
Announcements

• HW 3 due Wednesday, October 19 at 8pm

• Quiz 6 due Thursday, October 20 at 8pm

Agenda

• Neural networks
• Hyperparameter tuning
• Implementation

• Computer vision
• Prior to deep learning
• Convolutional layers
• Convolutional neural networks
• Feature visualization

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

• Neural networks
• Design the model family
• Backpropagation to compute gradient

• Optimization
• Gradient descent
• Momentum
• Adaptive step sizes
• Learning rate schedules
• Initialize weights properly

Neural Network Tips & Tricks

• Layers
• Use ReLU activations to avoid vanishing gradients
• Use batch normalization at all layers to avoid “covariate shift”
• Use dropout at last few layers for regularization

• Regularization
• Use early stopping (or choose best model on validation set)
• Use data augmentation if possible

• Lots of hyperparameters! How to tune?

Hyperparameteter Choices

• Architecture: Stick close to tried-and-tested architectures (esp. for images)
• SGD variant: Adam, second choice SGD + 0.9 momentum
• Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
• Learning rate schedule: Divide by 10 every time training loss stagnates
• Weight initialization: “Kaiming” initialization (scaled Gaussian)
• Activation functions: ReLU
• Regularization: BatchNorm (& cousins), L2 regularization + Dropout on

some or all fully connected layers
• Hyperparameter Optimization: Random sampling (often uniform on log

scale), coarse to fine

Hyperparameter Optimization

• Recall: Use cross-validation to tune hyperparameters!
• Typically use one held-out validation set for computational tractability
• E.g., 60/20/20 split
• Can use smaller validation/test sets if you have a very large dataset

Given data 𝑍

Training data 𝑍!"#$% Test data 𝑍!&'!Val data 𝑍(#)

Hyperparameter Optimization Tips

• Keep the number of hyperparameters as small as possible
• Most important: Learning rate

• Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
• Easy to parallelize across many machines
• Record hyperparameters of all runs carefully!
• Use the same random seeds for all runs

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For 2 or 3 hyperparameters, do a systematic “grid search”

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For >3 hyperparameters, do random search

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• Coarse-to-find search
• Iteratively search over a window of

hyperparameters
• If the best results are near the boundary,

center it on best hyperparameters
• Otherwise, set a smaller window

centered on the best hyperparameters

• Bayesian optimization: ML-guided
search across hyperparameter trials to
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

More Practical Tips

• Andrej Karpathy’s blog post:
• http://karpathy.github.io/2019/04/25/recipe
• Fix random seed during debugging
• Overfit a tiny dataset first
• With everything (architecture, learning algorithm, data etc.), start simple and

build complexity slowly over iterations
• Plot weight and gradient magnitudes to detect vanishing/exploding gradients

• Additional reading:
• Chapter 11 of the Deep Learning textbook: “Practical Methodology”
• https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

• Neural networks
• Hyperparameter tuning
• Implementation

• Computer vision
• Prior to deep learning
• Convolutional layers
• Convolutional neural networks
• Feature visualization

Pytorch

• Open source packages have helped democratize deep learning

Pytorch

Common parent class: nn.Module
Constructor: Defining layers of the network

Forward propagation

What about backward propagation?

Pytorch

• Open source packages have helped democratize deep learning

• Backpropagation implemented for all neural network architectures
• Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
• Only need gradients of new layers

• Basic Idea: Provide model family as sequence of functions 𝑓*, … , 𝑓+
• What about more general compositions?
• Solution: Composition of functions can be represented as graphs!

Computation Graphs

• The tensor datatype represents a computation graph
• Not just a numpy array!
• Instead, performing the computation produces a numpy array

• Example:
• Suppose 𝑥 is tensor that evaluates to 1 0

0 1
• Suppose 𝑦 is a tensor evaluates to 1 1

1 0
• Then, 𝑥 + 𝑦 is a tensor that evaluates to 2 1

1 1 𝑥 𝑦

+

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + y # z has type Add

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + x + y # Z has type Add

Computation Graphs

• Layers are implemented as tensors
• Examples: addition, multiplication, ReLU, sigmoid, softmax, matrix

multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
• You can also implement your own by providing forward pass and derivatives

• Tensors can be composed together to form neural networks

Computation Graphs

• Forward propagation: Values are evaluated as they are constructed

• Backpropagation: Automatically compute derivative of scalar with
respect to all parameters based on derivatives of layers
• x.backwards()
• Does not perform any gradient updates!

Computation Graphs

x x1

W1 W2

x2 x3 log_prob× relu × log_sof
tmax

nn.functional operation

parameter(tensor)

tensor

fc1(nn.Linear) fc2(nn.Linear)

Pytorch Training Loop

Gradient step
Backpropagation

Loss computation
Runs forward pass model.forward(data)

Looping over mini-batches

Zero out all old gradients

Pytorch Training Loop

Load dataset

Define optimizer, base learning rate schedule etc.

Loop over epochs (full passes over data)
Minibatch SGD for one epoch

Update base learning rate

Pytorch Model

• To use your model (once it has been trained):

label = model(input)

Agenda

• Neural networks
• Hyperparameter tuning
• Implementation

• Computer vision
• Prior to deep learning
• Convolutional layers
• Convolutional neural networks
• Feature visualization

Lecture 13: Computer Vision (Part 1)

CIS 4190/5190
Fall 2022

Images as 2D Arrays

• Grayscale image is a 2D array of
pixel values

• Color images are 3D array
• 3rd dimension is color (e.g., RGB)
• Called “channels”

Source: S. Narasimhan, S. Lazebnik

Structure in Images

Structure in Images

Structure in Images

building

person

trashcan

car
car

ground

tree sky

door
window

building

chimney

Outdoor scene
City

European

History of Computer Vision

• Deceptively challenging task
• In the 1960s, Marvin Minsky assigned some undergrads to program a

computer to use a camera to identify objects in a scene
• Half a century later, we are still working on it

• Moravec’s paradox
• Motor and perception skills require enormous computational resources
• Largely unconscious, biasing our intuition
• Likely innate to some degree

History of Computer Vision

Old: Mid 90’s – 2012

Image → hand-def. features → learned classifier

Very old: 60’s – Mid 90’s

Image → hand-def. features → hand-def. classifier

Current: 2012 – Present

Image → jointly learned features + classifier

Prior to Deep Learning

• Step 1: Find “pixels of interest”
• E.g., corner points or “difference of gaussians”

• Step 2: Compute features at these points
• E.g., “SIFT”, “HOG”, “SURF”, etc.

• Step 3: Convert to feature vector via
statistics of features such as histograms
• E.g., “Bag of Words”, “Spatial Pyramids”, etc.

• Step 4: Use standard ML algorithm
…

Bag-of-Words histogram

Prior to Deep Learning

Viola-Jones face detector
(with AdaBoost!)

~2000

https://github.com/alexdemartos/ViolaAndJones

Deformable Parts Model
object detection

(with linear classifiers!)
~2010

GIST
Scene retrieval

(with nearest neighbors!)
~2006

See libraries such as VLFeat and OpenCV

https://github.com/alexdemartos/ViolaAndJones

Impact of Deep Learning

0

5

10

15

20

25

30

2011 2012 2013 2014 2015 2016

ImageNet top-5 object recognition
error (%)

ImageNet 1000-object category recognition challenge

Deep learning breakthrough

Agenda

• Neural networks
• Hyperparameter tuning
• Implementation

• Computer vision
• Prior to deep learning
• Convolutional & pooling layers
• Convolutional neural networks

Representation Learning

𝑑-length
“feature vector” 𝑥

image

“dog”

Representing Images as Inputs

• Naïve strategy
• Feed image to neural network as a vector of pixels

𝑑-length
feature 𝒙

image
𝑑

𝑑

Representing Images as Inputs

• Shortcomings
• Very high dimensional! 32×32×3 = 3072 dimensions

Representing Images as Inputs

• Shortcomings
• Ignores spatial structure!

cat
running
tongue
lawn

Structure in Images

• 2D image structure
• Location associations and spatial neighborhoods are meaningful
• So far, we can shuffle the features without changing the problem (e.g., 𝛽"𝑥)
• Not true for images!

Structure in Images

• Translation invariance
• Consider image classification (e.g., labels are cat, dog, etc.)
• Invariance: If we translate an image, it does not change the category label

Source: Ott et al., Learning in the machine: To share or not to share?

Structure in Images

• Translation equivariance
• Consider object detection (e.g., find the position of the cat in an image)
• Equivariance: If we translate an image, the the object is translated similarly

Structure in Images

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Convolution Filters

graphic credit: S. Lazebnik

Convolution Filters

graphic credit: S. Lazebnik

output 0,0 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 0 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,1 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 1 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 0,2 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 0 + 𝜏, 2 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

Convolution Filters

graphic credit: S. Lazebnik

output 𝑖, 𝑗 = 3
!"#

$%&

3
'"#

$%&

4ilter 𝜏, 𝛾 ⋅ image 𝑖 + 𝜏, 𝑗 + 𝛾

1D Convolution Filters

• Given:
• 1D sequence 𝑥is 1D
• 1D kernel 𝑘

• Convolution is the following:

𝑦 𝑡 = +
DEF

G H*

𝑘 𝜏 ⋅ 𝑥[𝑡 + 𝜏]

• Technically cross-correlation

1D Convolution Filters

• Example:
• 𝑥 = 25000, 28000, 30000, 21000, 18000,…
• 𝑘 = −1, 1, −1

• Convolution:

𝑦 𝑡 = +
DEF

G H*

𝑘 𝜏 ⋅ 𝑥[𝑡 + 𝜏]

𝑦 0 = 𝑘 0 𝑥 0 + 𝑘 1 𝑥 1 + 𝑘 2 𝑥 2 = −25000 + 28000 − 30000
𝑦 1 = 𝑘 0 𝑥 1 + 𝑘 1 𝑥 2 + 𝑘 2 𝑥 3 = −28000 + 30000 − 21000
𝑦 2 = 𝑘 0 𝑥 2 + 𝑘 1 𝑥 3 + 𝑘 2 𝑥 4 = −30000 + 21000 − 18000

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

1D Convolution Filters

https://gitlab.com/brohrer/

https://gitlab.com/brohrer/

2D Convolution Filters

• Given:
• A 2D input 𝑥
• A 2D ℎ×𝑤 kernel 𝑘

• The 2D convolution is:

𝑦 𝑠, 𝑡 = +
DEF

IH*

+
JEF

KH*

𝑘 𝜏, 𝛾 ⋅ 𝑥 𝑠 + 𝜏, 𝑡 + 𝛾

2D Convolution Filters

2D Convolution Filters

• Historically (until late 1980s), kernel parameters were handcrafted
• E.g., “edge detectors”

2D Convolution Filters

https://aishack.in/tutorials/image-convolution-examples/

Example Edge Detection Kernels Result of Convolution with Horizontal Kernel

https://aishack.in/tutorials/image-convolution-examples/

2D Convolution Filters

• Historically (until late 1980s), kernel parameters were handcrafted
• E.g., “edge detectors”

• In convolutional neural networks, they are learned
• Essentially a linear layer with fewer “connections”
• Backpropagate as usual!

Convolution Layers

Learnable
parameters

Convolution Layers

Fully connected
(3 input × 7 output = 21 parameters)

Locally connected
(3 input × 3 output = 9 parameters)

Input layer

Hidden layer

Slide credit: Jia-Bin Huang

Convolution Layers

Input layer

Hidden layer

w1
w2

w3
w4

w5
w6

w7
w8

w9

Without weight sharing
(3 input × 3 output = 9 parameters)

With weight sharing
(3 parameters)

w1
w2

w3 w1
w2

w3
w1

w2
w3

Slide credit: Jia-Bin Huang

Convolution Layers

Single input channel Multiple input channels

Channel 2

Channel 1

Filter weights Filter weights

Slide credit: Jia-Bin Huang

Convolution Layers

Single output map Multiple output maps

Channel 1

Channel 2

Filter 1 Weights Filter 2 WeightsFilter weights

Slide credit: Jia-Bin Huang

Convolution Layers

• Summary
• Local connectivity
• Weight sharing
• Handling multiple input/output channels
• Retains location associations

Convolution Layer Parameters

• Stride: How many pixels to skip (if any)
• Default: Stride of 1 (no skipping)

Filter

OutDimension =
InputDimension
StrideDimension

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Padding: Add zeros to edges of image to capture ends
• Default: No padding

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

stride = 1, zero-padding = 1 stride = 2, zero-padding = 1

https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolution Layer Parameters

• Summary: Hyperparameters
• Kernel size
• Stride
• Amount of zero-padding
• Output channels

• Together, these determine the relationship between the input tensor
shape and the output tensor shape

• Typically, also use a single bias term for each convolution filter

Convolution Layers

Slide credit: Jia-Bin Huang

filters = #output (activation) maps # input channels

Local connectivity
Weight sharing

filter size,
stride

Image credit: A. Karpathy

Example

• Kernel size 3, stride 2,
padding 1

• 3 input channels
• Hence kernel size 3×3×3

• 2 output channels
• Hence 2 kernels

• Total # of parameters:
• (3×3×3 + 1)×2 = 56

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

