Announcements

* HW 4 due Wednesday, November 2 at 8pm
* Quiz 7 due Thursday, October 27 at 8pm

* | am not holding office hours for today



Lecture 15: Computer Vision (Part 3)

CIS 4190/5190
Fall 2022



Recap: Pooling & Convolution

* Use layers that capture structure
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Convolution layers Pooling layers
(Capture equivariance) (Capture invariance)

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d _max_pooling pal.png



https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

Recap: Convolution Layers

filter[z,y] - image[i + 7,/ + y]

graphic credit: S. Lazebnik



Recap: Pooling Layers

output[i, j] = [max Orsnya<xk imagel[i + 7,j + v]



Recap: Convolution vs. Pooling

* Convolution layers: Translation equivariant
* |f object is translated, convolution output is translated by same amount
* Produce “image-shaped” features that retain associations with input pixels

* Pooling layers: Translation invariant
* Binning to make outputs insensitive to translation
* Also reduces dimensionality

* Combined in modern architectures
e Convolution to construct equivariant features
* Pooling to enable invariance



Recap: AlexNet
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Recap: AlexNet
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Recap: Residual Connections

* Challenges with deep networks
* Overfitting?
* No, 56 layer network underfits!

HOO = FO9 +x ~ | relu

+ X

* Optimization/representation

X
« Difficulty representing the identity Fx) Ire'“ identity
function!
* Solution: “Skip” connections Residosl block

 Facilitate direct feedback from loss
* Easy to represent identity function

Image credit: Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Residual Networks

e Stack lots of residual blocks!

* Kernel size 3, no padding, stride 1, no pooling

* Reduce feature dimensions by using stride 2 once every K blocks
* Maintains feature size to build very deep nets

Conv stride 2 + 2x filters Avg pooling + a single

_ . FC layer, no dropout
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Image credit: He et al, Residual Nets, 2015



Recap: Transfer Learning/Finetuning

* Transfer learning: We can reuse trained concepts!
e Since CNNs trained on ImageNet appear to learn general features
* We can reuse these models in some way to perform new tasks

* Strategy 1: Feature extraction
 Remove final (softmax) layer and replace with a new one
* Train only the new layer

* Strategy 2: Finetuning
* Do the same thing but train end-to-end



Agenda

* Interpretability & Explainability
 Robustness to distribution shift

 Robustness to adversarial attacks



Interpretability & Explanability

* Interpretability: How does the model make predictions?
e Useful for debugging issues with the model
* Not feasible for deep neural networks

* Explainability: How did the model make a specific prediction?
e “Local” interpretation that can still be very useful for debugging



Input Gradients

* Consider the gradient of the loss with respect to the input:
S = vxz(fﬁ(x)l y)

e Intuition

* The gradient s; ; captures the effect of perturbing input x; ; on the loss when
assuming the true label is vy

* Larger gradients = more “important” feature
* Note: v does not need to be the true label!



Saliency Maps

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. 2013



Lots of Modifications

* Guided backpropagation: Zero out negative signals in backward pass
* Integrated gradients: Average over range of gradients

* Local explanations: Use sampling + fit model instead of gradient



Local Explanations

* Construct dataset
7 = (x +¢€, fp(x + E))
* Here, € ~ N(0,?) isi.i.d. Gaussian noise
* Fit a linear model to this dataset Z

* “Smoothed” saliency maps (recover saliency maps as o — 0)

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Local Explanations
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Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Local Explanations

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception network, high-
lighting positive pixels. The top 3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar”
(p = 0.24) and “Labrador” (p = 0.21)

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Neuron Visualization

* Neuron visualization: Look at V. gz (x) for an intermediate layer 9p

* Network dissection: Look at groups of pixels corresponding to objects



Neuron Visualization

Low-Level
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Mid-Level
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Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide credit: Yann LeCun



Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
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Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Slide credit: Jia-Bin Huang


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Neural Network Dissection
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http://netdissect.csail.mit.edu/



http://netdissect.csail.mit.edu/

Why Are Explanations Useful?

* Models do not always use the information we expect them to!



An Interesting Local Explanation

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf”’ task.

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Correlated Inputs/Features

* Suppose two features x; and x, are highly correlated

* Which one should the model use to predict the label y?
* Doesn’t make a difference!

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Correlated Inputs/Features

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf”’ task.

Ribeiro et al., “Why Should | Trust You? Explaining the Predictions of Any Classifier”, 2016



Problematic Correlations

* In practice, unexpected features can be correlated with the output

 Example
* Model predicts “has asthma” = “lower pneumonia risk”

* Why?

* Explanation
* A patient who has asthma is more careful and receives better medical care

e Patients with asthma have better outcomes for pneumonia!
* Does not mean we should label asthma patients as lower risk!

Caruana et al., “Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission”, 2015



Example: Diabetes prediction

* Input: ~400 patient features (e.g., lab tests, current medications, etc.)

* Label: Does the patient have diabetes?
* Train a decision tree to solve this problem

Bastani et al., “Interpreting Blackbox Models via Model Extraction”, 2017



Example: Diabetes prediction

Acting more
carefully

Age > 48

ni/ \y‘es

High cholesterol (272.2) High blood pressure

\ yes

Impaired fasting gluco

Age>43

noz \y:s

no'/ lyes

High risk

I \ies

Nicotine dependence

no / \‘yes

High risk Low risk Chest pain
ni/ \ies
Muscle pain and inflammation Low risk
ni/ \y:s
Antidepressant medication (Duloxetine) Low risk

Bastani et al., “Interpreting Blackbox Models via Model Extraction”, 2017

no / \yes

High risk

Low risk

In the hospital for
other reasons
(“Explaining away”)



Example: Chest X-Rays

Atelectasis | Cardiomegaly Effusion " Infiltration

' Pneumothorax

Figure 1. Eight common thoracic diseases observed in chest X-rays
that validate a challenging task of fully-automated diagnosis.

Mass Nodule Pneumonia

Wang et al., ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, 2017



Example: Chest X-Rays

* Task: Diagnose pneumothorax from chest x-ray

* Problem: Some of the patients were already treated!
* Treatment is visible in chest x-ray
* Deep neural network is predicting who was already treated!

Oakden-Rayner, Exploring large scale public medical image datasets, 2017



Potential Solutions

* No general solutions (yet)

* Good practices
* Be very careful with data processing/cleaning
* Use existing interpretability techniques to better understand model
* Work closely with domain experts to examine potential data/model issues



Agenda

* Interpretability & Explainability
 Robustness to distribution shift

 Robustness to adversarial attacks



Robustness to Distribution Shift

* Neural networks generalize well on distribution

* Ideal scenario
* Test set and training set are i.i.d. from the same distribution

* Equivalently: Test set is obtained by shuffling entire dataset and then splitting

» Often fails in practice! “Distribution shift”



Robustness to Distribution Shift

* Images/computer vision
* Added noise, color shifts, lighting changes, different resolution, etc.

* Audio/speech-to-text
* Noisy background, changes in recording device, etc.

* Natural language processing
e Substitute synonyms, add unrelated text, etc.



Example: Synthetic Perturbations




Example: Synthetic Perturbations

* Question: Why should the model be robust?

e Answer: Humans are robust!



Example: Synthetic Perturbations

* Significantly reduces performance
e 20% error rate = 80% error rate

e Data augmentation can help (but not 100% solution)



Example: Synthetic Perturbations

ImageNet Error Across Severities
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Hendrycks et al., AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, 2020



Example: Natural Language Processing

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Jia & Liang, Adversarial Examples for Evaluating Reading Comprehension Systems, 2021



Example: Real Perturbations
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Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020




Example: Real Perturbations
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Example: Real Perturbations
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Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



Potential Solutions

* No general strategy (yet)

* Good practices
* Train on as large & diverse of a dataset as possible
* Use data augmentation when possible
* If available, finetune on location-specific dataset (transfer learning)



Agenda

* Interpretability & Explainability
 Robustness to distribution shift

 Robustness to adversarial attacks



Robustness to Adversarial Attacks

* Example:
* Want to reject email attachment if it contains malicious code
* Use machine learning to predict if code is malicious

 What can go wrong?

» Attacker perturbs code (e.g., add random lines of dead code) until it is labeled
benign by the machine learning model!

* Strong form of robustness is needed



Example: Function Name Prediction

» Task: Given a function (e.g., as a string), predict its name

e Attack: Add a random line of irrelevant code

Yefet et al., Adversarial examples for models of code, 2019



Example: Function Name Prediction

void £1(int[] array) {
boolean swapped = true;
for (int i = 0;
i < array.length && swapped;
swapped = false;
for (int j = 0;
j < array.length-1-i; j++) {
if (array[j] > array[j+1])
int temp = array|[]];
array[j] = array[j+1l];
array[jt+l]= temp;
swapped = true;

i++) {

{

void £3(int[] array) {

boolean swapped = true;

for (int 1 = 0;
i < array.length && swapped;
swapped = false;
for (int j = 0;
j < array.length-1-i; j++) {

if (arrayl[j] > array[j+1]) {
int temp = arrayl[]l;

i++) {

array[]j] = array[j+1];
array[j+1l]= temp;
swapped = true;

}
}
} int upperhexdigits;

}

Prediction: sort (98.54%)

Prediction: escape (100%)

Yefet et al., Adversarial examples for models of code, 2019




Robustness to Adversarial Perturbations

e Task:

 Photo ID verification

* Goal is to check whether uploaded
photo matches a photo ID

e Attack:

* User perturbs their image to match
the photo in the ID

* Challenge for machine learning in

Number D448392974

ARIZONA = s

DRIVER LICENSE

/1
Birth  02/24/:

ALEXIS CRAWFORD
9283 DUSTBIN WAY
MESA, AZ 85002

Class D Sex: F

&h . Height 5-08
- Weight 149
A2 V

online identity verification!
(Valid photo ID from Papesh 2018)



Robustness to Adversarial Perturbations

* Robustness: Similar images = same label

* Goal: Robust to any small perturbation in some family
* Note: Very far from solving this problem

* Key question: What is “some family”?



Robustness to Adversarial Perturbations

* (Very limited) example for images:

|x — x|l < € = same label

* Question: Why should the model be robust to these perturbations?
* Should not change the label
* Humans are robust!



Robustness to Adversarial Perturbations

“panda” “gibbon”

57.7% confidence 09.3% confidence

Szegedy et al., Intriguing Properties of Neural Networks, 2014



Robustness to Adversarial Perturbations

 Strategy for improving adversarial robustness
* Data augmentation!
* Adversarial training: Use adversary to generate new examples for training

e Does it work?

Goodfellow et al., Explaining and harnessing adversarial examples, 2015



Improving Robustness?

Adversarial Robustness

non-robustness

0 5 10 15 20
epsilon

B Original NN I Robust NN

Goodfellow et al., Explaining and harnessing adversarial examples, 2015



Improving Robustness?

* Problem
* Only robust to the current adversary
 What if the adversary changes? Distribution shift!

 Example
* Adversarial training using one adversary
* Test against a more powerful adversary

Bastani et al., Measuring robustness of neural networks via constraints, 2016



Improving Robustness?

Algorithm’s Own Metric Our Metric

non-robustness
non-robustness

0 5 10 15 20 0 5 10
epsilon epsilon

B Original NN I Robust NN

Bastani et al., Measuring robustness of neural networks via constraints, 2016
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Potential Solutions

* No general strategy (yet)

* Good practices
* Use the strongest adversary you can design
e Use variety of different adversaries



Can Uncertainty Help?

* Recall: Most neural networks predict an uncertainty
pp(y | x)
* ldea: Can we use uncertainty to detect adversarial attacks?

* Answer: No!
e Adversarial examples can have very high confidence
* Probabilities can be overconfident even for normal test examples!



Potential Solutions

* General solutions for non-adversarial setting: Calibrated prediction

* Intuition: Among examples where neural network predicts it is
correct with probability p, it is correct for a fraction =~ p

* Algorithms: Temperature scaling, isotonic regression, etc.

Guo et al., On the calibration of modern neural networks, 2017



Potential Solutions

* No general solutions for adversarial setting

* Good practices
* Don’t blindly trust predicted probabilities!



Can Explanations Help?

* ldea: Check if explanation makes sense

* Question: Are explanations of neural networks robust?

Explain(x + €) = Explain(x)
* Answer: No!

* Not even robust to distribution shift



Fragility of Explanations

Simple Gradient

“‘Llama” : Confidence 55.4 Feature-Importance Map

Original

Perturbed

Ghorbani et al., Interpretation of neural networks is fragile, 2017



Fragility of Explanations
* Not just a problem for neural networks!

If Current-Offense = Felony:

If Race # African American: _ _ _ If Prior-FTA = Yes and Prior-Arrests = 1, then Risky
If Prior-Felony = Yes and Crime-Status = Active, then Risky If Crime-Status = Active and Owns-House = No and Has-Kids = No, then Risky
If Prior-Convictions = 0, then Not Risky If Prior-Convictions = 0 and College = Yes and Owns-House = Yes, then Not Risky
If Current-Offense = Misdemeanor and Prior-Arrests > 1:
If Race = African American: If Prior-Jail-Incarcerations = Yes, then Risky
If Pays-rent = No and Gender = Male, then Risky If Has-Kids = Yes and Married = Yes and Owns-House = Yes, then Not Risky .
If Lives-with-Partner = No and College = No, then Risky If Lives-with-Partner = Yes and College = Yes and Pays-Rent = Yes, then Not Risky

If Age =35 and Has-Kids = Yes, then Not Risky

If Wages >70K, then Not Risky If Current-Offense = Misdemeanor and Prior-Arrests < 1:

If Has-Kids = No and Owns-House = No and Prior-Jail-Incarcerations = Yes, then Risky
If Age > 50 and Has-Kids = Yes and Prior-FTA = No, then Not Risky

Default: Not Risky Default: Not Risky

Lakkaraju & Bastani, “How do | fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Misleading Explanations

* Can construct explanations to mislead users into trusting a model

* Strategy
* Design a set of features that users believe are trustworthy

* Generate an explanation that highlights these features as important

e Users believe the model is using trustworthy features even if it is not

Lakkaraju & Bastani, “How do | fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Misleading Explanations

1.0-

0.8 -

0.6 -

E1l & E3 are misleading

a explanations
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Black box B and its explanations

Lakkaraju & Bastani, “How do | fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Potential Solutions

* No general strategy (yet)

* Good practices
* Be careful when interpreting explanations!



Conclusion

* Robustness and interpretability remain key challenges for neural
networks (and machine learning more broadly)

* Good practices

* Use variety of techniques to try and understand what models are doing
(interpretation, extensive testing on different examples, etc.)

* Be careful when training models!
* Monitor performance of models running in production

* Lots of ongoing research!



