Announcements

- HW 3 due Tonight (Wednesday, October 19) at 8pm
 - HW 4 posted tonight, due Wednesday, November 2
- Quiz 6 due Tomorrow (Thursday, October 20) at 8pm

Lecture 14: Computer Vision (Part 2)

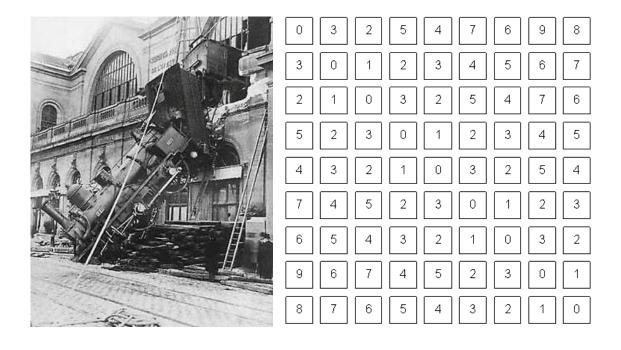
CIS 4190/5190 Fall 2022

Agenda

- Convolutional & pooling layers
- Convolutional neural networks
- Feature visualization
- Applications

Images as 2D Arrays

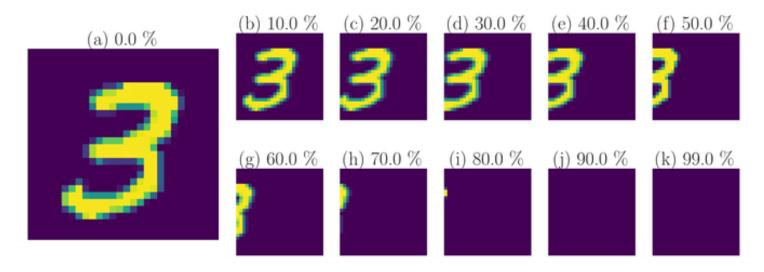
- Grayscale image is a 2D array of pixel values
- Color images are 3D array
 - 3rd dimension is color (e.g., RGB)
 - Called "channels"



Structure in Images

Translation invariance

- Consider image classification (e.g., labels are cat, dog, etc.)
- Invariance: If we translate an image, it does not change the category label



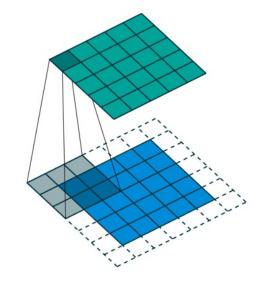
Source: Ott et al., Learning in the machine: To share or not to share?

Structure in Images

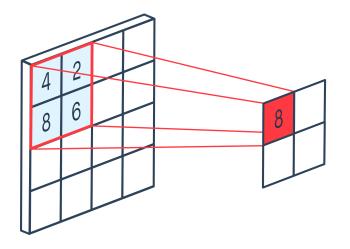
- Translation equivariance
 - Consider object detection (e.g., find the position of the cat in an image)
 - Equivariance: If we translate an image, the the object is translated similarly

Structure in Images

Use layers that capture structure

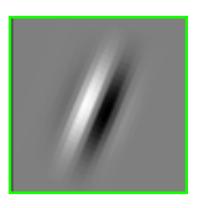


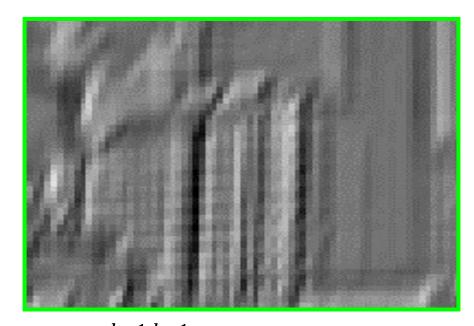
Convolution layers (Capture equivariance)



Pooling layers (Capture invariance)

Convolution Filters





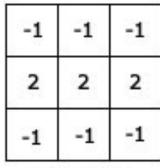
output
$$[i,j] = \sum_{\tau=0}^{k-1} \sum_{\gamma=0}^{k-1} \text{filter}[\tau,\gamma] \cdot \text{image}[i+\tau,j+\gamma]$$

2D Convolution Filters

- Given:
 - A 2D input *x*
 - A 2D $h \times w$ kernel k
- The 2D convolution is:

$$y[s,t] = \sum_{\tau=0}^{h-1} \sum_{\gamma=0}^{w-1} k[\tau,\gamma] \cdot x[s+\tau,t+\gamma]$$

2D Convolution Filters



-1	2	-1
-1	2	-1
-1	2	-1

4	4	-	
Ver	rtical	lines	ı

-1	-1	2	
-1	2	-1	
2	-1	-1	

degree lines 135 degree lines

Example Edge Detection Kernels

Result of Convolution with Horizontal Kernel

2D Convolution Filters

- Historically (until late 1980s), kernel parameters were handcrafted
 - E.g., "edge detectors"
- In convolutional neural networks, they are learned
 - Essentially a linear layer with fewer "connections"
 - Backpropagate as usual!

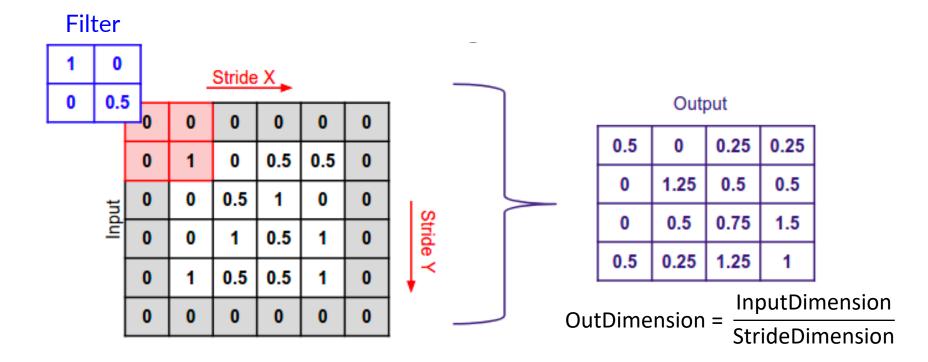
Convolution Layers

Learnable parameters —	3_0	3,	22	1	0
	0_2	0_2	1_{0}	3	1
	30	$1_{_1}$	22	2	3
	2	0	0	2	2
	2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

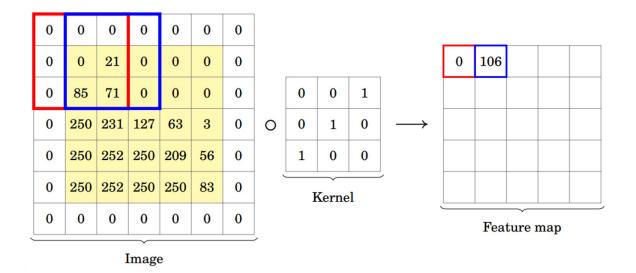
Convolution Layer Parameters

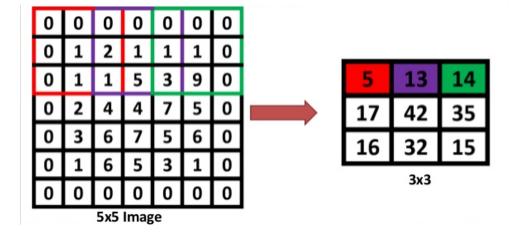
- Stride: How many pixels to skip (if any)
 - **Default:** Stride of 1 (no skipping)



Convolution Layer Parameters

- Padding: Add zeros to edges of image to capture ends
 - Default: No padding





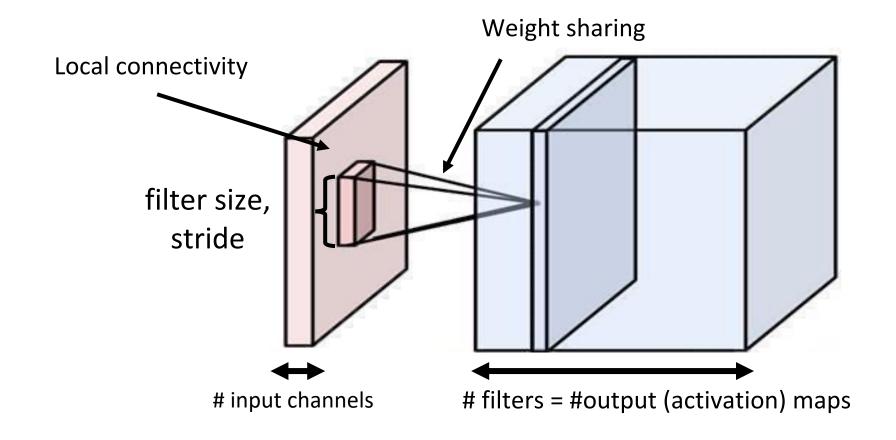
stride = 1, zero-padding = 1

stride = 2, zero-padding = 1

Convolution Layer Parameters

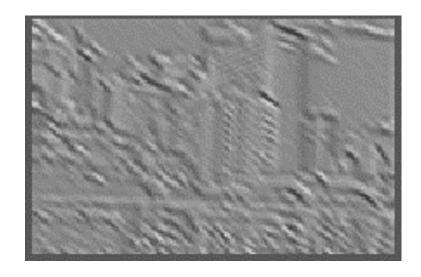
- **Summary:** Hyperparameters
 - Kernel size
 - Stride
 - Amount of zero-padding
 - Output channels
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Typically, also use a single bias term for each convolution filter

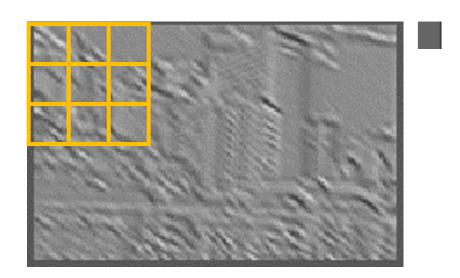
Convolution Layers



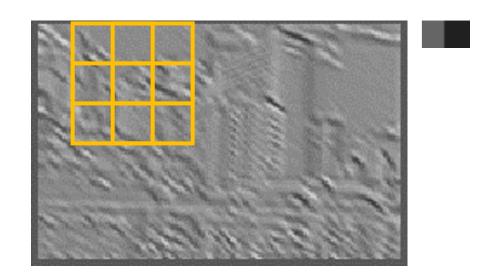
- Kernel size 3, stride 2, padding 1
- 3 input channels
 - Hence kernel size 3×3×3
- 2 output channels
 - Hence 2 kernels
- Total # of parameters:
 - $(3 \times 3 \times 3 + 1) \times 2 = 56$



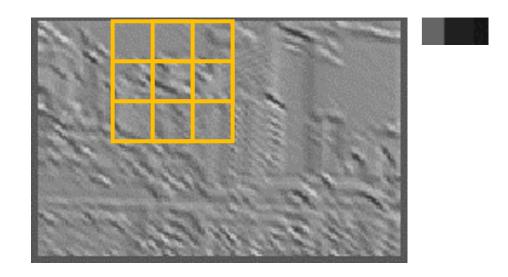




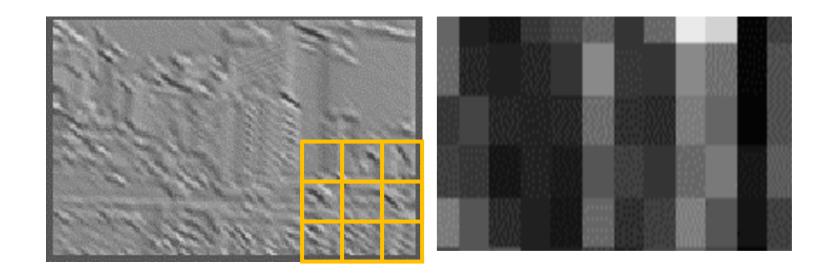
$$output[0,0] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} image[0 + \tau, 0 + \gamma]$$



$$\operatorname{output}[0,1] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} \operatorname{image}[0 + \tau, 1 + \gamma]$$



$$output[0,2] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} image[0 + \tau, 2 + \gamma]$$



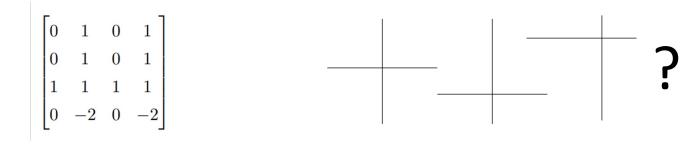
$$output[i,j] = \max_{0 \le \tau < k} \max_{0 \le \gamma < k} image[i + \tau, j + \gamma]$$

- **Summary:** Hyperparameters
 - Kernel size
 - Stride (usually >1)
 - Amount of zero-padding
 - Pooling function (almost always "max")
- Together, these determine the relationship between the input tensor shape and the output tensor shape
- Note: Unlike convolution, pooling operates on channels separately
 - Thus, n input channels $\rightarrow n$ output channels

Summary: Convolution vs. Pooling

- Convolution layers: Translation equivariant
 - If object is translated, convolution output is translated by same amount
 - Produce "image-shaped" features that retain associations with input pixels
- Pooling layers: Translation invariant
 - Binning to make outputs insensitive to translation
 - Also reduces dimensionality
- Combined in modern architectures
 - Convolution to construct equivariant features
 - Pooling to enable invariance

• Suppose we want to predict whether an image depicts Cartesian axes



input image

target (binary) label

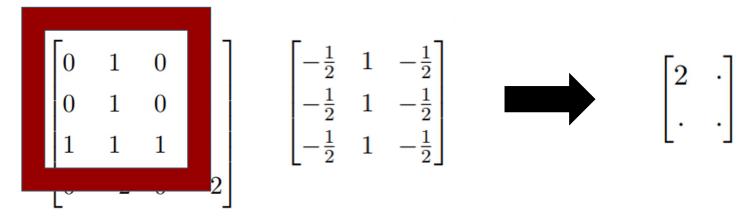
- Step 1: Convolve the image with two filters
 - No padding, stride 1
- Step 2: Run max pooling

$$\begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

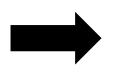
convolution filters

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & -2 & 0 & -2 \end{bmatrix} \qquad \begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$

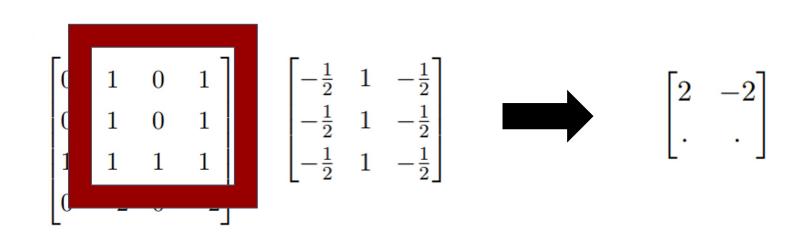


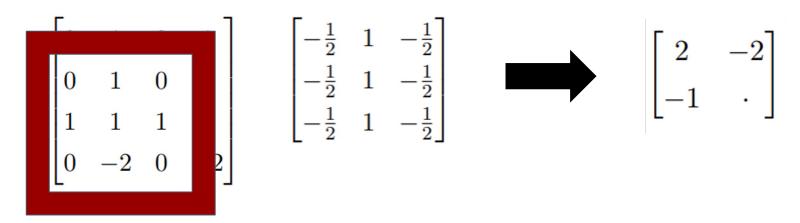
$$\begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$



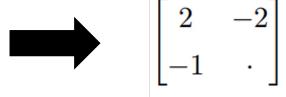
$$\begin{bmatrix} 2 & \cdot \\ \cdot & \cdot \end{bmatrix}$$

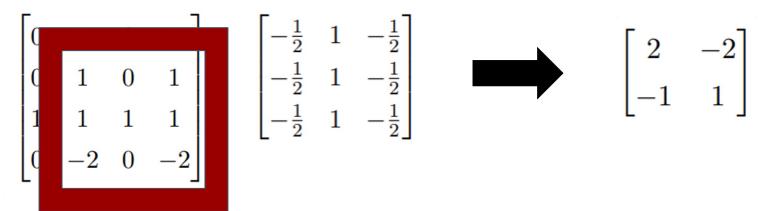
$$\left(0 \times \frac{-1}{2}\right) + (1 \times 1) + \left(0 \times \frac{-1}{2}\right)$$
$$\left(0 \times \frac{-1}{2}\right) + (1 \times 1) + \left(0 \times \frac{-1}{2}\right)$$
$$\left(0 \times \frac{-1}{2}\right) + (1 \times 1) + \left(0 \times \frac{-1}{2}\right) = 2$$





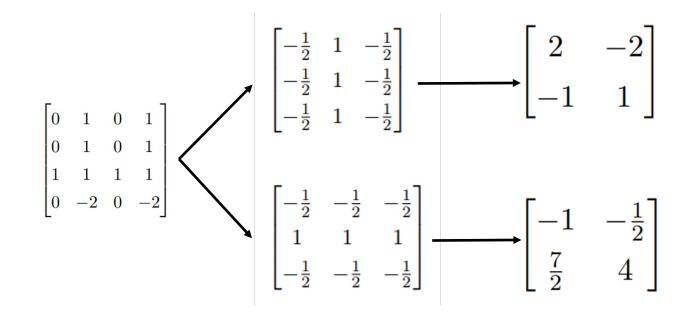
$$\begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$





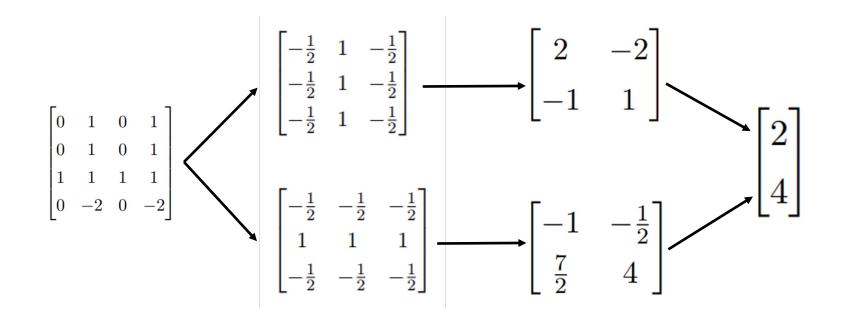
$$\begin{bmatrix} -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$$



Input image Convolution

Features

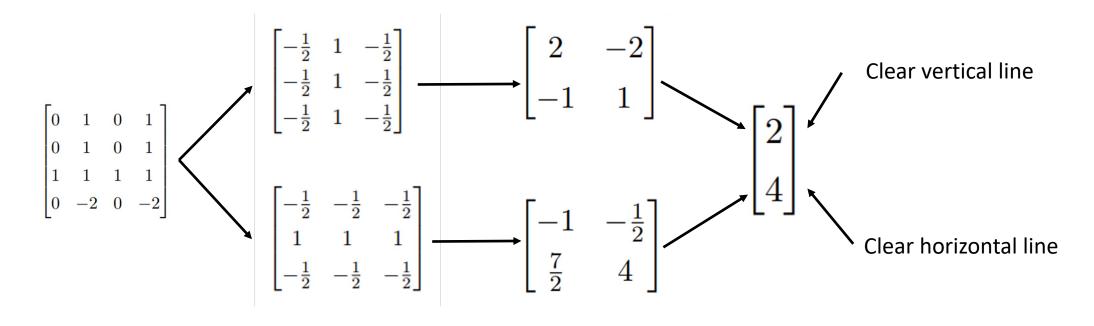


Input image

Convolution

Features

Pooling



Input image

Convolution

Features

Pooling

Agenda

- Convolutional & pooling layers
- Convolutional neural networks
- Feature visualization
- Applications

Example Architecture: AlexNet

ImageNet dataset

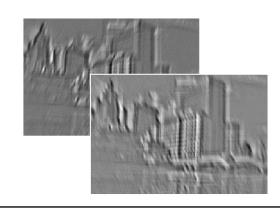
- 1000 class image classification problem (e.g., grey fox, tabby cat, barber chair)
- >1M image-label pairs gathered from internet and crowdsourced labels

AlexNet Architecture (Krizhevsky 2012)

- Historically important architecture
- Image classification network (~60M parameters)
- Trained using GPUs on ImageNet dataset
- Huge improvement in performance compared to prior state-of-the-art

Example Architecture: AlexNet

output Fully connected fc, 1000 (i.e., linear) layers fc, 4096 fc, 4096 **Input** 3x3 conv, 256, pool/2 3x3 conv, 384 3x3 conv, 384 5x5 conv, 256, pool/2 11x11 conv, 96, /4, pool/2 input



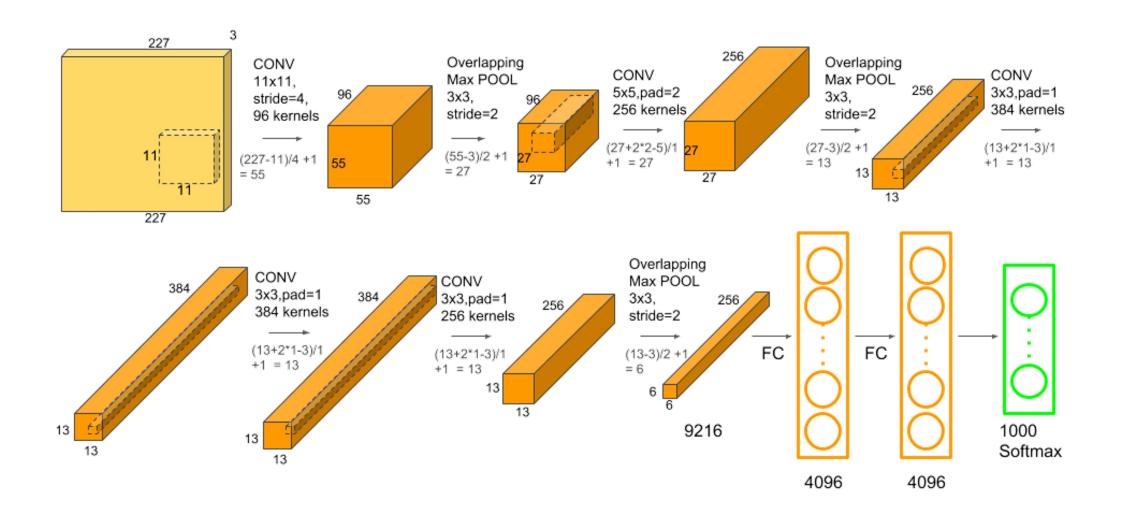
Local Response Normalization

Pooling (kernel size 3, stride 2, no padding)

ReLU Activation

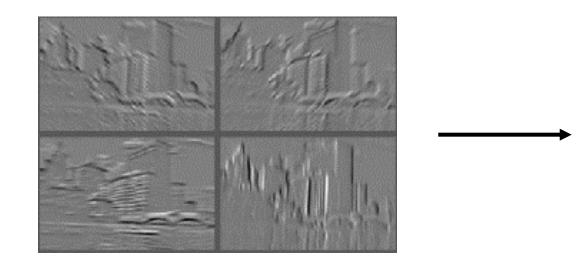
Convolution (kernel size 11, stride 4, 96 output channels, no padding)

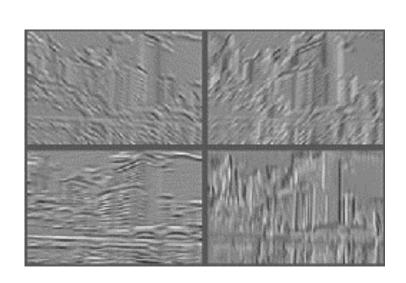
Example Architecture: AlexNet



Aside: Local Response Normalization

- Highlights areas where the feature maps change
- Historically a standard layer, but no longer used
- Also called "contrastive normalization"



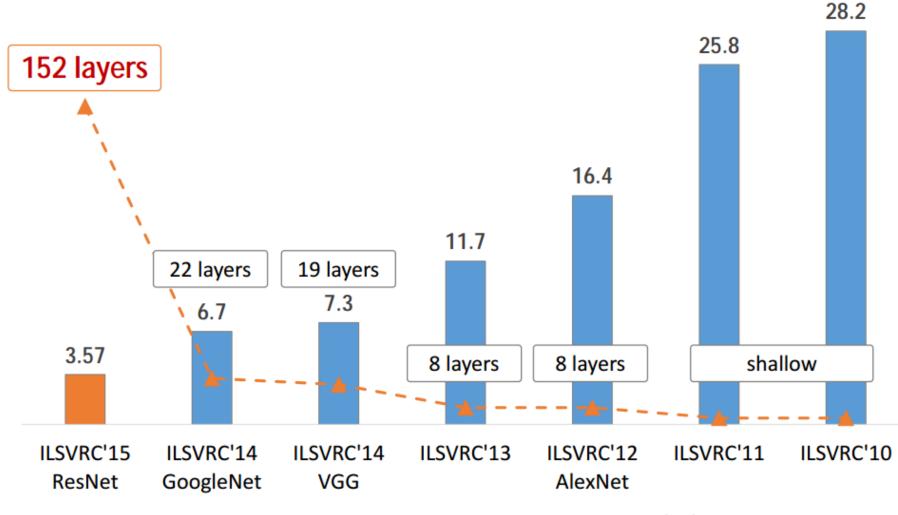


Convolutional Neural Networks

• "Convolutional layer" often refers to sequence of layers

- Modern sequence of layers
 - Convolution → Batch Normalization → Pooling → ReLU
 - Convolution → Batch Normalization → ReLU → Pooling
- Can also omit pooling (especially for very deep neural networks)

Evolution of Neural Networks



ImageNet Classification top-5 error (%)

Evolution of Neural Networks

AlexNet, 8 layers (ILSVRC 2012) ~60M params

VGG, 19 layers (ILSVRC 2014) ~140M params

ResNet, 152 layers (ILSVRC 2015)

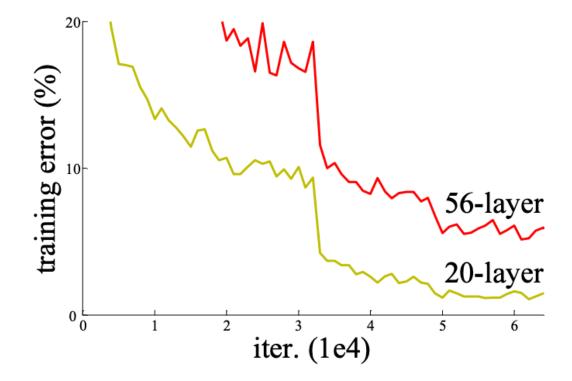
Less computation in forward pass than VGGNet! Back to 60M params

GoogleNet, 22 layers (ILSVRC 2014) ~5M params

Residual Connections

Challenges with deeper networks

- Overfitting?
- No, 56 layer network underfits!



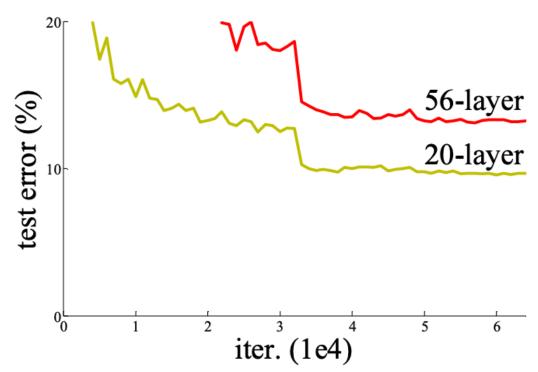


Image credit: He et al, Residual Nets, 2015

Residual Connections

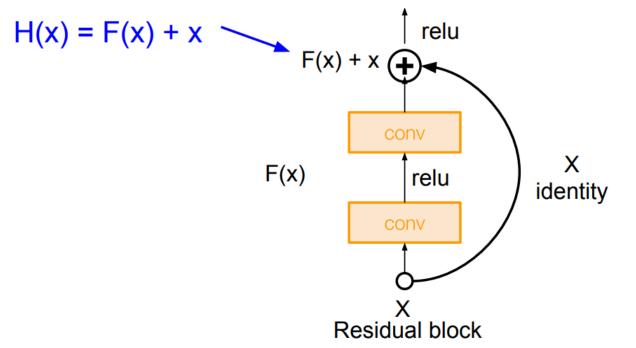
Challenges with deep networks

- Overfitting?
- No, 56 layer network underfits!

Optimization/representation

 Difficulty representing the identity function!

- Solution: "Skip" connections
 - Facilitate direct feedback from loss
 - Easy to represent identity function



Residual Connections

• Residual layers: Given any convolutional layer F(x), use

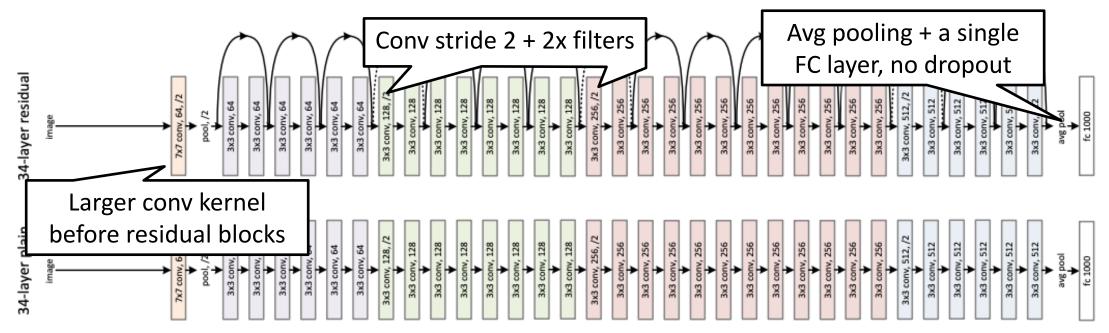
$$H(x) = F(x) + x$$

- Two views of residual connections:
 - View 1: Providing shortcuts to gradients on the backward pass
 - View 2: Allow each "residual block" to fit the residual error (boosting!)

$$F(x) = H(x) - x$$

Residual Networks

- Stack lots of residual blocks!
 - Kernel size 3, no padding, stride 1, no pooling
 - Reduce feature dimensions by using stride 2 once every K blocks
 - Maintains feature size to build very deep nets



Residual Networks

- For deeper networks, improve efficiency through 1x1 convolutions
- Many other improvements since 2015!
 - E.g., "ResNeXt", "Identity Mappings", "ConvNeXt" etc.

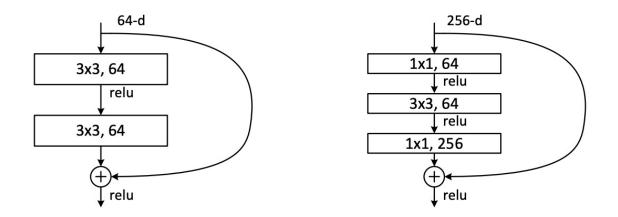
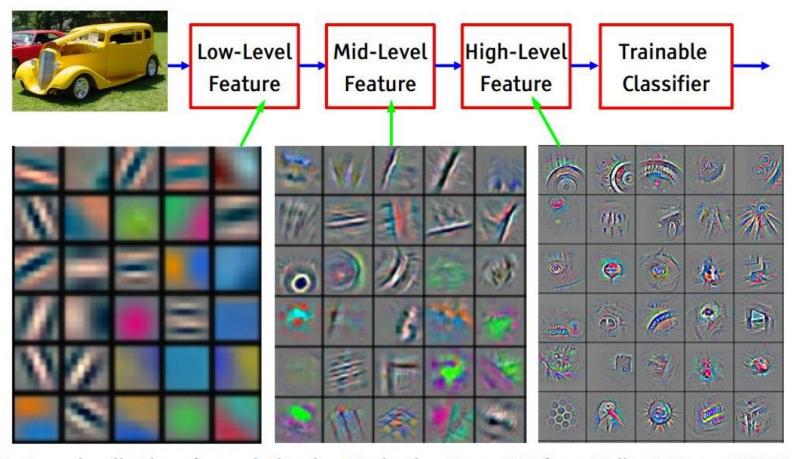


Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

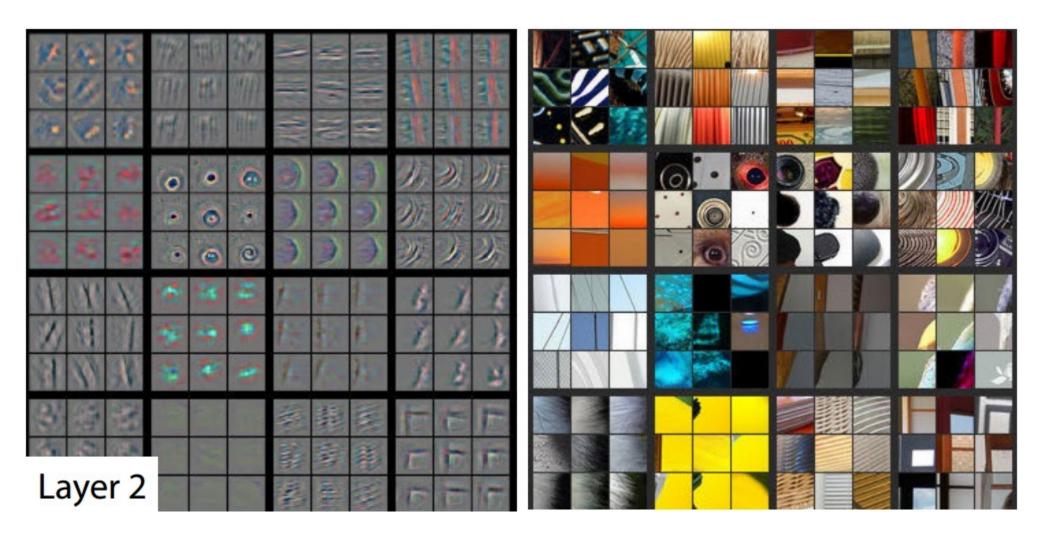
Agenda

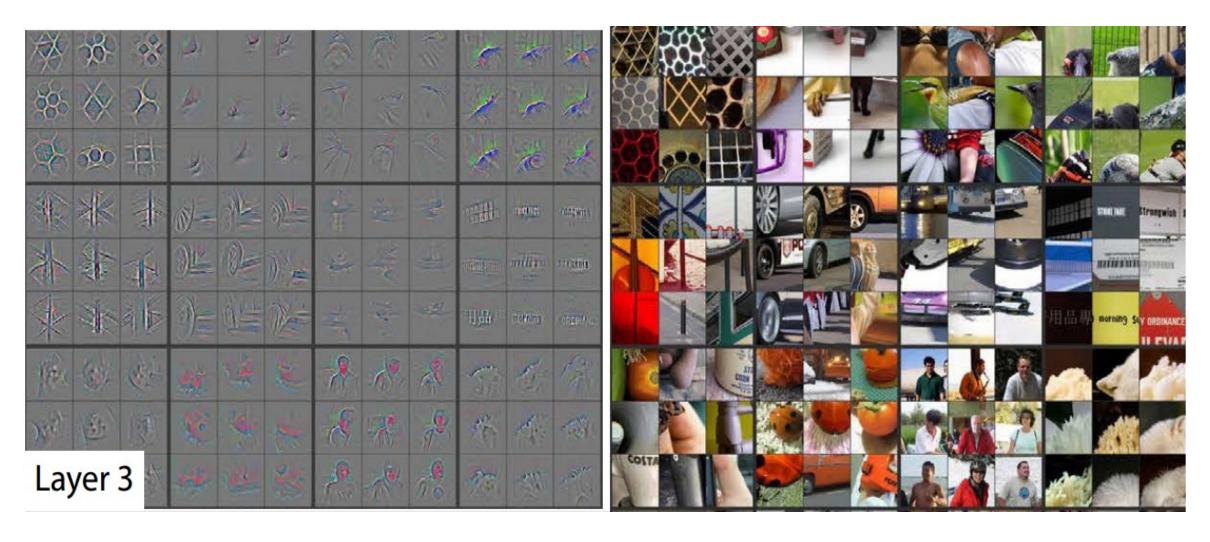
- Convolutional & pooling layers
- Convolutional neural networks
- Feature visualization
- Applications

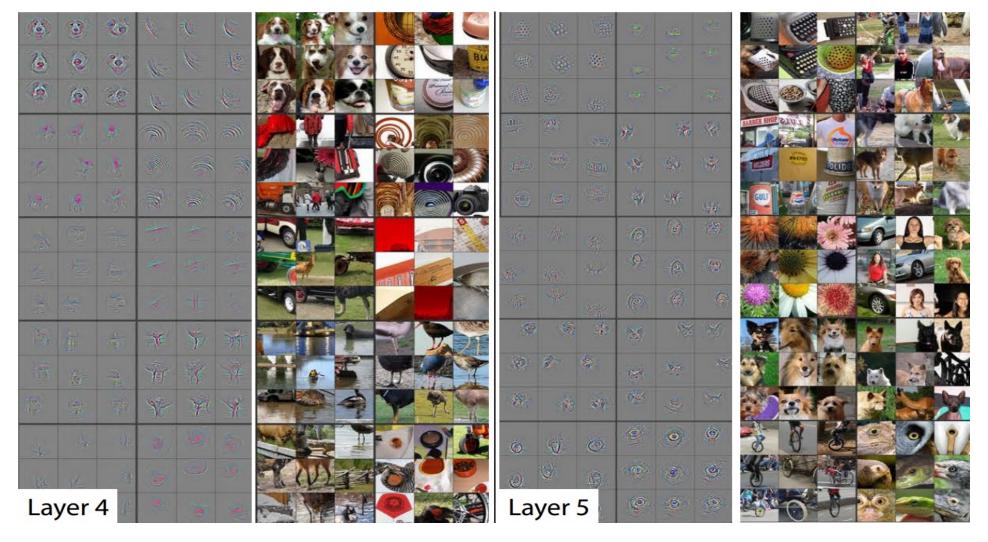
Feature Visualization



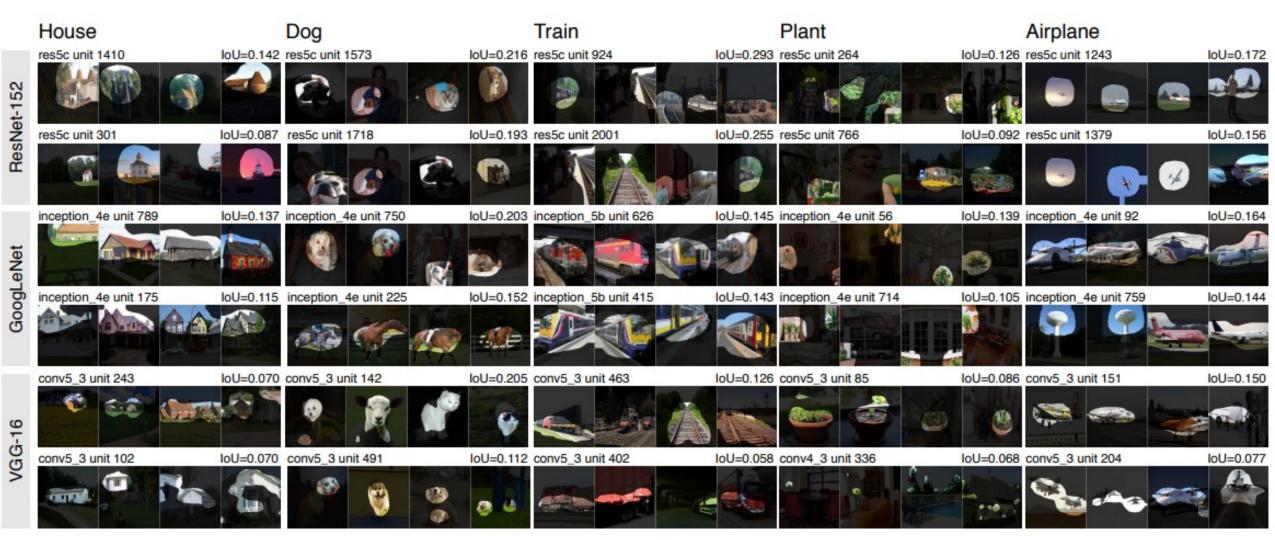
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]







Neural Network Dissection



What About Small Datasets?

- Transfer learning: We can reuse trained concepts!
 - Since CNNs trained on ImageNet appear to learn general features
 - We can reuse these models in some way to perform new tasks
- Strategy 1: Feature extraction
 - Remove final (softmax) layer and replace with a new one
 - Train only the new layer
- Strategy 2: Finetuning
 - Do the same thing but train end-to-end

What About Small Datasets?

- New dataset is similar to the original dataset
 - Can use very small datasets
 - Both strategies work
- New dataset is different from original dataset
 - Transfer learning still works!
 - Moderate-sized datasets
 - Finetune end-to-end
 - Examples: Medical images, audio spectrograms, etc.

Agenda

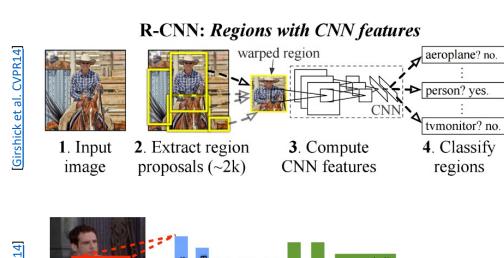
- Convolutional & pooling layers
- Convolutional neural networks
- Feature visualization
- Applications

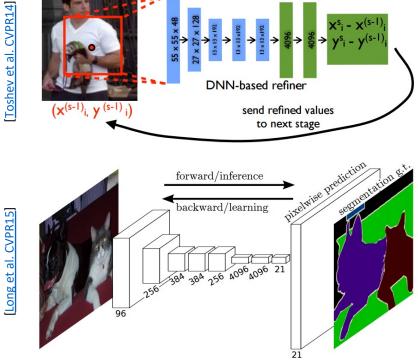
Applications

Object detection

Pose detection (regression)

Semantic segmentation



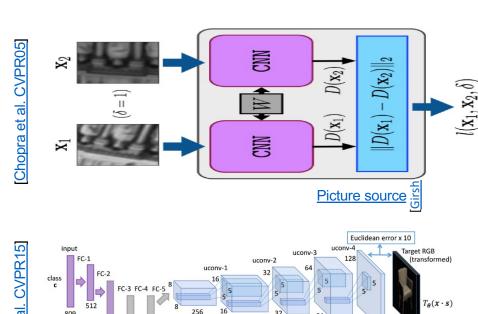


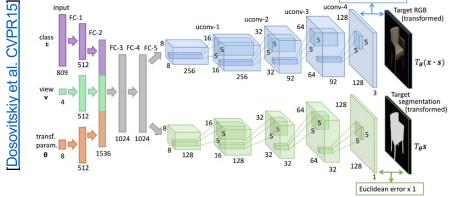
Applications

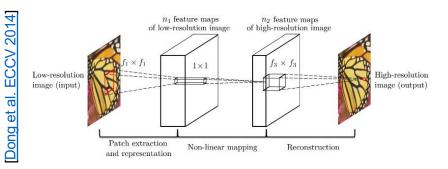
Similarity metric learning

Image generation

Low-level image processing: (superresolution, deblurring, image quality etc.)



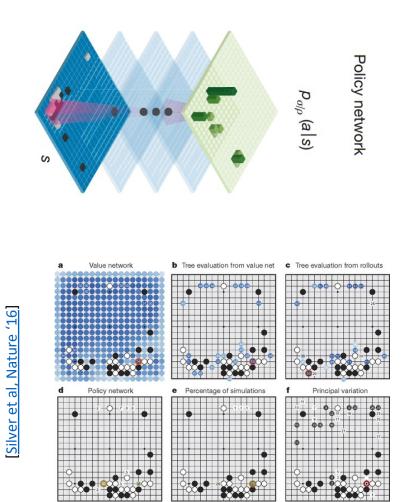




Applications: Game Playing

CNN + Reinforcement learning

[Mnih et al, Nature' 15]



Applications: Art Generation

See if you can tell artist originals from machine style imitations at: http://turing.deepart.io/

Paper: <u>Gatys et al, "Neural ... Style", arXiv '15</u> Code (torch): <u>https://github.com/jcjohnson/neural-style</u>