# Clustering, Ctd., and Dimensionality Reduction

https://tinyurl.com/cis5190-10-31-2022

Osbert Bastani and Zachary G. Ives CIS 4190/5190 – Fall 2022

https://unsplash.com/photos/UmmFQ1C5m8w

OWEEN



- Homework 4 due November 2, 8pm
- Quiz 8 due November 3, 8pm

#### **Recall from Last Week: K-Means Clustering**

#### K-Means (K, X)

- Randomly choose *K* cluster center locations (centroids)
- Loop until convergence, do:
  - Assign each point to the cluster of the closest centroid
  - Re-estimate the cluster centroids based on the data assigned to each cluster



#### **K-Means Clustering**

#### K-Means (K, X)

- Randomly choose *K* cluster center locations (centroids)
- Loop until convergence, do:
  - Assign each point to the cluster of the closest centroid
  - Re-estimate the cluster centroids based on the data assigned to each cluster



## **K-Means Clustering**

#### K-Means (K, X)

- Randomly choose *K* cluster center locations (centroids)
- Loop until convergence, do:
  - Assign each point to the cluster of the closest centroid
  - Re-estimate the cluster centroids based on the data assigned to each cluster

**Optimizer: "Alternating Minimization"** 

## K-means finds a local optimum of the following objective function:



$$\arg\min_{S} \sum_{k=1}^{K} \sum_{x \in S_{k}} \|x - \boldsymbol{\mu}_{K}\|_{2}^{2}$$

where  $S = \{S_1, ..., S_K\}$  are sets corresponding to disjoint clusters, and the clusters together include all samples.

#### **K-Means Clustering Convergence**



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

## **Generalizing to Other Distance Functions**

K-Means Objective Function:

$$\arg\min_{\boldsymbol{S}}\sum_{k=1}^{K}\sum_{\boldsymbol{x}\in S_{k}}\|\boldsymbol{x}-\boldsymbol{\mu}_{K}\|_{2}^{2}$$

But it is possible to define k-means with other notions of pairwise distance between samples too. For example:

$$\left(\sum_{d} |x_{1d} - x_{2d}|^{1}\right)^{\frac{1}{1}} Q: What would have to change in the algorithm?$$

$$\ell_{1} \text{ distance}$$

$$\sum_{d} |x_{1d} - x_{2d}|$$

$$\sum_{d} |x_{1d} - x_{2d}|$$

$$(2019-2x_{2d}^{x_{3}} \text{ arman, 0. Bastani, 2. Ives}$$

$$(K-medoids" clustering)$$

$$(K-me$$

#### **Weaknesses of k-Means**

Centroids can be heavily affected by outliers

- Remove (consistent) outliers, or
- Cluster over a random sample



#### k-means finds *spherical* clusters

k-means *converges* but can get trapped in local optima (thus isn't deterministic and depends on initialization...)

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Figure: https://www.slideshare.net/AndresMendezVazquez/25-machinelearning-unsupervised-learaning-kmeans-kcenters

#### **K-Means is Too Sensitive to Initialization**

Alternative strategies:

- 1. Do many runs of K-Means, each with different initial centroids, and pick the best
- 2. Pick initial centroids using a better method than random choice

K-means+ + initialization

- Choose a data point uniformly at random as the first centroid
- Loop for 2: *K*, do:
  - Let D(x) be the distance from each point x to the closest centroid
  - Choose data point x randomly  $\propto D(x)^2$  as the next centroid. Higher chance to pick points that are far from previous centroids.

#### **K-means++ Illustrated**

Place the initial centroids **far away from one another**:

- Initialize an empty set M (for storing selected centroids);
   Randomly select the first centroid from the input sample and assign it to M
- 2. For each  $x_i$  that is not in M, find the distance  $D(x_i)$  to the closest centroid in M
- 3. Choose one new data point at random as a new centroid using probability distribution  $\sim D(x)^2$
- 4. Repeat (2) and (3) until K centroids have been chosen

Then do "classic" k-means





- k-Means is highly scalable
- can compute distances from centroids in a highly parallel manner
- can compute centroids by grouping on the centroid-assignments

## **How Many Clusters?**

#### **Measuring the Performance of k-Means**

#### How can we evaluate how good our clustering is? Some options:

- Evaluation using the k-means objective itself
- Comparing to class labels (for a subset of data) Sometimes possible
- Subjective evaluation by a human domain expert

• • •

#### **"Knee Point" For Selecting K**

Elbow Method For Optimal k



https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

#### **k-Means Clustering**

- Non-deterministic (may get different output based on different start values) but guaranteed to converge
- Iterative algorithm with two sub-steps (after random cluster centroids chosen):
  - **1.** Assign points to nearest cluster
  - **2.** Recompute cluster centroid
- Select number of clusters by exploring error (distortion)

Q: how else might we formalize the problem of finding clusters?

## **Hierarchical Clustering**

#### **Hierarchical Clustering**

Instead of repeating until convergence based on global measures, like k-Means – Let's consider a greedy *local* algorithm, that iteratively makes choices

- **1.** Start with **single-item clusters**, then build successively bigger and bigger clusters: *agglomerative*
- **2.** Or: **start with one cluster**, break into the most logical sub-clusters, repeat: *divisive*

These are called *hierarchical clustering* approaches...

#### **Basic Intuition**

- Agglomerative: In each iteration, we find the closest clusters and merge them
- Divisive: In each iteration, we find the two most distant sub-clusters and split there

But: we know how to compute differences in points – need to generalize this to computing distances among clusters

#### **Potential Cluster Differences**

**Single Linkage:** Compute distances between the **most similar** members for each pair of clusters

Merge the clusters with the smallest **min-distance** 

**Complete Linkage:** Compute distance between the **most dissimilar** members for each pair of clusters

Merge the clusters with the smallest **max-distance** 



## How Do We Do this Efficiently? Considering Agglomerative Case

Really inefficient to iterate over each point and compute its distance to every other point

•  $O(n^2)$  computations, which is bad for big data!

#### Idea: precompute and memorize:

- Compute a distance matrix where distance[i,j] is the distance between nodes i,j
- We'll update this matrix every time we merge

#### Pseudocode: Agglomerative Clustering with Complete Linkage single

**Agglomerative Clustering**:

**1.** Compute distance matrix **dist** between all pairs of points (a,b). [SciPy pdist]

**2.** Repeat:

Iterate over pairs of clusters A, B, compute their distance: Look at all pairwise distances dist[a,b] between  $a \in A, b \in B$ Merge the pair of clusters with *min* distance between most distant members Update the distance matrix Look at all pairwise distance matrix

Until a single cluster remains

#### Example: Reconstructing Phylogenetic Trees

#### Q: Is a panda a bear?

Or is its closest relative the red panda, which is related to the raccoon?









https://www.nwf.org/Educational-Resources/Wildlife-Gu

https://www.smithsonianmag.com/science-nature/eight-amazing-facts-about-red-pandas-180979708/

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

## Example: Reconstructing Phylogenetic Trees



https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

#### **Summary of Hierarchical Clustering**

Hierarchical clustering is often easier to visualize and interpret with a taxonomy "Dendrogram" plots We don't need to specify the number of clusters up front!

Limitation: Doesn't scale well to big problems

#### **General Notes on Distance Measures**

- In studying Clustering techniques, we assume that we are given a matrix of distances between all pairs of data points.
- We assume that the input to the problem is:



- In studying clustering techniques, we assume that we are given a matrix of distances between all pairs of data points.
- A distance measure (*metric*) is a function  $d: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$  that satisfies:

$$1. d(x, y) \ge 0, d(x, y) = 0 \iff x = y$$
  

$$2. d(x, y) + d(y, z) \ge d(x, z)$$
  

$$3. d(x, y) = d(y, x)$$

- For the purpose of clustering, sometimes the distance (similarity) is not required to be a metric
  - No Triangle Inequality
  - No Symmetry

#### Examples:

Euclidean Distance:

$$d(x,y) = \sqrt{(x-y)^2} = \sqrt{(x-y)^T (x-y)} = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

Manhattan Distance:

$$d(x, y) = |x - y| = \sum_{i=1}^{d} |x_i - y_i|$$

Infinity (Sup) Distance:

$$d(x, y) = \max_{1 \le i \le d} |x_i - y_i|$$

- Notice that if d(x, y) is the Euclidean metric,  $d^2(x, y)$  is not a metric
- But can be used as a measure (no triangle inequality)

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

- Examples:
  - Euclidean Distance:

$$d(x,y) = \sqrt{(x-y)^2} = \sqrt{(x-y)^T (x-y)} = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

Manhattan Distance:

$$d(x, y) = |x - y| = \sum_{i=1}^{d} |x_i - y_i|$$

Infinity (Sup) Distance:

$$d(x, y) = \max_{1 \le i \le d} |x_i - y_i|$$

Euclidean:  $(4^2 + 2^2)^{\frac{1}{2}} = 4.47$ Manhattan: 4 + 2 = 6Sup: Max(4,2) = 4



## **Comparing clustering algorithms**



https://scikit-learn.org/stable/modules/clustering.html#clustering

#### **Summary of Clustering**

- Critical to understanding the structure of our data
- Often useful for creating high-level features useful for supervised learning
- We saw two approaches: k-Means vs hierarchical clustering

## Dimensionality Reduction

Osbert Bastani and Zachary G. Ives CIS 4190/5190 – Fall 2022

## The Next Key Question: How Do We Get the "Best" Features?

For a variety of reasons, we may want to reduce the number of dimensions:

- Reduce the complexity of our learning problem
- Remove multicollinearity / correlated features
- Remove less informative features (results in simpler model)
- Visualize the features

Key problem: mapping from D-dimensions down to a D'-dimensional subspace (D' << D)

#### **Consider: Visualizing High-Dimensional Data**

|    | LotFrontage | LotArea | Street | LotShape Utilitie | s LandSlop | e OverallQual | OverallCond | YearBuilt | YearRemodAdd | MasVnrArea | ExterQual | ExterCond | BsmtQual | BsmtExposure | BsmtFinType1 | BsmtFinSF1 | BsmtFinType2 | Sa | aleCondition_Abnorml |
|----|-------------|---------|--------|-------------------|------------|---------------|-------------|-----------|--------------|------------|-----------|-----------|----------|--------------|--------------|------------|--------------|----|----------------------|
| 0  | 65.0        | 8450    | 2      | 4                 | 4          | 3 7           | 5           | 2003      | 2003         | 196.0      | 4         | 3         | 4        | 0            | 6            | 706        | 1            |    | 0                    |
| 1  | 80.0        | 9600    | 2      | 4                 | 4          | 3 6           | 8           | 1976      | 1976         | 0.0        | 3         | 3         | 4        | 3            | 5            | 978        | 1            |    | 0                    |
| 2  | 68.0        | 11250   | 2      | 3                 | 4          | 3 7           | 5           | 2001      | 2002         | 162.0      | 4         | 3         | 4        | 1            | 6            | 486        | 1            |    | 0                    |
| 3  | 60.0        | 9550    | 2      | 3                 | 4          | 3 7           | 5           | 1915      | 1970         | 0.0        | 3         | 3         | 3        | 0            | 5            | 216        | 1            |    | 1                    |
| 4  | 84.0        | 14260   | 2      | 3                 | 4          | 3 8           | 5           | 2000      | 2000         | 350.0      | 4         | 3         | 4        | 2            | 6            | 655        | 1            |    | 0                    |
| 5  | 85.0        | 14115   | 2      | 3                 | 4          | 3 5           | 5           | 1993      | 1995         | 0.0        | 3         | 3         | 4        | 0            | 6            | 732        | 1            |    | 0                    |
| 6  | 75.0        | 10084   | 2      | 4                 | 4          | 3 8           | 5           | 2004      | 2005         | 186.0      | 4         | 3         | 5        | 2            | 6            | 1369       | 1            |    | 0                    |
| 7  | 0.0         | 10382   | 2      | 3                 | 4          | 3 7           | 6           | 1973      | 1973         | 240.0      | 3         | 3         | 4        | 1            | 5            | 859        | 4            |    | 0                    |
| 8  | 51.0        | 6120    | 2      | 4                 | 4          | 3 7           | 5           | 1931      | 1950         | 0.0        | 3         | 3         | 3        | 0            | 1            | 0          | 1            |    | 1                    |
| 9  | 50.0        | 7420    | 2      | 4                 | 4          | 3 5           | 6           | 1939      | 1950         | 0.0        | 3         | 3         | 3        | 0            | 6            | 851        | 1            |    | 0                    |
| 10 | 70.0        | 11200   | 2      | 4                 | 4          | 3 5           | 5           | 1965      | 1965         | 0.0        | 3         | 3         | 3        | 0            | 3            | 906        | 1            |    | 0                    |
| 11 | 85.0        | 11924   | 2      | 3                 | 4          | 3 9           | 5           | 2005      | 2006         | 286.0      | 5         | 3         | 5        | 0            | 6            | 998        | 1            |    | 0                    |
| 12 | 0.0         | 12968   | 2      | 2                 | 4          | 3 5           | 6           | 1962      | 1962         | 0.0        | 3         | 3         | 3        | 0            | 5            | 737        | 1            |    | 0                    |
| 13 | 91.0        | 10652   | 2      | 3                 | 4          | 3 7           | 5           | 2006      | 2007         | 306.0      | 4         | 3         | 4        | 2            | 1            | 0          | 1            |    | 0                    |
| 14 | 0.0         | 10920   | 2      | 3                 | 4          | 3 6           | 5           | 1960      | 1960         | 212.0      | 3         | 3         | 3        | 0            | 4            | 733        | 1            |    | 0                    |
| 15 | 51.0        | 6120    | 2      | 4                 | 4          | 3 7           | 8           | 1929      | 2001         | 0.0        | 3         | 3         | 3        | 0            | 1            | 0          | 1            |    | 0                    |
| 16 | 0.0         | 11241   | 2      | 3                 | 4          | 3 6           | 7           | 1970      | 1970         | 180.0      | 3         | 3         | 3        | 0            | 5            | 578        | 1            |    | 0                    |
| 17 | 72.0        | 10791   | 2      | 4                 | 4          | 3 4           | 5           | 1967      | 1967         | 0.0        | 3         | 3         | 0        | 0            | 0            | 0          | 0            |    | 0                    |
| 18 | 66.0        | 13695   | 2      | 4                 | 4          | 3 5           | 5           | 2004      | 2004         | 0.0        | 3         | 3         | 3        | 0            | 6            | 646        | 1            |    | 0                    |
| 19 | 70.0        | 7560    | 2      | 4                 | 4          | 3 5           | 6           | 1958      | 1965         | 0.0        | 3         | 3         | 3        | 0            | 2            | 504        | 1            |    | 1                    |
| 20 | 101.0       | 14215   | 2      | 3                 | 4          | 3 8           | 5           | 2005      | 2006         | 380.0      | 4         | 3         | 5        | 2            | 1            | 0          | 1            |    | 0                    |
| 21 | 57.0        | 7449    | 2      | 4                 | 4          | 3 7           | 7           | 1930      | 1950         | 0.0        | 3         | 3         | 3        | 0            | 1            | 0          | 1            |    | 0                    |
| 22 | 75.0        | 9742    | 2      | 4                 | 4          | 3 8           | 5           | 2002      | 2002         | 281.0      | 4         | 3         | 4        | 0            | 1            | 0          | 1            |    | 0                    |
| 23 | 44.0        | 4224    | 2      | 4                 | 4          | 3 5           | 7           | 1976      | 1976         | 0.0        | 3         | 3         | 4        | 0            | 6            | 840        | 1            |    | 0                    |
|    |             |         |        |                   |            |               |             |           |              |            |           |           |          |              |              |            |              |    |                      |



#### **Data Visualization**

Maybe it isn't necessary to visualize all 227 dimensions

Is there a representation better than the raw features?

Idea: find a lower-dimensional subspace that retains most of the information about the original data

There are many methods; our focus will be on Principal Components Analysis



Image : https://arxiv.org/pdf/1703.08893.pdf

34

#### **Dimensionality Reduction Objective**

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix}_{N \times D}$$

We can write each row (each data sample)  $x_i$  as:

$$x_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix}_{D} = x_{i1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ D \end{bmatrix} + x_{i2} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ D \end{bmatrix} + \dots + x_{iD} \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}_{D}$$
Projections Original axes

We are looking for a new coordinate system to (approximately) express  $\mathbf{x}_i$ :  $\mathbf{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx f_1(\mathbf{x}_i)\mathbf{v}_1 + f_2(\mathbf{x}_i)\mathbf{v}_2 + \dots + f_{D'}(\mathbf{x}_i)\mathbf{v}_{D'}$ where the new axes  $\mathbf{v}_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 

#### **Principal Component Analysis**



(Fig: stats.stackexchange)

Orthogonal projection of data onto lower-dimension linear space :

- maximizes variance of projected data (purple line)
- minimizes mean squared distance between data point and projections (sum of blue lines)

#### **Reduce to** D' = 1 **dimension?**

We are looking for a new coordinate system to (approximately) express 
$$x_i$$
:  
 $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i \cdot v_1) v_1 + (x_i \cdot v_2) v_2 + \dots + (x_i \cdot v_{D'}) v_{D'}$   
where the new axes  $v_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 

Simplest case: 
$$D' = 1$$
?  
We want to find  $\boldsymbol{v}_1$  and  $f_1(\boldsymbol{x}_i)$  such that:  
 $\boldsymbol{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix}$  best approximates  $f_1(\boldsymbol{x}_i)\boldsymbol{v}_1$   
For a given  $\boldsymbol{v}_1$ ,  $f_1(\boldsymbol{x}_i)$  should be the projection  $\boldsymbol{x}_i \cdot \boldsymbol{v}_1 / \|\boldsymbol{v}_1\|_2$   
So, only need to find  $\boldsymbol{v}_1$ 



#### **Objective Function: Maximizing Variance**

Find unit vector 
$$\boldsymbol{v}_1$$
 (with  $\|\boldsymbol{v}_1\|_2 = 1$ ), to optimize:  
Reconstruction  
MSE
$$\begin{aligned}
\min_{\|\boldsymbol{v}_1\|_2=1} \frac{1}{N} \sum_i \|(\boldsymbol{x}_i \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 - \boldsymbol{x}_i\|_2^2 \\
\|\boldsymbol{v}_1\|_2=1
\end{aligned}$$
Projection error
$$\max_{\|\boldsymbol{v}_1\|_2=1} \operatorname{variance}(\boldsymbol{x}_i \cdot \boldsymbol{v}_1)$$

Intuitively, if the variance of the projection on  $v_1$  was low, then  $v_1$  would not be very informative about samples  $x_i$ . Conversely, directions with high variance projections preserve the most information.



<sup>(</sup>Fig: stats.stackexchange)

#### So, how to find this direction of maximum variance?

#### **Covariance Matrix**



For zero-centered data,

Covariance = 
$$C = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^T] = \mathbb{E}\begin{bmatrix} x_{i1}x_{i1} & \cdots & x_{i1}x_{iD} \\ \vdots & x_{ij}x_{ik} & \vdots \\ x_{iD}x_{i1} & \cdots & x_{iD}x_{iD} \end{bmatrix}$$

For any unit vector  $v_1$ ,

variance $(\boldsymbol{x}_i \cdot \boldsymbol{v}_1) = \boldsymbol{v}_1^T C \boldsymbol{v}_1$ 

To maximize  $v_1^T C v_1$ , we can set  $v_1 = e_1(C)$ , the first unit eigenvector of C

## More than 1 dimension?

Repeat for d = 1, ..., D'

- Subtract means of all dimensions of *X*
- Compute  $C_d = E[x_i x_i^T]$
- Set  $\boldsymbol{v}_d = \boldsymbol{e}_1(C_d)$
- Set  $x_i = x_i (x_i \cdot v_d) v_d$  (i.e., subtract current reconstructions to compute residuals... like gradient boosting!)

Equivalent to simply: Repeat for d = 1, ..., D'

• Set  $v_d = \boldsymbol{e}_d(C_1)$ 

We are looking to find a new way to express 
$$\mathbf{x}_i$$
: "Reconstruction"  
 $\mathbf{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx f_1(\mathbf{x}_i)\mathbf{v}_1 + f_2(\mathbf{x}_i)\mathbf{v}_2 + \cdots + f_{D'}(\mathbf{x}_i)\mathbf{v}_{D'}$ 



$$\boldsymbol{x}_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx \sum_{d=1}^{D'} (\boldsymbol{x}_{i}, \boldsymbol{v}_{d}) \boldsymbol{v}_{d}$$

So, the new low-dimensional representation is:  $f(x_i) = [x_i \cdot v_1, x_i \cdot v_2, ..., x_i \cdot v_{D'}]$ 

#### **PCA on a 2D Gaussian Dataset**



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195

## **PCA Algorithm**

Given data { $x_1$ , ...  $x_n$ }, compute covariance matrix C

- **X** is the *N*×*D* data matrix
- Compute data mean (average over all rows of **X**)
- Subtract mean from each row of *X* (centering the data)
- Compute covariance matrix  $C = X^T X$  (*C* is  $D \times D$ )

PCA basis vectors (new coordinate axes) are given by the eigenvectors of C

- $Q, \Lambda =$ numpy.linalg.eig(C)
- { $q_d$ ,  $\lambda_d$ } $_{d=1,...,D}$  are the eigenvectors/eigenvalues of *C* ( $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_D$ )

But there are *D* eigenvectors, so where is the dimensionality reduction? • A: Larger eigenvalue  $\Rightarrow$  "more important" eigenvectors • 2019-22 D. Jayaraman, O. Bastani, Z. Wes

#### **Dimensionality Reduction**

• Can *ignore* the components of lesser significance



- PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
   You do lose some information, but if the eigenvalues are small, you don't lose much
  - -choose only the first D' eigenvectors, based on their eigenvalues
  - -final data set has only D' dimensions

43

#### Recap

- Want to reconstruct data approximately in a new coordinate space
- Must find axes of this coordinate space, because the weights on those axes are just projections
- Objective: axes with lowest reconstruction error
   Same as axes with high variance projections
- Solution straight from linear algebra. Axes are eigenvectors of covariance matrix



• Each column of **Q** gives weights for a linear combination of the original features



#### PCA

Compute  $x. e_d$  to get the new representation for each instance x

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & \cdots \\ 1 & 1 & 0 & 1 & 1 & \cdots \\ 0 & 0 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 1 & 0 & 1 & 0 & 1 & \cdots \end{bmatrix} x_{3} \qquad \hat{Q} = \begin{bmatrix} 0.34 & 0.23 & 0.13 \\ 0.04 & 0.13 & 0.13 \\ 0.93 & \vdots \\ \vdots & 0.23 & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.04 & 0.13 \\ 0.93 & 0.93 \\ \vdots & 0.23 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.93 \\ 0.93 & 0.9$$

The new 2D representation for  $x_3$  is given by  $[\widehat{x_{31}} = x_3, e_1, \widehat{x_{32}} = x_3, e_2]$ :

$$\widehat{x_{31}} = 0.34(0) + 0.04(0) - 0.64(1) + \cdots$$
  
 $\widehat{x_{32}} = 0.23(0) + 0.13(0) + 0.93(1) + \cdots$ 

The re-projected data matrix can be conveniently computed as  $\hat{X} = X\hat{Q}$ 

#### **Using PCA for Feature Reduction / Compression**

#### We could use the PCA transformation of the data instead of the original features Keep only D' < D PCA features

PCA tries to retain most of the variance in the data

 So, we're reducing the dataset to features that retain meaningful variations of the data set

#### **Eigenfaces**

#### What happens when you compute the principal components of face images?







Michael Jackson



Hillary Clinton





David Beckham



Dwayne Johnson



Oprah Winfrey





Michael Jordan









Lindsay Davenport



George W Bush

Colin Powell











Vin Diesel







Mary Carey

Surakait Sathirathai



Dean Barkley



Colin Powell



(1000 64×64 images)







Frank Taylor

#### **Eigenfaces**

What happens when you compute the principal components of face images?

"Eigenfaces": main directions of deviation from the mean face



Figure #5: mean face



#### **Eigenfaces**

Vin Diesel

Rubens Barrichello

#### Let's try reconstructing these faces with the eigenfaces now!







**Richard Myers** 



Frank Taylor



#### George W Bush



Colin Powell



Yasser Arafat















Mary Carey



Dean Barkley



Colin Powell



#### ... with 1000 eigenvectors







**Richard Myers** 





George W Bush



Colin Powell



Yasser Arafat





Vin Diesel



Rubens Barrichello

Sarah Price

Noah Wyle







Colin Powell



Surakait Sathirathai







Dean Barkley

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

52



#### ... with 250 eigenvectors

Lindsay Davenport



Billy Crystal



**Richard Myers** 





George W Bush





Yasser Arafat





Sarah Price

Vin Diesel







Surakait Sathirathai



Rubens Barrichello





Colin Powell





#### ... with 100 eigenvectors

Lindsay Davenport



Billy Crystal



**Richard Myers** 





George W Bush





Yasser Arafat





Vin Diesel



Rubens Barrichello

Sarah Price

Noah Wyle









Mary Carey



Dean Barkley



Colin Powell

#### ... with 50 eigenvectors







Dean Barkley







55

#### **PCA** Visualization of Digits



#### **Utility of PCA**

- PCA is often used as a preprocessing step for supervised learning
   reduces dimensionality
  - eliminates multicollinearity
- Can also be used to aid in visualization

#### **Beyond PCA: Non-linear dimensionality reduction**



#### **Recap: Unsupervised Learning**

Basic idea: reduce feature space to a much lower set of dimensions

- Clustering: find structural similarity, return one k-valued higher-level feature
- PCA: find orthonormal dimensions in order of most to least variance
- Can be useful for human inspection (visualization) as well as supervised ML
- Next time: a very prominent datatype text and documents!

- Notice that:
  - Infinity (Sup) Distance < Euclidean <u>Distance < Manhattan Distance</u>:

$$L_{\infty} = \max_{1 \le i \le d} |x_i - y_i| \quad L_2 = \sqrt{(x - y)^2} = \sqrt{\sum_{i=1}^d (x_i - y_i)^2} \quad L_1 = |x - y| = \sum_{i=1}^d |x_i - y_i|$$

• But different distances do not induce same order on pairs of points

