire 1997)

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
* Ensemble of models F(x) = X.I_; B¢ - f+(x)

AdaBoost

1 1 .
Wy « (—, ""ﬁ) (wq ; weight for (x;,v;))

n

fort €{1,..., T}
f; « Train(Z, w;)
€ < Error(ft: Z; Wt)

1 1—€
:Bt — _ln L
2

€t
Wep1i X Wy - e~ Beviltlxd (for all i)

return F () = sign(Xi=1 ¢ - f(x))

No v AwNPE

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

AdaBoost

1
W1 < (_) (wq ; weight for (x;,y;))

fort € {1,..,T}
fr < Traln(Z, w;)
e; < Error(f;, Z,w;)

oo pwn e

B; becomes largeras| . =~
€: becomes smaller | |

AdaBoost

Wep1i X Wy - e —Beyifexi) (for all i)

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,.., T}
3. f; « Traln(Z, W;)
4. € Error(ft,Z, W;)
5. [, « —ln -t
€t
6.
/.

return (1) = s1gn}&t_1ﬁt 70

Use convention y; € {—1,+1}
If correct (y; = f,(x;)) then multiply by e =P t=1
If incorrect (v; # f;(x;)) then multiply by et

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T3}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(X¢=q B¢ - (%))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexi) (for all i)

NS |V AN E

return () = SIgn(Xi=q ;" J: (X))

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

AdaBoost

wi (=, ., =) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexd) (for all i)

NS |V AN E

return () = SIgn(%{=q ;" /: (X))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

Wy < (1) (wq ; weight for (x;,y;))
fort € {1,..,T}

fr < Traln(Z ,Wi)

€ Error(ft,Z, W;)

1 1-— Et
[y < ln -

6 W . o l_/I_IL e :Bt Vi fr(x;) {fnr a)
7. return F(x) = 51gn(2 _1 B ft(x))

T~

final model is average of base models
weighted by their performance

Al e

AdaBoost Summary

* Strengths:
e Fast and simple to implement
* No hyperparameters (except for T, which is robust in practice)
* Very few assumptions on base models (except they should be low capacity)

 Weaknesses:
e Can perform poorly when there is insufficient data
* No way to parallelize
 Specific to classification!

Boosting as Gradient Descent

* Both algorithms: new model = old model 4+ update

 Gradient Descent:

Or41 =0 —a-VoL(6;; Z)

* Boosting:

Frp1(x) = Fo(x) + Braq - fraa(x)

* Here, Fi(x) = f=1 Bi - fi(x)

Boosting as Gradient Descent

* Assuming 5y = 1 for all t, then:

Fe(x;) + fee1(x;) = Frpq (%)

Boosting as Gradient Descent

* Assuming 5 = 1 for all ¢, then:
Fr(x) + fran(x) = Frypq () =y
* Rewriting this equation, we have

fee1(x;) = Frya1(xy) — Fe(x;) = y; — Fe(x;)
W_/

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

* In other words, at each step, boosting is training the next model f; . ;
to approximate the residual:

fer1(x;) = vy — Fe(x;)
—

“residuals”, i.e., error of the current model

* Idea: Train f;,; directly to predict residuals y; — F; (x;)

* This strategy works for regression as well!

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

Zorr = (20 i — Ft(xi))}:;l
* Step 2: Take

Fii1(x) = Fr(x) + fre1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Consider losses of the form
1 n
L(F;2) = —) L(F(x);)
i=1

* In other words, sum of individual label-level losses L(7; y) of a
prediction ¥ = F(x) if the ground truth label is y

* For example, L(7;y) = %(y — 9)? yields the MSE loss

Boosting as Gradient Descent

* Residuals are the gradient of the squared error L(y,§) = %(y — 9)%:

~

oL
T A~ (Ft(xl); yl) = Vi — Ft(xi) — reSiduali
oy

* For general L, instead of {(xi,yl- — Ft(xl-))}?=1 we can train f;,, on

(oL "
Liy1 =3\ Xi,— (9—37 (Fi(x;); i)
i=1

\

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

Liiq = {(xi,yi — Ft(xi))}?=1

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

(oL "
Liy1 =3\ Xi,— (3_37 (Fi(x;); i)
i=1

\

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Casts ensemble learning in the loss minimization framework
* Model family: Sum of base models Fr(x) = XI_, fi (x)
* Loss: Any differentiable loss expressed as

L(F; 2) =) L(FG,)

* Gradient boosting is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

* Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available

* Caveat: Inherits decision tree hyperparameters

* XGBoost is a very efficient implementation suitable for production use
* A popular library for gradient boosted decision trees
* Optimized for computational efficiency of training and testing
* Used in many competition winning entries, across many domains
 https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

Lecture 11: Neural Networks (Part 1)

CIS 4190/5190
Fall 2022

Model Family for Neural Networks

* Modern view: Not a single model family

* Instead, a flexible framework for designing model families

Simple Example of Model Family

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* Parameters: Matrix I/ € R*** and vector f € R*
e k is a hyperparameter called the number of hidden neurons

* Here, g: R — R is a given activation function

1 9(21)])
2 (23)

* Example: g(z) = d(z) (where o is the sigm0|d functlon)

* Itis applied componentwise in f, 5 (i.e., g

Simple Example of Model Family

* Feedforward neural network model family (for regression):

fw,p () =B g(Wx)

Simple Example of Model Family

* Feedforward neural network model family (for regression):
fwpC) =P g(Wx)

* What happens if g is linear? Recovers linear functions!

fwp() =BTgWx) = T Wx= pTx

* In general: Linear regression over “features” g(I// x)

Modern View

* Not a single model family

* Instead, a flexible framework for designing model families

Modern View

* Feedforward neural network model family:

fw,p () =B g(Wx)

Function composition:

Modern View fogx) =f(g()

* Feedforward neural network model family: /

fW,,B(x) = fﬁ (g(fw(x))) = fﬁ o g o fy(x)

Modern View

* Each layer is a parametric function fyy : R¥ — R

* Compose sequentially to form model family:
fw = me ©r 0 le
* Equivalently:

fur () = Fun (- (fir, @) -)

Modern View

* Each layer is a parametric function fyy : R¥ — R

* Can compose layers in other was, e.g., concatenation:
fwx) = fwl(x) D fW2 (x)

* Here, we have defined

Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)

Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)

<

Modern Vlew hidden layer

nodes or “units” (i.e., components of a layer)
input layer

\ '8 —"~ Y
X fw z(M) g z(?) fp y
| \
parameters (sometimes called “weights”)

output layer

Modern View

* Neural network with two hidden linear layers:

fWLWz;ﬁ(x) = f,B °d OfWZ °g Ofwl(x)

zM 7@ 73

<

Modern View

* Neural network with two hidden linear layers:

le,WZ,,B (x) = fﬁ (9 (fW2 (g (le (x)))))

ey

ie)

,3)

ey

Learn successively more “high-level” representations

<

What About Classification?

* Recall: For logistic regression, we choose the likelihood to be

1
1+eF'x

pp(Y=11x)=

What About Classification?

* Recall: For logistic regression, we choose the likelihood to be

pp(Y=11x)=0(f"x)

What About Classification?

* For binary classification:

pw Y =11x)=0a(Bf g(Wx))

What About Classification?

* For multi-class classification:

pwuY =ylx)= softmax(Ug(Wx))y

Neural Networks

* Pros
* “Meta” strategy: Enables users to design model family

* Design model families that capture symmetries/structure in the data (e.g.,
read a sentence forwards, translation invariance for images, etc.)

» “Representation learning” (automatically learn features for certain domains)
* More parameters!

* Cons
e Very hard to train! (Non-convex loss functions)
* Lots of parameters = need lots of data!
* Lots of design decisions

Common Architectures

Feed-forward NNs

Hidden

Input layer

layer

Z E
= =
e o
B
Convolutional NNs
4”: f ~~~s
Oggi /.'_.._- *:\\. —
I'I:)'nﬂI 3 ‘\\\ . \
L
sento -~ - -
molto - i 4""
bene ’a’ ——
EMO_SAD < -

Multilayer percep-
tron
with dropout

embeddings
for each word

convolutional layer
with
multiple filters

max over time
pooling

Always coupled with word embeddings...

Recurrent NNs

@

!

>
v

\J

v

v

!
;

()

Transformer

!
i

Qutput
Probabilities

— |

!
;

Positional
Encoding D @
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Positional
Encoding

