Announcements

- Quiz 4 is due Monday, October 10 at $8 p m$
- Quiz 5 posted Today evening
- Project Teams Update
- Most likely allowing teams of 2 (will confirm shortly)
- Let us know if you prefer to split up and be reassigned
- Similar expectations on novel contributions but proportionally less work
- HW 3 Posted
- Due Wednesday, October 19 (2 weeks from today), lease start early!
- Also, HW 2 late deadline is tonight at 8pm!

Application of KNN

Recap: Ensembles

- Meta-algorithms for combining models to improve their performance
- For an ensemble learning algorithm, two design decisions:
- How to learn base models?
- How to combine learned base models?

Recap: Ensemble Design Decisions

- How to learn the base models $f_{1}(x), \ldots, f_{k}(x)$?
- Intuition: Need diversity
- Handcrafted models
- Bagging: Subsample examples and/or features
- Boosting: Iteratively upweight currently incorrect examples
- How to combine the learned base models?
- Average or majority vote
- Learn a model $g_{\beta}\left(f_{1}(x), \ldots, f_{k}(x)\right)$ treating $f_{1}(x), \ldots, f_{k}(x)$ as "features"

Recap: Ensembles of Decision Trees

Recap: Random Forests

- Ensemble strategy

- Bagging applied to unpruned decision trees
- Randomly subsample \sqrt{d} features at each split
- Average random trees
- Intuition
- Unpruned decision trees have high variance
- Randomness enables us to "average away" excess variance
- Cannot "overfit" by using too many trees

Recap: Boosting

- Ensemble strategy
- Train depth-limited decision tree on weighted dataset
- Iteratively upweight incorrectly classified examples
- Intuition
- Depth-limited decision trees have high bias
- Learning many models increases variance
- Can overfit by learning too many trees (but often does not in practice)

Lecture 10: Ensembles (Part 2)

CIS 4190/5190

Fall 2022

AdaBoost (Freund \& Schapire 1997)

- Input
- Training dataset Z
- Learning algorithm Train($Z, w)$ that can handle weights w
- Hyperparameter T indicating number of models to train
- Output
- Ensemble of models $F(x)=\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$ 2. for $t \in\{1, \ldots, T\}$
2. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
3. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, \mathrm{Z}, w_{t}\right)$
4. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
5. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
6. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $\left.F(x)=\operatorname{sign} y \sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

Use convention $y_{i} \in\{-1,+1\}$
If correct ($y_{i}=f_{t}\left(x_{i}\right)$) then multiply by $e^{-\beta_{t}}$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$ 2. for $t \in\{1, \ldots, T\}$
$\begin{array}{ll}\text { 3. } & f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right) \\ \text { 4. } & \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)\end{array}$
2. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
3. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
4. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$ 2. for $t \in\{1, \ldots, T\}$
2. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
3. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, \mathrm{Z}, w_{t}\right)$
4. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
5. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
6. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{e_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. \quad return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$
final model is average of base models
weighted by their performance

AdaBoost Summary

- Strengths:
- Fast and simple to implement
- No hyperparameters (except for T, which is robust in practice)
- Very few assumptions on base models (except they should be low capacity)
- Weaknesses:
- Can perform poorly when there is insufficient data
- No way to parallelize
- Specific to classification!

Boosting as Gradient Descent

- Both algorithms: new model $=$ old model + update
- Gradient Descent:

$$
\theta_{t+1}=\theta_{t}-\alpha \cdot \nabla_{\theta} L\left(\theta_{t} ; Z\right)
$$

- Boosting:

$$
F_{t+1}(x)=F_{t}(x)+\beta_{t+1} \cdot f_{t+1}(x)
$$

- Here, $F_{t}(x)=\sum_{i=1}^{t} \beta_{i} \cdot f_{i}(x)$

Boosting as Gradient Descent

- Assuming $\beta_{t}=1$ for all t, then:

$$
F_{t}\left(x_{i}\right)+f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right)
$$

Boosting as Gradient Descent

- Assuming $\beta_{t}=1$ for all t, then:

$$
F_{t}\left(x_{i}\right)+f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right) \approx y_{i}
$$

- Rewriting this equation, we have

$$
f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right)-F_{t}\left(x_{i}\right) \approx \underbrace{y_{i}-F_{t}\left(x_{i}\right)}_{\text {"residuals", i.e., error of the current model }}
$$

Boosting as Gradient Descent

- In other words, at each step, boosting is training the next model f_{t+1} to approximate the residual:

$$
\begin{aligned}
& f_{t+1}\left(x_{i}\right) \approx \underbrace{y_{i}-F_{t}\left(x_{i}\right)}_{\text {"residuals", i.e., error of the current model }}
\end{aligned}
$$

- Idea: $\operatorname{Train} f_{t+1}$ directly to predict residuals $y_{i}-F_{t}\left(x_{i}\right)$
- This strategy works for regression as well!

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Consider losses of the form

$$
L(F ; Z)=\frac{1}{n} \sum_{i=1}^{n} \tilde{L}\left(F\left(x_{i}\right) ; y_{i}\right)
$$

- In other words, sum of individual label-level losses $\tilde{L}(\hat{y} ; y)$ of a prediction $\hat{y}=F(x)$ if the ground truth label is y
- For example, $\tilde{L}(\hat{y} ; y)=\frac{1}{2}(y-\hat{y})^{2}$ yields the MSE loss

Boosting as Gradient Descent

- Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y})=\frac{1}{2}(y-\hat{y})^{2}$:

$$
-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)=y_{i}-F_{t}\left(x_{i}\right)=\text { residual }_{\mathbf{i}}
$$

- For general \tilde{L}, instead of $\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ we can train f_{t+1} on

$$
Z_{t+1}=\left\{\left(x_{i},-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)\right)\right\}_{i=1}^{n}
$$

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i},-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Casts ensemble learning in the loss minimization framework
- Model family: Sum of base models $F_{T}(x)=\sum_{t=1}^{T} f_{t}(x)$
- Loss: Any differentiable loss expressed as

$$
L(F ; Z)=\sum_{i=1}^{n} \tilde{L}\left(F\left(x_{i}\right), y_{i}\right)
$$

- Gradient boosting is a general paradigm for training ensembles with specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

- Gradient boosting with depth-limited decision trees (e.g., depth 3) is one of the most powerful off-the-shelf classifiers available
- Caveat: Inherits decision tree hyperparameters
- XGBoost is a very efficient implementation suitable for production use
- A popular library for gradient boosted decision trees
- Optimized for computational efficiency of training and testing
- Used in many competition winning entries, across many domains
- https://xgboost.readthedocs.io

Lecture 11: Neural Networks (Part 1)

CIS 4190/5190

Fall 2022

Model Family for Neural Networks

- Modern view: Not a single model family
- Instead, a flexible framework for designing model families

Simple Example of Model Family

- Feedforward neural network model family (for regression):

$$
f_{W, \beta}(x)=\beta^{\top} g(W x)
$$

- Parameters: Matrix $W \in \mathbb{R}^{d \times k}$ and vector $\beta \in \mathbb{R}^{k}$
- k is a hyperparameter called the number of hidden neurons
- Here, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a given activation function
- It is applied componentwise in $f_{W, \beta}$ (i.e., $\left.g\left(\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]\right)=\left[\begin{array}{l}g\left(z_{1}\right) \\ g\left(z_{2}\right)\end{array}\right]\right)$
- Example: $g(z)=\sigma(z)$ (where σ is the sigmoid function)

Simple Example of Model Family

- Feedforward neural network model family (for regression):

$$
f_{W, \beta}(x)=\beta^{\top} g(W x)
$$

Simple Example of Model Family

- Feedforward neural network model family (for regression):

$$
f_{W, \beta}(x)=\beta^{\top} g(W x)
$$

- What happens if g is linear? Recovers linear functions!

$$
f_{W, \beta}(x)=\beta^{\top} g(W x)=\beta^{\top} W x=\tilde{\beta}^{\top} x
$$

- In general: Linear regression over "features" $g(W x)$

Modern View

- Not a single model family
- Instead, a flexible framework for designing model families

Modern View

- Feedforward neural network model family:

$$
f_{W, \beta}(x)=\beta^{\top} g(W x)
$$

Function composition:

Modern View

$$
f \circ g(x)=f(g(x))
$$

- Feedforward neural network model family:

$$
f_{W, \beta}(x)=f_{\beta}\left(g\left(f_{W}(x)\right)\right)=f_{\beta} \circ g \circ f_{W}(x)
$$

Modern View

- Each layer is a parametric function $f_{W_{j}}: \mathbb{R}^{k} \rightarrow R^{h}$
- Compose sequentially to form model family:

$$
f_{W}=f_{W_{m}} \circ \cdots \circ f_{W_{1}}
$$

- Equivalently:

$$
f_{W}(x)=f_{W_{m}}\left(\ldots\left(f_{W_{1}}(x)\right) \ldots\right)
$$

Modern View

- Each layer is a parametric function $f_{W_{j}}: \mathbb{R}^{k} \rightarrow R^{h}$
- Can compose layers in other was, e.g., concatenation:

$$
f_{W}(x)=f_{W_{1}}(x) \oplus f_{W_{2}}(x)
$$

- Here, we have defined

$$
\left[\begin{array}{lll}
z_{1} & \cdots & z_{d}
\end{array}\right]^{\top} \oplus\left[\begin{array}{lll}
z_{1}^{\prime} & \cdots & z_{d^{\prime}}^{\prime}
\end{array}\right]^{\top}=\left[\begin{array}{llllll}
z_{1} & \cdots & z_{d} & z_{1}^{\prime} & \cdots & z_{d^{\prime}}^{\prime}
\end{array}\right]^{\top}
$$

Modern View

- Feedforward neural network model family (for regression):

$$
f_{W, \beta}(x)=f_{\beta} \circ g \circ f_{W}(x)
$$

Modern View

- Feedforward neural network model family (for regression):

$$
f_{W, \beta}(x)=f_{\beta} \circ g \circ f_{W}(x)
$$

Modern View

hidden layer input layer

parameters (sometimes called "weights")

Modern View

- Neural network with two hidden linear layers:

$$
f_{W_{1}, W_{2}, \beta}(x)=f_{\beta} \circ g \circ f_{W_{2}} \circ g \circ f_{W_{1}}(x)
$$

Modern View

- Neural network with two hidden linear layers:

$$
f_{W_{1}, W_{2}, \beta}(x)=f_{\beta}\left(g\left(f_{W_{2}}\left(g\left(f_{W_{1}}(x)\right)\right)\right)\right)
$$

What About Classification?

- Recall: For logistic regression, we choose the likelihood to be

$$
p_{\beta}(Y=1 \mid x)=\frac{1}{1+e^{-\beta^{\top} x}}
$$

What About Classification?

- Recall: For logistic regression, we choose the likelihood to be

$$
p_{\beta}(Y=1 \mid x)=\sigma\left(\beta^{\top} x\right)
$$

What About Classification?

- For binary classification:

$$
p_{W, \beta}(Y=1 \mid x)=\sigma\left(\beta^{\top} g(W x)\right)
$$

What About Classification?

- For multi-class classification:

$$
p_{W, U}(Y=y \mid x)=\operatorname{softmax}(U g(W x))_{y}
$$

Neural Networks

- Pros

- "Meta" strategy: Enables users to design model family
- Design model families that capture symmetries/structure in the data (e.g., read a sentence forwards, translation invariance for images, etc.)
- "Representation learning" (automatically learn features for certain domains)
- More parameters!
- Cons
- Very hard to train! (Non-convex loss functions)
- Lots of parameters \rightarrow need lots of data!
- Lots of design decisions

Common Architectures

Convolutional NNs

Always coupled with word embeddings...

Recurrent NNs

Transformer

