
Announcements

• Quiz 4 is due Monday, October 10 at 8pm
• Quiz 5 posted Today evening

• Project Teams Update
• Most likely allowing teams of 2 (will confirm shortly)
• Let us know if you prefer to split up and be reassigned
• Similar expectations on novel contributions but proportionally less work

• HW 3 Posted
• Due Wednesday, October 19 (2 weeks from today), lease start early!
• Also, HW 2 late deadline is tonight at 8pm!

Application of KNN

h"ps://ai.facebook.com/blog/retrieval-augmented-genera:on-streamlining-the-crea:on-of-intelligent-natural-language-processing-models/

Recap: Ensembles

• Meta-algorithms for combining models to improve their performance

• For an ensemble learning algorithm, two design decisions:
• How to learn base models?
• How to combine learned base models?

Recap: Ensemble Design Decisions

• How to learn the base models 𝑓! 𝑥 ,… , 𝑓" 𝑥 ?
• Intuition: Need diversity
• Handcrafted models
• Bagging: Subsample examples and/or features
• Boosting: Iteratively upweight currently incorrect examples

• How to combine the learned base models?
• Average or majority vote
• Learn a model 𝑔! 𝑓" 𝑥 ,… , 𝑓# 𝑥 treating 𝑓" 𝑥 ,… , 𝑓# 𝑥 as “features”

Recap: Ensembles of Decision Trees

…

Recap: Random Forests

• Ensemble strategy
• Bagging applied to unpruned decision trees
• Randomly subsample 𝑑 features at each split
• Average random trees

• IntuiEon
• Unpruned decision trees have high variance
• Randomness enables us to “average away” excess variance
• Cannot “overfit” by using too many trees

Recap: Boosting

• Ensemble strategy
• Train depth-limited decision tree on weighted dataset
• Iteratively upweight incorrectly classified examples

• Intuition
• Depth-limited decision trees have high bias
• Learning many models increases variance
• Can overfit by learning too many trees (but often does not in practice)

Lecture 10: Ensembles (Part 2)

CIS 4190/5190
Fall 2022

AdaBoost (Freund & Schapire 1997)

• Input
• Training dataset 𝑍
• Learning algorithm Train 𝑍,𝑤 that can handle weights 𝑤
• Hyperparameter 𝑇 indicating number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = ∑$%"& 𝛽$ ⋅ 𝑓$ 𝑥

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –

𝑡 = 1

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –

𝑡 = 1
𝛽$ becomes larger as
𝜖$ becomes smaller

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –

𝑡 = 1
Use convention 𝑦' ∈ −1,+1
If correct (𝑦' = 𝑓$ 𝑥') then multiply by 𝑒(!!
If incorrect (𝑦' ≠ 𝑓$ 𝑥') then multiply by 𝑒!!

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –
+–

𝑡 = 2

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –
+–

𝑡 = 2

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+

+

+
+

+

+

+ +
+

+ +

𝑡 = 𝑇

AdaBoost

1. 𝑤! ←
!
#
, … , !

#
(𝑤!,% weight for 𝑥% , 𝑦%)

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓& ← Train 𝑍, 𝑤&
4. 𝜖& ← Error 𝑓& , 𝑍, 𝑤&
5. 𝛽& ←

!
'
ln !()!

)!
6. 𝑤&*!,% ∝ 𝑤&,% ⋅ 𝑒(+!⋅-"⋅.! /" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑&0!1 𝛽& ⋅ 𝑓&(𝑥))

+

+

+
+

+

+

+ +
+

+ +

final model is average of base models
weighted by their performance

AdaBoost Summary

• Strengths:
• Fast and simple to implement
• No hyperparameters (except for 𝑇, which is robust in practice)
• Very few assumptions on base models (except they should be low capacity)

• Weaknesses:
• Can perform poorly when there is insufficient data
• No way to parallelize
• Specific to classification!

Boosting as Gradient Descent

• Both algorithms: newmodel = old model + update

• Gradient Descent:

𝜃&*! = 𝜃& − 𝛼 ⋅ ∇2𝐿 𝜃&; 𝑍

• Boosting:

𝐹&*! 𝑥 = 𝐹& 𝑥 + 𝛽&*! ⋅ 𝑓&*! 𝑥

• Here, 𝐹& 𝑥 = ∑%0!& 𝛽% ⋅ 𝑓% 𝑥

Boosting as Gradient Descent

• Assuming 𝛽& = 1 for all 𝑡, then:

𝐹& 𝑥% + 𝑓&*! 𝑥% = 𝐹&*! 𝑥% ≈ 𝑦%

Boosting as Gradient Descent

• Assuming 𝛽& = 1 for all 𝑡, then:

𝐹& 𝑥% + 𝑓&*! 𝑥% = 𝐹&*! 𝑥% ≈ 𝑦%

• RewriLng this equaLon, we have

𝑓&*! 𝑥% = 𝐹&*! 𝑥% − 𝐹& 𝑥% ≈ 𝑦% − 𝐹& 𝑥%

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

• In other words, at each step, boosting is training the next model 𝑓&*!
to approximate the residual:

𝑓&*! 𝑥% ≈ 𝑦% − 𝐹& 𝑥%

• Idea: Train 𝑓&*! directly to predict residuals 𝑦% − 𝐹& 𝑥%

• This strategy works for regression as well!

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$)" using dataset

𝑍&*! = 𝑥% , 𝑦% − 𝐹& 𝑥% %0!
#

• Step 2: Take

𝐹&*! 𝑥 = 𝐹& 𝑥 + 𝑓&*! 𝑥

• Return the final model 𝐹1

Boosting as Gradient Descent

• Consider losses of the form

𝐿 𝐹; 𝑍 =
1
𝑛
S
%0!

#

T𝐿 𝐹 𝑥% ; 𝑦%

• In other words, sum of individual label-level losses T𝐿 U𝑦; 𝑦 of a
predicLon U𝑦 = 𝐹 𝑥 if the ground truth label is 𝑦

• For example, T𝐿 U𝑦; 𝑦 = !
'
𝑦 − U𝑦 ' yields the MSE loss

Boosting as Gradient Descent

• Residuals are the gradient of the squared error T𝐿 𝑦, U𝑦 = !
'
𝑦 − U𝑦 ':

−
𝜕T𝐿
𝜕 U𝑦

𝐹& 𝑥% ; 𝑦% = 𝑦% − 𝐹& 𝑥% = residual3

• For general T𝐿, instead of 𝑥% , 𝑦% − 𝐹& 𝑥% %0!
#

we can train 𝑓&*! on

𝑍&*! = 𝑥% , −
𝜕T𝐿
𝜕 U𝑦

𝐹& 𝑥% ; 𝑦%
%0!

#

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$)" using dataset

𝑍&*! = 𝑥% , 𝑦% − 𝐹& 𝑥% %0!
#

• Step 2: Take

𝐹&*! 𝑥 = 𝐹& 𝑥 + 𝑓&*! 𝑥

• Return the final model 𝐹1

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓$)" using dataset

𝑍&*! = 𝑥% , −
𝜕T𝐿
𝜕 U𝑦

𝐹& 𝑥% ; 𝑦%
%0!

#

• Step 2: Take

𝐹&*! 𝑥 = 𝐹& 𝑥 + 𝑓&*! 𝑥

• Return the final model 𝐹1

Boosting as Gradient Descent

• Casts ensemble learning in the loss minimizaEon framework
• Model family: Sum of base models 𝐹& 𝑥 = ∑$%"& 𝑓$ 𝑥
• Loss: Any differenaable loss expressed as

𝐿 𝐹; 𝑍 =S
%0!

#

T𝐿 𝐹 𝑥% , 𝑦%

• Gradient boosLng is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees
• Optimized for computational efficiency of training and testing
• Used in many competition winning entries, across many domains
• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

Lecture 11: Neural Networks (Part 1)

CIS 4190/5190
Fall 2022

Model Family for Neural Networks

• Modern view: Not a single model family

• Instead, a flexible framework for designing model families

Simple Example of Model Family

• Feedforward neural network model family (for regression):

𝑓4,+ 𝑥 = 𝛽5𝑔 𝑊𝑥

• Parameters: Matrix 𝑊 ∈ ℝ6×" and vector 𝛽 ∈ ℝ"
• 𝑘 is a hyperparameter called the number of hidden neurons

• Here, 𝑔:ℝ → ℝ is a given acEvaEon funcEon

• It is applied componentwise in 𝑓*,! (i.e., 𝑔
𝑧"
𝑧, = 𝑔 𝑧"

𝑔 𝑧,
)

• Example: 𝑔 𝑧 = 𝜎 𝑧 (where 𝜎 is the sigmoid funcaon)

Simple Example of Model Family

• Feedforward neural network model family (for regression):

𝑓4,+ 𝑥 = 𝛽5𝑔 𝑊𝑥

𝑥!

𝑥"

𝑥#

𝑧! = 𝑔 𝑤!$𝑥

𝑧" = 𝑔 𝑤"$𝑥

𝑧# = 𝑔 𝑤#$𝑥

𝑧% = 𝑔 𝑤%$𝑥

𝛽$𝑧

Simple Example of Model Family

• Feedforward neural network model family (for regression):

𝑓4,+ 𝑥 = 𝛽5𝑔 𝑊𝑥

• What happens if 𝑔 is linear? Recovers linear functions!

𝑓4,+ 𝑥 = 𝛽5𝑔 𝑊𝑥 = 𝛽5𝑊𝑥 = T𝛽5𝑥

• In general: Linear regression over “features” 𝑔 𝑊𝑥

Modern View

• Not a single model family

• Instead, a flexible framework for designing model families

Modern View

• Feedforward neural network model family:

𝑓4,+ 𝑥 = 𝛽5𝑔 𝑊𝑥

𝑥!

𝑥"

𝑥#

𝑧! = 𝑔 𝑤!$𝑥

𝑧" = 𝑔 𝑤"$𝑥

𝑧# = 𝑔 𝑤#$𝑥

𝑧% = 𝑔 𝑤%$𝑥

𝛽$𝑧

Modern View

• Feedforward neural network model family:

𝑓4,+ 𝑥 = 𝑓+ 𝑔 𝑓4 𝑥 = 𝑓+ ∘ 𝑔 ∘ 𝑓4 𝑥

𝑥!

𝑥"

𝑥#

𝑧!
(!) = 𝑤!$𝑥

𝑧"
! = 𝑤"$𝑥

𝑧#
! = 𝑤#$𝑥

𝑧%
! = 𝑤%$𝑥

3𝑦 = 𝛽$𝑧

𝑧!
(") = 𝑔 𝑧!

!

𝑧"
(") = 𝑔 𝑧"

!

𝑧#
(") = 𝑔 𝑧#

!

𝑧%
(") = 𝑔 𝑧%

!

Function composition:
𝑓 ∘ 𝑔 𝑥 = 𝑓 𝑔 𝑥

Modern View

• Each layer is a parametric function 𝑓4#: ℝ
" → 𝑅8

• Compose sequentially to form model family:

𝑓4 = 𝑓4$ ∘ ⋯ ∘ 𝑓4%

• Equivalently:

𝑓4 𝑥 = 𝑓4$ … 𝑓4% 𝑥 …

Modern View

• Each layer is a parametric function 𝑓4#: ℝ
" → 𝑅8

• Can compose layers in other was, e.g., concatenation:

𝑓4 𝑥 = 𝑓4% 𝑥 ⊕ 𝑓4& 𝑥

• Here, we have defined

𝑧! ⋯ 𝑧6 5⊕ 𝑧!9 ⋯ 𝑧6'
9 5

= 𝑧! ⋯ 𝑧6 𝑧!9 ⋯ 𝑧6'
9 5

Modern View

• Feedforward neural network model family (for regression):

𝑓4,+ 𝑥 = 𝑓+ ∘ 𝑔 ∘ 𝑓4 𝑥

𝑥!

𝑥"

𝑥#

𝑧!
(!) = 𝑤!$𝑥

𝑧"
! = 𝑤"$𝑥

𝑧#
! = 𝑤#$𝑥

𝑧%
! = 𝑤%$𝑥

3𝑦 = 𝛽$𝑧

𝑧!
(") = 𝑔 𝑧!

!

𝑧"
(") = 𝑔 𝑧"

!

𝑧#
(") = 𝑔 𝑧#

!

𝑧%
(") = 𝑔 𝑧%

!

Modern View

• Feedforward neural network model family (for regression):

𝑓4,+ 𝑥 = 𝑓+ ∘ 𝑔 ∘ 𝑓4 𝑥

𝑥 𝑧(!)𝑓4 𝑔 𝑧(') 𝑓+ U𝑦

Modern View

𝑥 𝑧(!)𝑓4 𝑔 𝑧(') 𝑓+ U𝑦

hidden layer
nodes or “units” (i.e., components of a layer)

input layer

output layerparameters (sometimes called “weights”)

Modern View

𝑥 𝑧(")𝑓*" 𝑔 𝑧(,) 𝑓! B𝑦𝑧(7)𝑓*# 𝑔 𝑧(8)

• Neural network with two hidden linear layers:

𝑓4%,4&,+ 𝑥 = 𝑓+ ∘ 𝑔 ∘ 𝑓4& ∘ 𝑔 ∘ 𝑓4% 𝑥

Modern View

𝑥 𝑧(")𝑓*" 𝑔 𝑧(,) 𝑓! B𝑦𝑧(7)𝑓*# 𝑔 𝑧(8)

• Neural network with two hidden linear layers:

𝑓4%,4&,+ 𝑥 = 𝑓+ 𝑔 𝑓4& 𝑔 𝑓4% 𝑥

Learn successively more “high-level” representations

What About Classification?

• Recall: For logistic regression, we choose the likelihood to be

𝑝+ 𝑌 = 1 𝑥 =
1

1 + 𝑒(+(/

What About Classification?

• Recall: For logistic regression, we choose the likelihood to be

𝑝+ 𝑌 = 1 𝑥 = 𝜎 𝛽5𝑥

What About Classification?

• For binary classificaEon:

𝑝4,+ 𝑌 = 1 ∣ 𝑥 = 𝜎 𝛽5𝑔 𝑊𝑥

𝑥!

𝑥"

𝑥#

𝑧! = 𝑔 𝑤!$𝑥

𝑧" = 𝑔 𝑤"$𝑥

𝑧# = 𝑔 𝑤#$𝑥

𝑧% = 𝑔 𝑤%$𝑥

𝜎 𝛽$𝑧

What About Classification?

• For multi-class classification:

𝑝4,< 𝑌 = 𝑦 ∣ 𝑥 = softmax 𝑈𝑔 𝑊𝑥
-

𝑥!

𝑥"

𝑥#

𝑧! = 𝑔 𝑤!$𝑥

𝑧" = 𝑔 𝑤"$𝑥

𝑧# = 𝑔 𝑤#$𝑥

𝑧% = 𝑔 𝑤%$𝑥

softmax 𝑈𝑧 !

softmax 𝑈𝑧 "

softmax 𝑈𝑧 #

Neural Networks

• Pros
• “Meta” strategy: Enables users to design model family
• Design model families that capture symmetries/structure in the data (e.g.,

read a sentence forwards, translation invariance for images, etc.)
• “Representation learning” (automatically learn features for certain domains)
• More parameters!

• Cons
• Very hard to train! (Non-convex loss functions)
• Lots of parameters à need lots of data!
• Lots of design decisions

Common Architectures

