
Announcements

• Project Milestone 1 due Tonight at 8pm

• Quiz 5 is due tomorrow (Thursday, October 13) at 8pm
• Quiz 6 posted tomorrow

• HW 3 due Wednesday, October 19
• Please start early!



Lecture 12: Neural Networks (Part 2)

CIS 4190/5190
Fall 2022



Agenda

• Optimization
• Gradient descent
• Backpropagation

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation



Recap: Neural Network Model Family

• Each layer is a parametric function 𝑓!!: ℝ
" → ℝ# for some 𝑘, ℎ

• Compose sequentially to form model family (a.k.a. architecture):

𝑓! = 𝑓!" ∘ ⋯ ∘ 𝑓!#

• Examples:
• Linear: 𝑓! 𝑧 = 𝑊𝑧
• Activation function: 𝑔 𝑧 = 𝜎 𝑧
• Softmax: 𝑓 𝑧 = softmax 𝑧



Recap: Optimization & Backpropagation

• Based on gradient descent, with a few tweaks
• Note: Loss is nonconvex, but gradient descent works well in practice

• Key challenge: How to compute the gradient?
• Strategy so far: Work out gradient for every model family
• New strategy: Algorithm for computing gradient of an arbitrary programmatic 

composition of layers
• This algorithm is called backpropagation



Backpropagation

• Input
• Example-label pair 𝑥", 𝑦"
• Model 𝑓!! ∘ ⋯ ∘ 𝑓!" and loss 𝐿 4𝑦, 𝑦
• Derivative ∇ #$𝐿, 𝜕!#𝑓!# 𝑧 , and 𝜕%𝑓!# 𝑧 (as functions)

• Output: ∇!!𝐿 𝑓! 𝑥$ , 𝑦$



Recall: Multi-Dimensional Derivatives

• The derivative of 𝑓% with respect to 𝑧 at 𝛽 ∈ ℝ& and 𝑧 ∈ ℝ" is
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Recall: Multi-Dimensional Derivatives

• The derivative of 𝑓% with respect to 𝛽 at 𝛽 ∈ ℝ& and 𝑧 ∈ ℝ" is

𝜕%𝑓% 𝑧 =
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Recall: Multi-Dimensional Chain Rule

• Consider a function 𝑓 𝑥,𝑊, 𝛽 = 𝑓+ 𝑓) 𝑥,𝑊 , 𝛽 , where
• 𝑓& 𝑧,𝑊 = 𝑔 𝑊𝑧
• 𝑓' 𝑧, 𝛽 = 𝛽(𝑧

• Its derivatives are

𝐷%𝑓 𝑥,𝑊, 𝛽 = 𝐷%𝑓+ 𝑓) 𝑥,𝑊 , 𝛽
𝐷%𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓+ 𝑓) 𝑥,𝑊 , 𝛽 𝐷%𝑓) 𝑥,𝑊 + 𝜕%𝑓+ 𝑓) 𝑥,𝑊 , 𝛽
𝐷%𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓+ 𝑓) 𝑥,𝑊 , 𝛽 𝐷%𝑓) 𝑥,𝑊 + 𝜕%𝑓+ 𝑓) 𝑥,𝑊 , 𝛽
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Backpropagation

• General case: Consider a neural network

𝑓! 𝑥 = 𝑓!! ∘ 𝑓!!$" ∘ ⋯ ∘ 𝑓!" 𝑥

• Forward pass:

𝑧 ) = 𝑓!# ∘ ⋯ ∘ 𝑓!" 𝑥

• Backward pass:

𝐷!#𝑓! 𝑥 = 𝜕%𝑓!! 𝑧 *+& …𝜕%𝑓!#%" 𝑧
) 𝜕!#𝑓!# 𝑧

)+&

shared across terms 



Recall: Multi-Dimensional Derivatives
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Backpropagation Algorithm

• Forward pass: Compute forwards from 𝑗 = 0 to 𝑗 = 𝑚

• 𝑧 ) = :
𝑥

𝑓!# 𝑧
)+&

if 𝑗 = 0
if 𝑗 > 0

• Backward pass: Compute backwards from 𝑗 = 𝑚 to 𝑗 = 1

• 𝐷 ) = ?
1

𝐷 )4& 𝜕%𝑓!#%" 𝑧
)

if 𝑗 = 𝑚
if 𝑗 < 𝑚

• 𝐷!#𝑓! 𝑥 = 𝐷 ) 𝜕!#𝑓!# 𝑧
)+&

• Final output: ∇!!𝐿 𝑓! 𝑥 , 𝑦 , = ∇ -.𝐿 𝑧 / , 𝑦
,
𝐷!!𝑓! 𝑥 for each 𝑗



Backpropagation

𝑥 𝑧(&)𝑓!" 𝑔 𝑧(') 𝑓7 4𝑦𝑧(8)𝑓!& 𝑔 𝑧(9)

Forward pass: Compute 𝑧 ! = 𝑓"! 𝑧
!#$

Backward pass: Compute 𝐷 ! = 𝐷 !%$ 𝜕&𝑓"!"# 𝑧
! and 𝐷"!𝑓" 𝑥 = 𝐷 ! 𝜕"!𝑓"! 𝑧

!#$

Final output: ∇ '(𝐿 𝑧 ) , 𝑦
*
𝐷"!𝑓" 𝑥



Gradient Descent

• 𝑊) ← Initialize
• for 𝑡 ∈ 1,2, … until convergence:

𝑊9:),; ← 𝑊9,; −
𝛼
𝑛
⋅L
$<)

=

∇!!𝐿 𝑓!$ 𝑥$ , 𝑦$ for each 𝑗

• return 𝑓!$



Gradient Descent

• 𝑊) ← Initialize
• for 𝑡 ∈ 1,2, … until convergence:
• Compute gradients ∇!#𝐿 𝑓!' 𝑥" , 𝑦" using backpropagation
• Update parameters:

𝑊9:),; ← 𝑊9,; −
𝛼
𝑛
⋅L
$<)

=

∇!!𝐿 𝑓!$ 𝑥$ , 𝑦$ for each 𝑗

• return 𝑓!$
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• Implementation



Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions
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Optimization Challenges

• Challenges
• Local minima, saddle points due to 

non-convex loss
• Exploding/vanishing gradients
• Ill-conditioning

• Have heuristics that work in 
common cases (but not always)

Li et al. (2018)



Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :

𝛽 ← 𝛽 −
𝛼
𝑛
⋅L
$<)

=

∇%𝐿 𝑓% 𝑥$ , 𝑦$

• return 𝑓%



Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :

𝛽 ← 𝛽 −
𝛼
𝑛
⋅L
$<)

=

∇%𝐿 𝑓% 𝑥$ , 𝑦$

• return 𝑓%



Stochastic Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :
• for 𝑖 ∈ 1,2, … , 𝑛 :

𝛽 ← 𝛽 − 𝛼 ⋅ ∇%𝐿 𝑓% 𝑥$ , 𝑦$

• return 𝑓%

usually 𝑇 ∈ 1,… , 10



Minibatch Stochastic Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :
• for 𝑖> ∈ 1,2, … , =

"
:

𝛽 ← 𝛽 −
𝛼
𝑘
⋅ L

$<$%"

$% ":) ?)

∇%𝐿 𝑓% 𝑥$ , 𝑦$ for each 𝑗

• return 𝑓%



Accelerated Gradient Descent

• Vanilla gradient descent:

𝛽 ← 𝛽 − 𝛼 ⋅ ∇%𝐿 𝑓% 𝑥 , 𝑦

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇%𝐿 𝑓% 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌
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Accelerated Gradient Descent

• Vanilla gradient descent:
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Accelerated Gradient Descent

• Intuition: 𝜌 holds the previous update 𝛼 ⋅ ∇%𝐿 𝑓% 𝑥 , 𝑦 , except it 
“remembers” where it was heading via momentum

• New hyperparameter 𝜇 (typically 𝜇 = 0.9 or 𝜇 = 0.99)



Nesterov Momentum

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇%𝐿 𝑓% 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

• Nesterov momentum:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇%𝐿 𝑓%:@⋅B 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌



Nesterov Momentum

momentum
step

gradient

momentum

step

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum



Adaptive Learning Rates

• AdaGrad: Letting 𝑔 = ∇%𝐿 𝑓% 𝑥 , 𝑦 , we have

𝐺 ← 𝐺 + 𝑔+ and 𝛽 ← 𝛽 −
𝛼
𝐺
⋅ 𝑔

• RMSProp: Use exponential moving average instead:

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 𝑔+ and 𝛽 ← 𝛽 −
𝛼
𝐺
⋅ 𝑔



Adaptive Learning Rates

• Adam: Similar to RMSprop, but with both the first and second 
moments of the gradients

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 ⋅ 𝑔+

𝑔> ← 𝜆> ⋅ 𝑔> + 1 − 𝜆> ⋅ 𝑔
𝛽 ← 𝛽 − C>

D

• Intuition: RMSProp with momentum
• Most commonly used optimizer



http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/


http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/


Learning Rate

• Most important hyperparameter; tune by looking at training loss



Learning Rate

• Learning rate vs. training error:

Goodfellow et al, Deep Learning Book, 2019



Learning Rate

• Schedules: Reducing the learning rate every time the validation loss 
stagnates can be very effective for training

He et al, Residual Networks, 2015
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Historical Activation Functions

sigmoid tanh



Vanishing Gradient Problem

• The gradient of the sigmoid function 
is often nearly zero

• Recall: In backpropagation, gradients 
are  products of 𝜕'𝑔 𝑧 ;

• Quickly multiply to zero!
• Early layers update very slowly

sigmoid

sigmoid gradient



ReLU Activation

• Activation function

𝑔 𝑧 = max 0, 𝑧

• Gradient now positive on the 
entire region 𝑧 ≥ 0

• Significant performance gains for 
deep neural networks



ReLU Activation

tanh

ReLU



PRReLU Activation



Activation Functions

• ReLU is a good standard choice

• Tradeoffs exist, and new activation functions are still being proposed
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Weight Initialization

• Zero initialization: Very bad choice!
• All neurons 𝑧" = 𝑔 𝑤"(𝑥 in a given layer remain identical
• Intuition: They start out equal, so their gradients are equal!

𝑥%

𝑥&

𝑥'

𝑧% = 𝑔 𝑤%(𝑥

𝑧& = 𝑔 𝑤&(𝑥

𝑧' = 𝑔 𝑤'(𝑥

𝑧) = 𝑔 𝑤)(𝑥

𝛽(𝑧



Weight Initialization

• Long history of initialization tricks for 𝑊; based on “fan in” 𝑑EF
• Here, 𝑑>? is the dimension of the input of layer 𝑊)
• Intuition: Keep initial layer inputs 𝑧 ) in the “linear” part of sigmoid
• Note: Initialize intercept term to 0

• Kaiming initialization (also called “He initialization”)
• For ReLU activations, use 𝑊) ∼ 𝑁 0, '@()

• Xavier initialization
• For tanh activations, use 𝑊) ∼ 𝑁 0, &

@()4@*+,
(𝑑ABC is output dimension)



Batch Normalization

• Problem
• During learning, the distribution of inputs to each layer are shifting (since the 

layers below are also updating)
• This “covariate shift’’ slows down learning

• Solution
• As with feature standardization, standardize inputs to each layer to 𝑁 0, 𝐼
• Batch norm: Compute mean and standard deviation of current minibatch and 

use it to normalize the current layer 𝑧 ) (this is differentiable!)
• Note: Needs nontrivial mini-batches or will divide by zero
• Apply after every layer (before or after activation; after can work better)



Batch Normalization

Number of training steps

va
lid

at
io

n 
ac

cu
ra

cy



Regularization

• Can use 𝐿) and 𝐿+ regularization as before
• As before, do not regularize any of the intercept terms!
• 𝐿' regularization more common

• Applied to “unrolled” weight matrices
• Equivalently, Frobenius norm 𝑊) D = ∑"E&F ∑"-E&

G 𝑊","-
'
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Dropout

• Idea:  During training, randomly “drop” 
(i.e., zero out) a fraction 𝑝 of the 
neurons 𝑧$

; (usually take 𝑝 = )
+
)

• Implemented as its own layer

Dropout 𝑧 = d𝑧0
with prob. 𝑝
otherwise

• Usually include it at a few layers just 
before the output layer



Dropout



Dropout

• Intuition: A form of regularization
• Encourages robustness to missing information from the previous layer
• Each neuron works with many different kinds of inputs
• Makes them more likely to be individually competent

• Connection to ensembles
• Each training iteration is training a slightly different network, selected at 

random out of 2#?JBKA?L networks!
• Since the networks share weights, training one network updates others



Dropout at Test Time

• Naïve strategy: Stop dropping neurons
• Problem: Not the distribution the layer was trained on (covariate shift)!

• Naïve strategy: Average across all possible predictions
• Problem: There are 2#?JBKA?L possible realizations of the randomness

• Solution: Turn off dropout but divide the outgoing weights by 2
• Good approximation of the geometric mean of all 2#?JBKA?L predictions

• Note: Can also leave dropout on, sample multiple realizations of the 
randomness, and report distribution to help quantify uncertainty
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Early Stopping

• Stop when your validation loss starts increasing (alternatively, finish 
training and choose best model on validation set)
• Simple way to introduce regularization



Data Augmentation

• Data augmentation: Generate more data by modifying training inputs

• Often used when you know that your output is robust to some 
transformations of your data
• Image domain: Color shifts, add noise, rotations, translations, flips, crops
• NLP domain: Substitute synonyms, generate examples (doesn’t work as well 

but ongoing research direction)
• Can combine primitive shifts

• Note: Labels are simply the label of original image



Data Augmentation


