Announcements

* Project Milestone 1 due Tonight at 8pm

* Quiz 5 is due tomorrow (Thursday, October 13) at 8pm
* Quiz 6 posted tomorrow

* HW 3 due Wednesday, October 19

* Please start early!



Lecture 12: Neural Networks (Part 2)

CIS 4190/5190
Fall 2022



Agenda

* Optimization
* Gradient descent
* Backpropagation

* Neural network tips and tricks
* Hyperparameter tuning

* Implementation



Recap: Neural Network Model Family

* Each layer is a parametric function fyy R* — R" for some k, h

* Compose sequentially to form model family (a.k.a. architecture):
fw = me ©r 0 le

* Examples:
* Linear: fi,(z) = Wz
e Activation function: g(z) = o(2)
* Softmax: f(z) = softmax(z)



Recap: Optimization & Backpropagation

* Based on gradient descent, with a few tweaks
* Note: Loss is nonconvex, but gradient descent works well in practice

* Key challenge: How to compute the gradient?
 Strategy so far: Work out gradient for every model family

* New strategy: Algorithm for computing gradient of an arbitrary programmatic
composition of layers

* This algorithm is called backpropagation



Backpropagation

* Input
* Example-label pair (x;, y;)
* Model fy, oo fi, andloss L(y,y)
* Derivative VgL, 0w fu, (z), and O0zfw; (z) (as functions)

* Output: VWjL(fW(xi),yi)



Recall: Multi-Dimensional Derivatives

* The derivative of /; with respectto z at 5 € R* and z € R" is

0/p 1 1
SN ()
0,/3(2) = 15 e R*k
dfp n afﬁ,h
| 07, () 07, (Z)_



Recall: Multi-Dimensional Derivatives

* The derivative of f; with respectto f at [ € R% and z € R¥ is

'af[m af[m ]
(z) - (2)
dsfp(2) = 0ﬁ1: aﬁd= € RExk
S FY ofs
R (z) - 3z, (Z)_




Recall: Multi-Dimensional Chain Rule

* Consider a function f(x, W, ) = f,(f1(x, W), ), where
° fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dpf (e, W,B) = Dpfo(fi(x, W), B)
— aZfZ(fl(xl W)JIB)Dﬁfl(X; W) + 5ﬁf2(f1(x, W)':B)
- Opfo(fy(x, W), B)



Recall: Multi-Dimensional Chain Rule

* Consider a function f(x, W, ) = f,(f1(x, W), ), where
° fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dy, fC, W,B) = Dy fo(f1 (e, W), B)
= 0,f,(f1Cc, W), B)Dy, f1 (e, W) + 0y, fo(f1(xx, W), B)
— aZfZ (fl (X, W)r ﬁ)anl (X, W)



Backpropagation
* General case: Consider a neural network
fw(x) = fw,, © fu,_, © - ° fuy ()
* Forward pass:
20 = fyy 0o fiy ()
* Backward pass:

Dy fir () = 0, fu,, (27" ) 0, fu,, (29) By fir, (27 1)

\\

h 4

shared across terms



Recall: Multi-Dimensional Derivatives

aZme (Z)a
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Recall: Multi-Dimensional Derivatives

aszm (2) aszm_1 (2)
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Recall: Multi-Dimensional Derivatives

aszm (2) aszm_l (2) aszm_2 (2)
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Recall: Multi-Dimensional Derivatives

GZme(Z)GZme_l (Z)aszm_z (2) ...

0 W1 . Ofwpa 110/ w11 Of W11 110/ wy—q1 Of W11 ]
P C) 0 D% @ e 9l el (@)
ame.,h ame.,h afwm_.l,k afwm_.l,k 5fwm_.1,€ 5fwm_.1,£
L 024 (Z) 0z, (Z)- 074 (Z) 07y (Z)_ 074 (Z) 0Zm (Z)_




Backpropagation Algorithm

* Forward pass: Compute forwards fromj =0toj =m

- ifj=0
o () = _
z {fW (Z(] )) ifj >0

* Backward pass: Compute backwards fromj =mtoj=1

. 1 1f =
« DU — J =

* DijW(X) = D(])awjfwj(z(] 1))

* Final output: VWjL(fW(x),y)T = VyL(Z(m),y)TDijw(X) for each j



Backpropagation

ey ;) ,3) ey

Forward pass: Compute z/) = f;, (zU~")

Backward pass: Compute DY) = D(f+1)6Zij+1(z(f)) and Dy fyy (x) = DU)aijWj (zU-V)

Final output: VyL(z(m), y)TDWj Jur ()

<




Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y)  (for each ))
=1

* return f,



Gradient Descent
* W, « Initialize()
* fort € {1,2, ...} until convergence:

* Compute gradients VWjL(th (xi),yl-) using backpropagation
* Update parameters:

n
Q
Werj < Wej—— z VWjL(th(xi):yi) (for each j)
i=1

* return fy,



Agenda

* Optimization
* Gradient descent
* Backpropagation

* Neural network tips and tricks
* Hyperparameter tuning

* Implementation



Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training



Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o o
O"X\'/“\ 8 8

Dropout

Managing Training



Optimization Challenges

* Challenges

* Local minima, saddle points due to
non-convex loss

* Exploding/vanishing gradients
* |ll-conditioning

* Have heuristics that work in
common cases (but not always)

Li et al. (2018)



Gradient Descent

W « Initialize()
e fort € {1,2,...,T}:

n

BB == VgL(f(x), 1)

n "

* return fg



Gradient Descent

W « Initialize()
e fort € {1,2,...,T}:

n

BeB—— ) VgL(fp(x), 1)

n "

* return fg



Stochastic Gradient Descent

usually T € {1, ..., 10}
W « In1t1allze() /

e fort € {1,2, ..
'forle{12 }

B« B —a- VgL(fz(x),v;)

* return fg



Minibatch Stochastic Gradient Descent

W « Initialize( )
e fort € {1,2,...,T}:
.y E i
e fori € {1,2, ...,k}.

i"(k+1)-1

BB ) VsL(f()y;) (foreach )

i=i'k

* return fg



Accelerated Gradient Descent

* Vanilla gradient descent:
B < B —a- VgL(fz(x),y)

* Accelerated gradient descent:

peu-p—a-VgL(fz(x),y)
Be<p+p



Accelerated Gradient Descent
 Vanilla gradient descent:
B« B —a- VgL(fz(x),y)

* Accelerated gradient descent:

p e p—a-VeL(fp(x),y)
Be<B+p



Accelerated Gradient Descent

* Vanilla gradient descent:
B < B —a- VgL(fz(x),y)

* Accelerated gradient descent:

peu-p—a-VgL(fz(x),y)
Be<p+p



Accelerated Gradient Descent

* Intuition: p holds the previous update « - V[;L(fﬁ (x),y), except it
“remembers” where it was heading via momentum

* New hyperparameter u (typically u = 0.9 or u = 0.99)



Nesterov Momentum

* Accelerated gradient descent:

pep-p—a- VpL(fp(x),y)
p<p+p

* Nesterov momentum:

pe—U-p—a- V,BL(f,Bﬂt'P(x)’y)
p<p+p



Nesterov Momentum

gradient
step
gradient
vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum



Adaptive Learning Rates

» AdaGrad: Letting g = VﬁL(fB (x),y), we have

a

G« G+ g*° and 'B(_'B_\/E g

* RMSProp: Use exponential moving average instead:

a

G—A-G+(1—-1)g?* and 'B(_'B_\/E g



Adaptive Learning Rates

 Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

G—A-G+(1—-1)-g*
gleﬂ’lgl_l_(l_ll)g
BB

* Intuition: RMSProp with momentum
* Most commonly used optimizer



NN -
Y = scD

| == Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

AErrrITr

http://cs231n.github.io/neural-networks-3 (Alec Radford)



http://cs231n.github.io/neural-networks-3/
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http://cs231n.github.io/neural-networks-3/

Learning Rate

* Most important hyperparameter; tune by looking at training loss

25

A
loss

20

low learning rate

high learning rate

good learning rate

0.0
0

20 40 . 60 80 100 epoch

Epoc



Learning Rate

* Learning rate vs. training error:

Training error

0 - N 2 N N 2 ; 2 | 2 N 2 " : N
10~ 2 10~ 1 109

Learning rate (logarithmic scale)

Goodfellow et al, Deep Learning Book, 2019



Learning Rate

* Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training

0 10 20 30 40 50
iter. (1e4)

He et al, Residual Networks, 2015
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Historical Activation Functions
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Vanishing Gradient Problem

)
o
1

* The gradient of the sigmoid function 08
is often nearly zero

o
o

©
IS

sigmoid(x)

o
[N

* Recall: In backpropagation, gradients o
are products of 9,g(z"")

-8 -6 -4 -2 0 2 4 6 8
X

sigmoid

* Quickly multiply to zero! 3 020-
* Early layers update very slowly

-8 -6 -4 -2 0 2 4 6 8
X

sigmoid gradient



RelLU Activation

e Activation function
g(z) = max{0, z}

* Gradient now positive on the
entire region z = 0

e Significant performance gains for
deep neural networks

relu(x)

grad of relu




RelLU Activation

Training error rate
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PRReLU Activation

f)=0 y

fo)=ay




Activation Functions

* ReLU is a good standard choice

* Tradeoffs exist, and new activation functions are still being proposed
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Weight Initialization

 Zero initialization: Very bad choice!

* All neurons z; = g(WiTx) in a given layer remain identical
* Intuition: They start out equal, so their gradients are equal!




Weight Initialization

* Long history of initialization tricks for W; based on “fan in” d;,
* Here, djy, is the dimension of the input of layer W
* Intuition: Keep initial layer inputs zU) in the “linear” part of sigmoid
* Note: Initialize intercept term to O

e Kaiming initialization (also called “He initialization”)
* For RelLU activations, use W] ~N (O, di)

e Xavier initialization
1

* For tanh activations, use W; ~ N (O, - ) (doyt is output dimension)

in+dout



Batch Normalization

* Problem

e During learning, the distribution of inputs to each layer are shifting (since the
layers below are also updating)

* This “covariate shift”’ slows down learning

 Solution
 As with feature standardization, standardize inputs to each layer to N(0, 1)

* Batch norm: Compute mean and standard deviation of current minibatch and
use it to normalize the current layer z) (this is differentiable!)

* Note: Needs nontrivial mini-batches or will divide by zero
* Apply after every layer (before or after activation; after can work better)



Batch Normalization
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Regularization

* Can use Ly and L, regularization as before
* As before, do not regularize any of the intercept terms!
* L, regularization more common

* Applied to “unrolled” weight matrices
 Equivalently, Frobenius norm ||W || = Z 1Zh_1 W2
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Dropout

* ldea: During training, randomly “drop”
(i.e., zero out) a fraction p of the

neurons Zl-(j) (usually take p = %)

* Implemented as its own layer

Z with prob.
Dropout(z) = {0 otherl)‘wisep

e Usually include it at a few layers just
before the output layer
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Dropout

hidden fc layer dropout layer

o

output layer

A/

o=
e ®

Training time




Dropout

* Intuition: A form of regularization
* Encourages robustness to missing information from the previous layer
* Each neuron works with many different kinds of inputs
* Makes them more likely to be individually competent

e Connection to ensembles

* Each training iteration is training a slightly different network, selected at
random out of 2#MeUroNS pat\wyorks!

* Since the networks share weights, training one network updates others



Dropout at Test Time

* Naive strategy: Stop dropping neurons
* Problem: Not the distribution the layer was trained on (covariate shift)!

* Naive strategy: Average across all possible predictions
* Problem: There are 2#1€Urons naqsiple realizations of the randomness

 Solution: Turn off dropout but divide the outgoing weights by 2
* Good approximation of the geometric mean of all 2#1€Urons nradjctions

* Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty
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Early Stopping

e Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)

* Simple way to introduce regularization

e—e Training set loss

0.15 -~ Validation set loss |

Loss (negative log-likelihood)

0.00
0 50 100 150 200 250

Time (epochs)



Data Augmentation

* Data augmentation: Generate more data by modifying training inputs

e Often used when you know that your output is robust to some
transformations of your data
* Image domain: Color shifts, add noise, rotations, translations, flips, crops

* NLP domain: Substitute synonyms, generate examples (doesn’t work as well
but ongoing research direction)

e Can combine primitive shifts

* Note: Labels are simply the label of original image



Data Augmentation




