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Reminders

• Homework	4	due	November	2,	8pm

• Quiz	8	due	November	3,	8pm
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Recall from Last Week: K-Means Clustering

3

K-Means (𝐾 , 𝑋)
• Randomly choose K cluster 

center locations (centroids)
• Loop until convergence, do:

• Assign each point to the cluster 
of the closest centroid

• Re-estimate the cluster 
centroids based on the data 
assigned to each cluster

Voronoi
partition
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K-Means Clustering

5

K-Means (𝐾 , 𝑋)
• Randomly choose K cluster 

center locations (centroids)
• Loop until convergence, do:

• Assign each point to the cluster 
of the closest centroid

• Re-estimate the cluster 
centroids based on the data 
assigned to each cluster

K-means finds a local optimum of the 
following objective function:

argmin
𝑺
,
"#$

%

,
𝒙∈(!

𝒙 − 𝝁% )
)

where 𝑺 = 𝑆$, … , 𝑆% are sets 
corresponding to disjoint clusters, and 
the clusters together include all 
samples.

“Sum of squared distances” loss function

Optimizer: “Alternating Minimization”
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K-Means Clustering Convergence

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Theoretically provable 
convergence

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/
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K-Means Objective Function:

argmin
𝑺
'
"#$

%

'
𝒙∈(!

𝒙 − 𝝁% )
)

But it is possible to define k-means with other notions of 
pairwise distance between samples too. For example:

Generalizing to Other Distance Functions

ℓ
"

distance

,
*

|𝑥$* − 𝑥)*|$
$
$

,
*

|𝑥$* − 𝑥)*|

“K-medoids” clustering
Q: What would have to change in the algorithm?
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Weaknesses of k-Means

Centroids	can	be	heavily	affected	by	outliers

• Remove	(consistent)	outliers,	or
• Cluster	over	a	random	sample

k-means	finds	spherical clusters

k-means	converges but	can	get	trapped	in	local	optima
(thus	isn’t	deterministic	and	depends	on	initialization…)

Figure: https://www.slideshare.net/AndresMendezVazquez/25-machine-
learning-unsupervised-learaning-kmeans-kcenters
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K-Means is Too Sensitive to Initialization

Alternative strategies:
1. Do	many	runs	of	K-Means,	each	with	different	initial	centroids,	

and	pick	the	best
2. Pick	initial	centroids	using	a	better	method	than	random	choice

K-means++ initialization
• Choose a data point uniformly at random as the first centroid
• Loop for 2: 𝐾, do:

• Let 𝐷(𝒙) be the distance from each point 𝒙 to the closest 
centroid

• Choose data point 𝒙 randomly ∝ 𝐷(𝒙)2 as the next centroid. 
Higher chance to pick points that are far from previous centroids.
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4

3

2

1

K-means++ Illustrated

Place	the	initial	centroids	far	away	from	one	another:
1. Initialize	an	empty	set	M	(for	storing	selected	

centroids);	
Randomly	select	the	first	centroid	from	the	input	
sample	and	assign	it	to	M

2. For	each	xi that	is	not	in	M,	find	the	distance	D(xi)	to	
the	closest	centroid	in	M

3. Choose	one	new	data	point	at	random	as	a	new	
centroid	using	probability	distribution	~	D(x)2

4. Repeat	(2)	and	(3)	until	K	centroids	have	been	chosen

Then	do	“classic”	k-means
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Scaling k-Means

• k-Means	is	highly	scalable

• can	compute	distances	from	centroids	in	a	highly	parallel	manner

• can	compute	centroids	by	grouping	on	the	centroid-assignments



How Many Clusters?
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Measuring the Performance of k-Means

How	can	we	evaluate	how	good	our	clustering	is?	
Some	options:
• Evaluation	using	the	k-means	objective	itself
• Comparing	to	class	labels	(for	a	subset	of	data)

Sometimes	possible

• Subjective	evaluation	by	a	human	domain	expert
...
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“Knee Point” For Selecting K

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f

https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f
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k-Means Clustering

• Non-deterministic	(may	get	different	output	based	on	different	start	values)	but	
guaranteed	to	converge

• Iterative	algorithm	with	two	sub-steps	(after	random	cluster	centroids	chosen):
1. Assign	points	to	nearest	cluster
2. Recompute	cluster	centroid

• Select	number	of	clusters	by	exploring	error	(distortion)

Q:	how	else	might	we	formalize	the	problem	of	finding	clusters?



Hierarchical Clustering
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Hierarchical Clustering

Instead	of	repeating	until	convergence	based	on	global	measures,	like	k-Means	–
Let’s	consider	a	greedy	local algorithm,	that	iteratively	makes	choices

1. Start	with	single-item	clusters,	then	build	successively	bigger	and	bigger	
clusters:		agglomerative

2. Or:	start	with	one	cluster,	break	into	the	most	logical	sub-clusters,	repeat:		
divisive

These	are	called	hierarchical	clustering approaches…
17
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Basic Intuition

• Agglomerative:	In	each	iteration,	we	find	the	closest	clusters	and	merge	them
• Divisive:	In	each	iteration,	we	find	the	two	most	distant	sub-clusters	and	split	

there

But:	we	know	how	to	compute	differences	in	points	– need	to	generalize	this	to	
computing	distances	among	clusters
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Single	Linkage:	Compute	distances	
between	the	most	similar	members	for	
each	pair	of	clusters

Merge	the	clusters	with	the	smallest	min-
distance

Complete	Linkage:	Compute	distance	
between	the	most	dissimilar	members	
for	each	pair	of	clusters

Merge	the	clusters	with	the	smallest	max-
distance

19

Single Linkage

Complete Linkage

Potential Cluster Differences
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How Do We Do this Efficiently?
Considering Agglomerative Case

Really	inefficient	to	iterate	over	each	point	and	compute	its	distance	to	every	other	
point

§O(n2)	computations,	which	is	bad	for	big	data!

Idea:	precompute	and	memorize:
§Compute	a	distance	matrix where	distance[i,j] is	the	distance	
between	nodes	i,j

§We’ll	update	this	matrix	every	time	we	merge
20
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Pseudocode: Agglomerative Clustering 
with Complete Linkage

Agglomerative	Clustering:
1. Compute	distance	matrix	dist between	all	pairs	of	points	(a,b).	[SciPy	pdist]
2. Repeat:

Iterate	over	pairs	of	clusters	A,	B,	compute	their	distance:
Look	at	all	pairwise	distances	dist[a,b] between	𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

Merge	the	pair	of	clusters	with	min distance	between	most	distant	members
Update	the	distance	matrix
Until	a	single	cluster	remains

21

single

least
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Example: Reconstructing
Phylogenetic Trees

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

Q: Is a panda a bear?

Or is its closest relative the red 
panda, which is related to the 
raccoon?

https://www.nwf.org/Educational-Resources/Wildlife-Guide/Mammals/Raccoon

https://www.smithsonianmag.com/science-nature/eight-amazing-facts-about-red-pandas-180979708/
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Example: Reconstructing
Phylogenetic Trees

Features:  gene sequences

Clustering coefficient: 
gene sequence
similarity via edit distances

Plot “dendrogram”

à Panda is more closely 
related to modern bears, 

not red pandas!

https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6

common bear-raccoon ancestor

common bear-panda ancestor

common raccoon-red
panda ancestor
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Summary of Hierarchical Clustering 

Hierarchical	clustering	is	often	easier	to	visualize	and	interpret	with	a	taxonomy
“Dendrogram”	plots

We	don’t	need	to	specify	the	number	of	clusters	up	front!

Limitation:	Doesn’t	scale	well	to	big	problems

24
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General Notes on Distance Measures

• In	studying	Clustering	techniques,	we	assume	that	we	are		given	a	matrix	of	
distances	between	all	pairs	of	data	points.	

• We	assume	that	the	input	to	the	problem	is:
𝑥" 𝑥# 𝑥$ 𝑥% 𝑥&

𝑥"
𝑥#
𝑥$

𝑥&

𝑥%
•

•

•

• • •

𝑑(𝑥*, 𝑥+)
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Distance Measures

• In studying clustering techniques, we assume that we are given a 
matrix of distances between all pairs of data points.  

• A distance measure (metric) is a function 𝑑:𝑹* × 𝑹* à 𝑹 that 
satisfies:

• For the purpose of clustering, sometimes the distance (similarity) is 
not required to be a metric
§ No Triangle Inequality
§ No Symmetry

1. 𝑑(𝑥, 𝑦) ≥ 0, 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦
2. 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧)
3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
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Examples: 
§ Euclidean Distance:

𝑑(𝑥, 𝑦) = 𝑥 − 𝑦 ! = 𝑥 − 𝑦 " 𝑥 − 𝑦 = )
#$%

&

𝑥# − 𝑦# !

§ Manhattan Distance:

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| =)
#$%

&

|𝑥# − 𝑦# |

§ Infinity (Sup) Distance:
𝑑(𝑥, 𝑦) = max

%'#'&
|𝑥# − 𝑦#|

• Notice that if 𝑑(𝑥, 𝑦) is the Euclidean metric, 𝑑!(𝑥, 𝑦) is not a metric
• But can be used as a measure (no triangle inequality)

Distance Measures
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• Examples: 
§ Euclidean Distance:

𝑑(𝑥, 𝑦) = 𝑥 − 𝑦 ! = 𝑥 − 𝑦 " 𝑥 − 𝑦 = )
#$%

&

𝑥# − 𝑦# !

§ Manhattan Distance:

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| =)
#$%

&

|𝑥# − 𝑦# |

§ Infinity (Sup) Distance:
𝑑(𝑥, 𝑦) = max

%'#'&
|𝑥# − 𝑦#|

Distance Measures

2

4

Euclidean: 4# + 2#
!
" = 4.47

Manhattan: 4 + 2 = 6
Sup:  𝑀𝑎𝑥(4,2) = 4
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Comparing clustering algorithms

https://scikit-learn.org/stable/modules/clustering.html#clustering

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Spectral Clustering and DBSCAN measure 
distances in terms of how “connected” 2 points 
are, through the rest of the data … the distance 
function is tied to the geometry of the dataset 

itself

https://scikit-learn.org/stable/modules/clustering.html
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Summary of Clustering

• Critical	to	understanding	the	structure	of	our	data

• Often	useful	for	creating	high-level	features	useful	for	supervised	learning

• We	saw	two	approaches:	k-Means	vs	hierarchical	clustering



Dimensionality
Reduction

Osbert Bastani and Zachary G. Ives
CIS 4190/5190 – Fall 2022
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The Next Key Question: 
How Do We Get the “Best” Features?

For	a	variety	of	reasons,	we	may	want	to	reduce	the	number	of	
dimensions:

§Reduce	the	complexity of	our	learning	problem
§Remove	multicollinearity /	correlated	features
§Remove	less	informative	features	(results	in	simpler	model)
§Visualize	the	features

Key	problem:	mapping	from	D-dimensions	down	to	a	D’-dimensional	subspace
(D’	<<	D)
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Consider: Visualizing High-Dimensional Data

Data from: De Cock. Journal of Statistics Education 19(3), 2011

227 features
33
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Data Visualization

Is	there	a	representation	better	than	the	raw	features?

Maybe it isn’t necessary to visualize all 227 
dimensions

Image : https://arxiv.org/pdf/1703.08893.pdf

Idea: find a lower-dimensional 
subspace that retains most of 
the information about the 
original data

There are many methods; 
our focus will be on Principal 
Components Analysis

34

https://arxiv.org/pdf/1703.08893.pdf
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Dimensionality Reduction Objective

𝑋 =
𝑥$$ ⋯ 𝑥$,
⋮ ⋱ ⋮
𝑥-$ ⋯ 𝑥-, -×,

We	can	write	each	row	(each	data	sample)	𝒙* as:	

𝒙* =
𝑥*$
⋮
𝑥*, ,

= 𝑥*$
1
0
⋮ ,

+ 𝑥*)
0
1
⋮ ,

+⋯+ 𝑥*,
0
⋮
1 ,

We	are	looking	for	a	new	coordinate	system	to	(approximately)	express	𝒙*:

𝒙* =
𝑥*$
⋮
𝑥*,

≈ 𝑓$ 𝒙* 𝒗$ + 𝑓) 𝒙* 𝒗𝟐 +⋯+ 𝑓,% 𝒙* 𝒗,%

where	the	new	axes	𝒗0’s	are	all	𝐷-dimensional	unit	norm,	and	𝐷1 ≪ 𝐷

Original axesProjections
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Principal Component Analysis

Orthogonal	projection	of	data	onto	lower-dimension	linear	space	:
§maximizes	variance	of	projected	data	(purple	line)
§minimizes	mean	squared	distance	between	data	point	and	
projections		(sum	of	blue	lines)

Based on slide by Barnabás Póczos, UAlberta

36

𝒗$

(Fig: stats.stackexchange)
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Reduce to 𝐷! = 1 dimension?

Simplest	case: 𝐷1 = 1?	
We	want	to	find	𝒗$and	𝑓$(𝒙*) such	that:

𝒙* =
𝑥*$
⋮
𝑥*,

best	approximates	𝑓$ 𝒙* 𝒗$

For	a	given	𝒗$,	𝑓$ 𝒙* should	be	the	projection	𝒙*. 𝒗$/ 𝒗$ )
So,	only	need	to	find	𝒗$

𝒗$

We are looking for a new coordinate system to (approximately) express 𝒙*:

𝒙* =
𝑥*$
⋮
𝑥*,

≈ (𝑥*. 𝑣$)𝒗$ + (𝑥*. 𝑣))𝒗𝟐 +⋯+ (𝑥*. 𝑣,1)𝒗,%

where the new axes 𝒗0’s are all 𝐷-dimensional unit norm, and 𝐷1 ≪ 𝐷
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Objective Function: Maximizing Variance

Find	unit	vector	𝒗$ (with	 𝒗$ ) = 1),	to	optimize:

min
𝒗& '#$

1
𝑁'

*

‖ 𝒙* ⋅ 𝒗$ 𝒗$ − 𝒙*‖))

Can	show,	exactly	equal	to:
max
𝒗& '#$

variance(𝒙* ⋅ 𝒗$)

Intuitively,	if	the	variance	of	the	projection	on	𝒗$ was	low,	then	
𝒗$ would	not	be	very	informative	about	samples	𝒙*.	
Conversely,	directions	with	high	variance	projections	preserve	
the	most	information.

Reconstruction 
MSE

𝒗$

Projection error

So, how to find this direction of maximum variance?

(Fig: stats.stackexchange)
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Covariance Matrix

For	zero-centered	data,

Covariance	=	𝐶 = 𝔼 𝒙*𝒙*3 = 𝔼
𝑥*$𝑥*$ ⋯ 𝑥*$𝑥*,
⋮ 𝑥*+𝑥*" ⋮

𝑥*,𝑥*$ ⋯ 𝑥*,𝑥*,

For	any	unit	vector	𝑣$,	
variance 𝒙* ⋅ 𝒗$ = 𝒗$3𝐶𝒗$

To maximize 𝒗$3𝐶𝒗$, we can set 𝒗$ = 𝒆$(𝐶), the first unit eigenvector of 𝐶
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More than 1 dimension?

Repeat	for	𝑑 = 1,… , 𝐷′
• Subtract	means	of	all	dimensions	of	𝑋
• Compute	𝐶0 = 𝐸[𝑥*𝑥*3]
• Set	𝒗0 = 𝒆$(𝐶0)
• Set	𝒙* = 𝒙* − (𝒙*⋅ 𝒗0)𝒗0 (i.e.,	subtract	current	

reconstructions	to	compute	residuals…	like	
gradient	boosting!)

Equivalent	to	simply:
Repeat	for	𝑑 = 1,… , 𝐷′
• Set	𝑣0 = 𝒆0(𝐶$)

𝒙* =
𝑥*$
⋮
𝑥*,

≈ '
0#$

,%

(𝒙*. 𝒗0)𝒗0

So, the new low-dimensional representation is: 
𝑓(𝒙*) = [𝒙* ⋅ 𝒗$, 𝒙* ⋅ 𝒗), … , 𝒙* ⋅ 𝒗,%]
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1st principal
component

2nd principal
component

PCA on a 2D Gaussian Dataset

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195

41

Each subsequent principal component:
• is orthogonal to all previous 

components
• indicates the direction of largest 

variance of the residuals

Basis vectors originate 
from the mean

1st principal component indicates 
the direction of largest variance
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PCA Algorithm
Given	data	{𝒙$, … 𝒙4},	compute	covariance	matrix	C

§𝑿 is	the 𝑁×𝐷 data matrix
§Compute data mean (average over	all rows of	𝑿)
§Subtract mean from each row of	𝑿 (centering	the data)
§Compute covariance matrix C = 𝑿+𝑿 (𝐶 is	𝐷×𝐷 )

PCA basis	vectors	(new	coordinate	axes) are	given	by	the	eigenvectors	of	C
§𝑄, Λ = numpy.linalg.eig(𝐶)
§ 𝒒* , 𝜆* *#$,…,. are	the	eigenvectors/eigenvalues	of	𝐶

(𝜆$ ≥ 𝜆) ≥ ⋯ ≥ 𝜆.)

But	there	are	𝑫 eigenvectors,	so	where	is	the	dimensionality	reduction?
§A:	Larger	eigenvalue	Þ “more	important”	eigenvectors

42
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• Can ignore the components of lesser significance 

• You do lose some information, but if the eigenvalues are small, you don’t lose much

–choose only the first 𝐷′ eigenvectors, based on their eigenvalues
–final data set has only 𝐷′ dimensions

Dimensionality Reduction

Based on slide by Barnabás Póczos, UAlberta

43
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Recap

• Want	to	reconstruct	data	approximately	in	a	new	coordinate	space
• Must	find	axes	of	this	coordinate	space,	because	the	weights on	those	axes	are	

just	projections
• Objective:	axes	with	lowest	reconstruction	error

§Same	as	axes with	high	variance	projections
• Solution	straight	from	linear	algebra.	Axes are	eigenvectors	of	covariance	matrix
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PCA

𝑸 is the eigenvectors of C = X!X;
columns are ordered by importance 
(highest eigenvalues first)

𝑿 has 𝐷 columns

𝑸 is 𝐷×𝐷

Each row of 𝑸 corresponds to 
a feature; keep only first 𝐷′
columns of 𝑸

45

𝑋 =

0 1 0 1 1 ⋯
1 1 0 1 1 ⋯
0 0 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱
1 0 1 0 1 ⋯

𝑄 =

0.34 0.23 −0.30 −0.23 ⋯
0.04 0.13 −0.40 0.21 ⋯
−0.64 0.93 0.61 0.28 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

−0.20 −0.83 0.78 −0.93 ⋯
𝒆𝟏 𝒆𝟐 …                           𝒆𝑫
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PCA

• Each	column	of	𝑸 gives	weights	for	a	linear	combination	of	the	original	features

= 0.34×𝑓𝑒𝑎𝑡𝑢𝑟𝑒$ + 0.04×𝑓𝑒𝑎𝑡𝑢𝑟𝑒) − 0.64×𝑓𝑒𝑎𝑡𝑢𝑟𝑒5 +⋯

46

𝑄 =

0.34 0.23 −0.30 −0.23 ⋯
0.04 0.13 −0.40 0.21 ⋯
−0.64 0.93 0.61 0.28 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

−0.20 −0.83 0.78 −0.93 ⋯
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PCA

Compute	𝒙. 𝒆0 to	get	the	new	representation	for	each	instance	𝒙

The	new	2D	representation	for	𝒙5 is	given	by	[ j𝒙5$ = 𝒙5. 𝒆$, j𝒙5) = 𝒙5. 𝒆)]:

The	re-projected	data	matrix	can	be	conveniently	computed	as	 k𝑋 = 𝑋 k𝑄

𝒙5

U𝑥8$ = 0.34 0 + 0.04 0 − 0.64 1 +⋯
U𝑥8) = 0.23 0 + 0.13 0 + 0.93 1 +⋯

47

𝑋 =

0 1 0 1 1 ⋯
1 1 0 1 1 ⋯
0 0 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱
1 0 1 0 1 ⋯

W𝑄 =

0.34 0.23
0.04 0.13
−0.64 0.93
⋮ ⋮

−0.20 −0.83



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Using PCA for Feature Reduction / Compression

We	could	use	the	PCA	transformation	of	the	data	instead	of	the	original	features
Keep	only	𝐷′ < 𝐷 PCA	features

PCA	tries	to	retain	most	of	the	variance	in	the	data
• So,	we’re	reducing	the	dataset	to	features	that	retain	meaningful	variations	of	the	

data	set

48
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Eigenfaces

49

What happens when you compute the principal components of face images?

(1000 64×64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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Eigenfaces
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What happens when you compute the principal components of face images?

“Eigenfaces”: main directions of deviation from the mean face

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

…

…

…

…

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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Eigenfaces
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Let’s try reconstructing these faces with the eigenfaces now!

(1000 64×64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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Eigenfaces
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… with 1000 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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Eigenfaces
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… with 250 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184


© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Eigenfaces
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… with 100 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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Eigenfaces
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… with 50 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
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PCA Visualization of Digits

56
Fig: Laurens van der Maaten
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Utility of PCA

• PCA	is	often	used	as	a	preprocessing	step	for	supervised	learning
§ reduces	dimensionality
§eliminates	multicollinearity

• Can	also	be	used	to	aid	in	visualization
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Beyond PCA: Non-linear dimensionality reduction

T-SNE and ISOMAP are more powerful 
methods that use nonlinear mappings,  but:
• Require careful hyperparameter tuning
• Harder to optimize
• Not as easy to interpret, no easy projection 

back to original data

Fig: Laurens van der Maaten
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Recap: Unsupervised Learning

Basic	idea:		reduce	feature	space	to	a	much	lower	set	of	dimensions

• Clustering:	find	structural	similarity,	return	one	k-valued	higher-level	feature
• PCA:	find	orthonormal	dimensions	in	order	of	most	to	least	variance

• Can	be	useful	for	human	inspection	(visualization)	as	well	as	supervised	ML

• Next	time:	a	very	prominent	datatype	– text	and	documents!
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• Notice that:
§ Infinity (Sup) Distance < Euclidean Distance < Manhattan Distance:

• But different distances do not induce same order on pairs of points

𝐿" = 𝑥 − 𝑦 " = =
#$%

&

𝑥# − 𝑦# " 𝐿" = 𝑥 − 𝑦 =1
'("

)

𝑥' − 𝑦'𝐿6 = max
$7*70

|𝑥* − 𝑦*|

4

4

𝐿*(𝑎, 𝑏) = 5

𝐿#(𝑎, 𝑏) = 5# + 𝜀#
"
# = 5 + 𝜀

5 𝐿6(𝑐, 𝑑) = 4

𝐿)(𝑐, 𝑑) = 4) + 4)
$
) = 4 2 = 5.66

𝐿'(𝑐, 𝑑) < 𝐿'(𝑎, 𝑏)
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Distance Measures


