Announcements

- Quiz 4 is due Monday, October 10 at 8pm
 - Quiz 5 posted Today evening

• Project Teams Update

- Most likely allowing teams of 2 (will confirm shortly)
- Let us know if you prefer to split up and be reassigned
- Similar expectations on novel contributions but proportionally less work

• HW 3 Posted

- Due Wednesday, October 19 (2 weeks from today), lease start early!
- Also, HW 2 late deadline is tonight at 8pm!

Application of KNN

https://ai.facebook.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/

Recap: Ensembles

- Meta-algorithms for combining models to improve their performance
- For an ensemble learning algorithm, two design decisions:
 - How to learn base models?
 - How to combine learned base models?

Recap: Ensemble Design Decisions

- How to learn the base models $f_1(x), \dots, f_k(x)$?
 - Intuition: Need diversity
 - Handcrafted models
 - Bagging: Subsample examples and/or features
 - **Boosting:** Iteratively upweight currently incorrect examples
- How to combine the learned base models?
 - Average or majority vote
 - Learn a model $g_{\beta}(f_1(x), \dots, f_k(x))$ treating $f_1(x), \dots, f_k(x)$ as "features"

Recap: Ensembles of Decision Trees

Recap: Random Forests

• Ensemble strategy

- Bagging applied to unpruned decision trees
- Randomly subsample \sqrt{d} features at each split
- Average random trees

Intuition

- Unpruned decision trees have high variance
- Randomness enables us to "average away" excess variance
- Cannot "overfit" by using too many trees

Recap: Boosting

• Ensemble strategy

- Train depth-limited decision tree on weighted dataset
- Iteratively upweight incorrectly classified examples

Intuition

- Depth-limited decision trees have high bias
- Learning many models increases variance
- Can overfit by learning too many trees (but often does not in practice)

Lecture 10: Ensembles (Part 2)

CIS 4190/5190 Fall 2022

AdaBoost (Freund & Schapire 1997)

• Input

- Training dataset Z
- Learning algorithm Train(Z, w) that can handle weights w
- Hyperparameter T indicating number of models to train

• Output

• Ensemble of models $F(x) = \sum_{t=1}^{T} \beta_t \cdot f_t(x)$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. **for** $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. **return** $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$
Use convention $y_i \in \{-1, +1\}$
If correct $(y_i = f_t(x_i))$ then multiply by $e^{-\beta_t}$
If incorrect $(y_i \neq f_t(x_i))$ then multiply by e^{β_t}

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 2$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 2$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 3$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

$$t = 3$$

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. **for** $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. **return** $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$

t = T

1.
$$w_1 \leftarrow \left(\frac{1}{n}, \dots, \frac{1}{n}\right) (w_{1,i} \text{ weight for } (x_i, y_i))$$

2. for $t \in \{1, \dots, T\}$
3. $f_t \leftarrow \text{Train}(Z, w_t)$
4. $\epsilon_t \leftarrow \text{Error}(f_t, Z, w_t)$
5. $\beta_t \leftarrow \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$
6. $w_{t+1,i} \propto w_{t,i} \cdot e^{-\beta_t \cdot y_i \cdot f_t(x_i)} \text{ (for all } i)$
7. return $F(x) = \text{sign}(\sum_{t=1}^T \beta_t \cdot f_t(x))$
final model is average of base models

weighted by their performance

AdaBoost Summary

• Strengths:

- Fast and simple to implement
- No hyperparameters (except for *T*, which is robust in practice)
- Very few assumptions on base models (except they should be low capacity)

• Weaknesses:

- Can perform poorly when there is insufficient data
- No way to parallelize
- Specific to classification!

- Both algorithms: new model = old model + update
- Gradient Descent:

$$\theta_{t+1} = \theta_t - \alpha \cdot \nabla_{\theta} L(\theta_t; Z)$$

• Boosting:

$$F_{t+1}(x) = F_t(x) + \beta_{t+1} \cdot f_{t+1}(x)$$

• Here, $F_t(x) = \sum_{i=1}^t \beta_i \cdot f_i(x)$

• Assuming $\beta_t = 1$ for all t, then:

 $F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i)$

• Assuming $\beta_t = 1$ for all t, then:

$$F_t(x_i) + f_{t+1}(x_i) = F_{t+1}(x_i) \approx y_i$$

• Rewriting this equation, we have

$$f_{t+1}(x_i) = F_{t+1}(x_i) - F_t(x_i) \approx y_i - F_t(x_i)$$

"residuals", i.e., error of the current model

• In other words, at each step, boosting is training the next model f_{t+1} to approximate the residual:

$$f_{t+1}(x_i) \approx \underbrace{y_i - F_t(x_i)}_{}$$

"residuals", i.e., error of the current model

- Idea: Train f_{t+1} directly to predict residuals $y_i F_t(x_i)$
- This strategy works for regression as well!

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

Consider losses of the form

$$L(F;Z) = \frac{1}{n} \sum_{i=1}^{n} \tilde{L}(F(x_i); y_i)$$

- In other words, sum of individual label-level losses $\tilde{L}(\hat{y}; y)$ of a prediction $\hat{y} = F(x)$ if the ground truth label is y
- For example, $\tilde{L}(\hat{y}; y) = \frac{1}{2}(y \hat{y})^2$ yields the MSE loss

• Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$:

$$-\frac{\partial \tilde{L}}{\partial \hat{y}}(F_t(x_i); y_i) = y_i - F_t(x_i) = \text{residual}_i$$

• For general \tilde{L} , instead of $\{(x_i, y_i - F_t(x_i))\}_{i=1}^n$ we can train f_{t+1} on

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Algorithm: For each $t \in \{1, \dots, T\}$:

• Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \{ (x_i, y_i - F_t(x_i)) \}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Algorithm: For each $t \in \{1, ..., T\}$:
 - Step 1: Train f_{t+1} using dataset

$$Z_{t+1} = \left\{ \left(x_i, -\frac{\partial \tilde{L}}{\partial \hat{y}} \left(F_t(x_i); y_i \right) \right) \right\}_{i=1}^n$$

• Step 2: Take

$$F_{t+1}(x) = F_t(x) + f_{t+1}(x)$$

• Return the final model F_T

- Casts ensemble learning in the loss minimization framework
 - Model family: Sum of base models $F_T(x) = \sum_{t=1}^T f_t(x)$
 - Loss: Any differentiable loss expressed as

$$L(F; \mathbf{Z}) = \sum_{i=1}^{n} \tilde{\mathbf{L}}(F(\mathbf{x}_i), \mathbf{y}_i)$$

• Gradient boosting is a general paradigm for training ensembles with specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

- Gradient boosting with depth-limited decision trees (e.g., depth 3) is one of the most powerful off-the-shelf classifiers available
 - Caveat: Inherits decision tree hyperparameters
- XGBoost is a very efficient implementation suitable for production use
 - A popular library for gradient boosted decision trees
 - Optimized for computational efficiency of training and testing
 - Used in many competition winning entries, across many domains
 - <u>https://xgboost.readthedocs.io</u>

Lecture 11: Neural Networks (Part 1)

CIS 4190/5190 Fall 2022

Model Family for Neural Networks

- Modern view: Not a single model family
- Instead, a **flexible framework** for **designing** model families

Simple Example of Model Family

• Feedforward neural network model family (for regression):

 $f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$

- **Parameters:** Matrix $W \in \mathbb{R}^{d \times k}$ and vector $\beta \in \mathbb{R}^k$
 - k is a hyperparameter called the **number of hidden neurons**
- Here, $g: \mathbb{R} \to \mathbb{R}$ is a given **activation function**
 - It is applied componentwise in $f_{W,\beta}$ (i.e., $g\left(\begin{bmatrix}z_1\\z_2\end{bmatrix}\right) = \begin{bmatrix}g(z_1)\\g(z_2)\end{bmatrix}$)
 - **Example:** $g(z) = \sigma(z)$ (where σ is the sigmoid function)

Simple Example of Model Family

• Feedforward neural network model family (for regression):

 $f_{W,\beta}(x) = \beta^{\top} g(Wx)$

Simple Example of Model Family

• Feedforward neural network model family (for regression):

 $f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$

• What happens if g is linear? Recovers linear functions!

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx) = \beta^{\mathsf{T}} Wx = \tilde{\beta}^{\mathsf{T}} x$$

• In general: Linear regression over "features" g(Wx)

- Not a single model family
- Instead, a **flexible framework** for **designing** model families

• Feedforward neural network model family:

 $f_{W,\beta}(x) = \beta^{\top} g(Wx)$

• Feedforward neural network model family:

$$f_{W,\beta}(x) = f_{\beta}\left(g(f_W(x))\right) = f_{\beta} \circ g \circ f_W(x)$$

Function composition:

 $f \circ g(x) = f(g(x))$

- Each **layer** is a parametric function $f_{W_j} : \mathbb{R}^k \to \mathbb{R}^h$
- Compose sequentially to form model family:

$$f_W = f_{W_m} \circ \cdots \circ f_{W_1}$$

• Equivalently:

$$f_W(x) = f_{W_m}\left(\dots\left(f_{W_1}(x)\right)\dots\right)$$

- Each **layer** is a parametric function $f_{W_j}: \mathbb{R}^k \to \mathbb{R}^h$
- Can compose layers in other was, e.g., concatenation:

$$f_W(x) = f_{W_1}(x) \oplus f_{W_2}(x)$$

• Here, we have defined

$$\begin{bmatrix} z_1 & \cdots & z_d \end{bmatrix}^\top \bigoplus \begin{bmatrix} z'_1 & \cdots & z'_{d'} \end{bmatrix}^\top = \begin{bmatrix} z_1 & \cdots & z_d & z'_1 & \cdots & z'_{d'} \end{bmatrix}^\top$$

• Feedforward neural network model family (for regression):

$$f_{W,\beta}(x) = f_{\beta} \circ g \circ f_{W}(x)$$

• Feedforward neural network model family (for regression):

$$f_{W,\beta}(x) = f_{\beta} \circ g \circ f_{W}(x)$$

• Neural network with two hidden linear layers:

$$f_{W_1,W_2,\beta}(x) = f_\beta \circ g \circ f_{W_2} \circ g \circ f_{W_1}(x)$$

• Neural network with two hidden linear layers:

$$f_{W_1,W_2,\beta}(x) = f_{\beta}\left(g\left(f_{W_2}\left(g\left(f_{W_1}(x)\right)\right)\right)\right)$$

Learn successively more "high-level" representations

• **Recall:** For logistic regression, we choose the likelihood to be

$$p_{\beta}(Y=1 \mid x) = \frac{1}{1+e^{-\beta^{\mathsf{T}}x}}$$

• Recall: For logistic regression, we choose the likelihood to be

$$p_{\beta}(Y = 1 \mid x) = \sigma(\beta^{\top}x)$$

• For binary classification:

$$p_{W,\beta}(Y=1 \mid x) = \sigma(\beta^{\top}g(Wx))$$

• For multi-class classification:

$$p_{W,U}(Y = y \mid x) = \operatorname{softmax}(Ug(Wx))_{y}$$

Neural Networks

• Pros

- "Meta" strategy: Enables users to design model family
- Design model families that capture **symmetries/structure** in the data (e.g., read a sentence forwards, translation invariance for images, etc.)
- "Representation learning" (automatically learn features for certain domains)
- More parameters!

• Cons

- Very hard to train! (Non-convex loss functions)
- Lots of parameters \rightarrow need lots of data!
- Lots of design decisions

Common Architectures

Convolutional NNs

Always coupled with word embeddings...

