
Announcements

• HW 4 due Wednesday, November 2 at 8pm

• Quiz 7 due Thursday, October 27 at 8pm

• I am not holding office hours for today



Lecture 15: Computer Vision (Part 3)

CIS 4190/5190
Fall 2022



Recap: Pooling & Convolution

• Use layers that capture structure

Convolution layers
(Capture equivariance)

Pooling layers
(Capture invariance)
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://peltarion.com/static/2d_max_pooling_pa1.png


Recap: Convolution Layers

graphic credit: S. Lazebnik
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Recap: Pooling Layers
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Recap: Convolution vs. Pooling

• Convolution layers: Translation equivariant
• If object is translated, convolution output is translated by same amount
• Produce “image-shaped” features that retain associations with input pixels

• Pooling layers: Translation invariant
• Binning to make outputs insensitive to translation
• Also reduces dimensionality

• Combined in modern architectures
• Convolution to construct equivariant features
• Pooling to enable invariance



Recap: AlexNet

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2
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Convolution (kernel size 11, stride 4, 
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Pooling (kernel size 3, stride 2,
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Local Response Normalization

Input

slide credit: S. Lazebnik



Recap: AlexNet



Recap: Residual Connections

• Challenges with deep networks
• Overfitting?
• No, 56 layer network underfits!

• Optimization/representation
• Difficulty representing the identity 

function!

• Solution: “Skip” connections
• Facilitate direct feedback from loss
• Easy to represent identity function

Image credit: Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Residual Networks

• Stack lots of residual blocks!
• Kernel size 3, no padding, stride 1, no pooling
• Reduce feature dimensions by using stride 2 once every 𝐾 blocks
• Maintains feature size to build very deep nets

Image credit: He et al, Residual Nets, 2015

Conv stride 2 + 2x filters Avg pooling + a single 
FC layer, no dropout

Larger conv kernel 
before residual blocks



Recap: Transfer Learning/Finetuning

• Transfer learning: We can reuse trained concepts!
• Since CNNs trained on ImageNet appear to learn general features
• We can reuse these models in some way to perform new tasks

• Strategy 1: Feature extraction
• Remove final (softmax) layer and replace with a new one
• Train only the new layer

• Strategy 2: Finetuning
• Do the same thing but train end-to-end



Agenda

• Interpretability & Explainability

• Robustness to distribution shift

• Robustness to adversarial attacks



Interpretability & Explanability

• Interpretability: How does the model make predictions?
• Useful for debugging issues with the model
• Not feasible for deep neural networks

• Explainability: How did the model make a specific prediction?
• “Local” interpretation that can still be very useful for debugging



Input Gradients

• Consider the gradient of the loss with respect to the input:

𝑠 = ∇7 $𝐿 𝑓8 𝑥 , 𝑦

• Intuition
• The gradient 𝑠!,# captures the effect of perturbing input 𝑥!,# on the loss when 

assuming the true label is 𝑦
• Larger gradients à more “important” feature
• Note: 𝑦 does not need to be the true label!



Saliency Maps

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. 2013



Lots of Modifications

• Guided backpropagation: Zero out negative signals in backward pass

• Integrated gradients: Average over range of gradients

• Local explanations: Use sampling + fit model instead of gradient



Local Explanations

• Construct dataset

𝑍 = 𝑥 + 𝜖, 𝑓8 𝑥 + 𝜖

• Here, 𝜖 ∼ 𝑁 0, 𝜎$ is i.i.d. Gaussian noise

• Fit a linear model to this dataset 𝑍

• “Smoothed” saliency maps (recover saliency maps as 𝜎 → 0)

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Local Explanations

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Local Explanations

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Neuron Visualization

• Neuron visualization: Look at ∇7𝑔8 𝑥 for an intermediate layer 𝑔8

• Network dissection: Look at groups of pixels corresponding to objects



Neuron Visualization

Slide credit: Yann LeCun



Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
Slide credit: Jia-Bin Huang

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Neural Network Dissection

http://netdissect.csail.mit.edu/

http://netdissect.csail.mit.edu/


Why Are Explanations Useful?

• Models do not always use the information we expect them to!



An Interesting Local Explanation

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Correlated Inputs/Features

• Suppose two features 𝑥9 and 𝑥: are highly correlated

• Which one should the model use to predict the label 𝑦?
• Doesn’t make a difference!

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Correlated Inputs/Features

Ribeiro et al., “Why Should I Trust You? Explaining the Predictions of Any Classifier”, 2016



Problematic Correlations

• In practice, unexpected features can be correlated with the output

• Example
• Model predicts “has asthma” à “lower pneumonia risk”
• Why?

• Explanation
• A patient who has asthma is more careful and receives better medical care
• Patients with asthma have better outcomes for pneumonia!
• Does not mean we should label asthma patients as lower risk!

Caruana  et al., “Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission”, 2015



Example: Diabetes prediction

• Input: ~400 patient features (e.g., lab tests, current medications, etc.)
• Label: Does the patient have diabetes?
• Train a decision tree to solve this problem

Bastani et al., “Interpreting Blackbox Models via Model Extraction”, 2017



Example: Diabetes prediction

Bastani et al., “Interpreting Blackbox Models via Model Extraction”, 2017

In the hospital for 
other reasons

(“Explaining away”)

Acting more 
carefully



Example: Chest X-Rays

Wang et al., ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, 2017



Example: Chest X-Rays

• Task: Diagnose pneumothorax from chest x-ray

• Problem: Some of the patients were already treated!
• Treatment is visible in chest x-ray
• Deep neural network is predicting who was already treated!

Oakden-Rayner, Exploring large scale public medical image datasets, 2017



Potential Solutions

• No general solutions (yet)

• Good practices
• Be very careful with data processing/cleaning
• Use existing interpretability techniques to better understand model
• Work closely with domain experts to examine potential data/model issues



Agenda

• Interpretability & Explainability

• Robustness to distribution shift

• Robustness to adversarial attacks



Robustness to Distribution Shift

• Neural networks generalize well on distribution

• Ideal scenario
• Test set and training set are i.i.d. from the same distribution
• Equivalently: Test set is obtained by shuffling entire dataset and then splitting

• Often fails in practice! “Distribution shift”



Robustness to Distribution Shift

• Images/computer vision
• Added noise, color shifts, lighting changes, different resolution, etc.

• Audio/speech-to-text
• Noisy background, changes in recording device, etc.

• Natural language processing
• Substitute synonyms, add unrelated text, etc.



Example: Synthetic Perturbations



Example: Synthetic Perturbations

• Question: Why should the model be robust?

• Answer: Humans are robust!



Example: Synthetic Perturbations

• Significantly reduces performance
• 20% error rate à 80% error rate

• Data augmentation can help (but not 100% solution)



Example: Synthetic Perturbations

Hendrycks et al., AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty, 2020



Example: Natural Language Processing

Jia & Liang, Adversarial Examples for Evaluating Reading Comprehension Systems, 2021



Example: Real Perturbations

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



Example: Real Perturbations

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



Example: Real Perturbations

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



Potential Solutions

• No general strategy (yet)

• Good practices
• Train on as large & diverse of a dataset as possible
• Use data augmentation when possible
• If available, finetune on location-specific dataset (transfer learning)



Agenda

• Interpretability & Explainability

• Robustness to distribution shift

• Robustness to adversarial attacks



Robustness to Adversarial Attacks

• Example:
• Want to reject email attachment if it contains malicious code
• Use machine learning to predict if code is malicious

• What can go wrong?
• Attacker perturbs code (e.g., add random lines of dead code) until it is labeled 

benign by the machine learning model!
• Strong form of robustness is needed



Example: Function Name Prediction

• Task: Given a function (e.g., as a string), predict its name

• Attack: Add a random line of irrelevant code

Yefet et al., Adversarial examples for models of code, 2019



Example: Function Name Prediction

Yefet et al., Adversarial examples for models of code, 2019



Robustness to Adversarial Perturbations

• Task:
• Photo ID verification
• Goal is to check whether uploaded 

photo matches a photo ID

• Attack: 
• User perturbs their image to match 

the photo in the ID
• Challenge for machine learning in 

online identity verification!
(Valid photo ID from Papesh 2018)



Robustness to Adversarial Perturbations

• Robustness: Similar images ⇒ same label

• Goal: Robust to any small perturbation in some family
• Note: Very far from solving this problem

• Key question: What is “some family”?



Robustness to Adversarial Perturbations

• (Very limited) example for images:

𝑥 − 𝑥; < ≤ 𝜖 ⇒ same label

• Question: Why should the model be robust to these perturbations?
• Should not change the label
• Humans are robust!



Szegedy et al., Intriguing Properties of Neural Networks, 2014

Robustness to Adversarial Perturbations



Robustness to Adversarial Perturbations

• Strategy for improving adversarial robustness
• Data augmentation!
• Adversarial training: Use adversary to generate new examples for training

• Does it work?

Goodfellow et al., Explaining and harnessing adversarial examples, 2015
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Goodfellow et al., Explaining and harnessing adversarial examples, 2015



Improving Robustness?

• Problem
• Only robust to the current adversary
• What if the adversary changes? Distribution shift!

• Example
• Adversarial training using one adversary
• Test against a more powerful adversary

Bastani et al., Measuring robustness of neural networks via constraints, 2016
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Bastani et al., Measuring robustness of neural networks via constraints, 2016



Potential Solutions

• No general strategy (yet)

• Good practices
• Use the strongest adversary you can design
• Use variety of different adversaries



Can Uncertainty Help?

• Recall: Most neural networks predict an uncertainty

𝑝8 𝑦 𝑥

• Idea: Can we use uncertainty to detect adversarial attacks?

• Answer: No!
• Adversarial examples can have very high confidence
• Probabilities can be overconfident even for normal test examples!



Potential Solutions

• General solutions for non-adversarial setting: Calibrated prediction

• Intuition: Among examples where neural network predicts it is 
correct with probability 𝑝, it is correct for a fraction ≈ 𝑝

• Algorithms: Temperature scaling, isotonic regression, etc.

Guo et al., On the calibration of modern neural networks, 2017



Potential Solutions

• No general solutions for adversarial setting

• Good practices
• Don’t blindly trust predicted probabilities!



Can Explanations Help?

• Idea: Check if explanation makes sense

• Question: Are explanations of neural networks robust?

Explain 𝑥 + 𝜖 ≈ Explain 𝑥

• Answer: No!

• Not even robust to distribution shift



Fragility of Explanations

Ghorbani et al., Interpretation of neural networks is fragile, 2017



Fragility of Explanations

• Not just a problem for neural networks!

Lakkaraju & Bastani, “How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Misleading Explanations

• Can construct explanations to mislead users into trusting a model

• Strategy
• Design a set of features that users believe are trustworthy
• Generate an explanation that highlights these features as important

• Users believe the model is using trustworthy features even if it is not

Lakkaraju & Bastani, “How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Misleading Explanations

E1 & E3 are misleading 
explanations

Lakkaraju & Bastani, “How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations, 2020



Potential Solutions

• No general strategy (yet)

• Good practices
• Be careful when interpreting explanations!



Conclusion

• Robustness and interpretability remain key challenges for neural 
networks (and machine learning more broadly)

• Good practices
• Use variety of techniques to try and understand what models are doing

(interpretation, extensive testing on different examples, etc.)
• Be careful when training models!
• Monitor performance of models running in production

• Lots of ongoing research!


