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Reminders

®* Homework 4 due November 2, 8pm

® Quiz 8 due November 3, 8pm
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Recall from Last Week: K-Means Clustering

K-Means (K, X)
e Randomly choose K cluster
center locations (centroids)

e |Loop until convergence, do:

e Assign each point to the cluster
of the closest centroid

e Re-estimate the cluster
centroids based on the data
assigned to each cluster
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K-Means Clustering

K-Means (K, X) .
e Randomly choose K cluster N
center locations (centroids)

e |Loop until convergence, do: |
e Assign each point to the cluster
of the closest centroid |

e Re-estimate the cluster ? Voronoi
centroids based on the data | partition
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K-Means Clustering

K-Means (K, X)
e Randomly choose K cluster
center locations (centroids)

e | oop until convergence, do:

e Assign each point to the cluster
of the closest centroid

e Re-estimate the cluster
centroids based on the data
assigned to each cluster

K-means finds a local optimum of the
following objective function:

“Sum of squared distances” loss function ‘

Optimizer: “Alternating Minimization”
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where § = {S;, ...,SK} are sets
corresponding to disjoint clusters, and
the clusters together include all
samples.




K-Means Clustering Convergence

KMeans Iteration: Total Within Cluster Sum of Squares:
ol x0xf | Theoretically provable
Y R convergence
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Kmeans Iterations
https://dashee87.qithub.io/data%20science/general/Clustering-with-Scikit-with-GlFs/
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https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Generalizing to Other Distance Functions

K-Means Objective Function:

argmmZ > llx = pli3

k=1 xSy,

But it is possible to define k-means with other notions of
pairwise distance between samples too. For example:

1 "K-medoids” clustering
z 1,4 — x,4|t | Q What would have to change in the algorithm?

K-Means (k ,X)
« Randomly choose k cluster
center locations (centroids)

£ distance  Loop until convergence, do:
1

 Assign each point to the cluster

of the closest centroid
— » Re-estimate the cluster
2 X 1d X 2d | centroids based on the data
©2019-2
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Weaknesses of k-Means

A

Outlier

Centroids can be heavily affected by outliers SRS 7= =%y

® Remove (consistent) outliers, or

® C(luster over a random sample n

Outlier

Ideal Clusters

k-means finds spherical clusters

k-means converges but can get trapped in local optima
(thus isn’t deterministic and depends on initialization...)

Figure: https://www.slideshare.net/AndresMendezVazquez/25-machine-
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K-Means is Too Sensitive to Initialization

Alternative strategies:
1. Do many runs of K-Means, each with different initial centroids,

and pick the best
2. Pick initial centroids using a better method than random choice

K-means+ + initialization
 Choose a data point uniformly at random as the first centroid
 Loop for 2: K, do:
* Let D (x) be the distance from each point x to the closest
centroid
« Choose data point x randomly < D (x)? as the next centroid.
Higher chance to pick points that are far from previous centroids.
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K-means++ lllustrated

Place the initial centroids far away from one another:

1. Initialize an empty set M (for storing selected
centroids);
Randomly select the first centroid from the input
sample and assign it to M N
2. For each x; that is not in M, find the distance D(x;) to
the closest centroid in M
3. Choose one new data point at random as a new
centroid using probability distribution ~ D(x)>
4. Repeat (2) and (3) until K centroids have been chosen

Then do “classic” k-means
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Scaling k-Means

®* k-Means is highly scalable
® can compute distances from centroids in a highly parallel manner

® can compute centroids by grouping on the centroid-assignments
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How Many Clusters?



Measuring the Performance of k-Means

How can we evaluate how good our clustering is?

Some options:

® Evaluation using the k-means objective itself

® Comparing to class labels (for a subset of data)

Sometimes possible

Subjective evaluation by a human domain expert
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“Knee Point” For Selecting K
Elbow Method For Optimal k

distances
g B 8
o o o

N
A
o

squared

Sum of

— N

o o
e 8 &8 & 8

1 L) | 1 ' 1

2 4 6 8 10 12 14

https://blog.cambridgespark.com/how-to-determine-the-optimal-Rumber-of-clusters-for-k-means-clustering-14f2707004 8f
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k-Means Clustering

Non-deterministic (may get different output based on different start values) but
guaranteed to converge

[terative algorithm with two sub-steps (after random cluster centroids chosen):
1. Assign points to nearest cluster
2. Recompute cluster centroid

Select number of clusters by exploring error (distortion)

Q: how else might we formalize the problem of finding clusters?
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Hierarchical Clustering



Hierarchical Clustering

Instead of repeating until convergence based on global measures, like k-Means -
Let’s consider a greedy local algorithm, that iteratively makes choices

1. Start with single-item clusters, then build successively bigger and bigger
clusters: agglomerative

2. Or: start with one cluster, break into the most logical sub-clusters, repeat:
divisive

These are called hierarchical clustering approaches...

17
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Basic Intuition

® Agglomerative: In each iteration, we find the closest clusters and merge them

® Divisive: In each iteration, we find the two most distant sub-clusters and split
there

But: we know how to compute differences in points — need to generalize this to
computing distances among clusters
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Potential Cluster Differences

Single Linkage: Compute distances
between the most similar members for
each pair of clusters
Merge the clusters with the smallest min-
distance
Complete Linkage: Compute distance
between the most dissimilar members
for each pair of clusters

Merge the clusters with the smallest max-
distance
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How Do We Do this Efficiently?
Considering Agglomerative Case

Really inefficient to iterate over each point and compute its distance to every other
point

" O(n?) computations, which is bad for big data!

Idea: precompute and memorize:

" Compute a distance matrix where distance|i,j] is the distance
between nodes i,j

= We'll update this matrix every time we merge

20
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Pseudocode: Agglomerative Clustering
with Complete Linkage

. _ single
Agglomerative Clustering:

1. Compute distance matrix dist between all pairs of points (a,b). [SciPy pdist]
2. Repeat:
[terate over pairs of clusters A, B, compute their distance:

Look at all pairwise distances dist[a,b] between a € A,b € B

Merge the pair of clusters with min distance between most distant members

Update the distance matrix least

Until a single cluster remains

21
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Example: Reconstructing

Phylogenetic Trees
Q: Is a panda a bear?

Or is its closest relative the red
panda, which is related to the
raccoon?

https://www.nwf.org/Educational-Resources/Wildlife-Gu

https://www.smithsonianmag 5-180979708/

©2019:22D. Jayaraman, ©. Bastan, 2. Ives https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6
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Millions of years ago

Example: Reconstructing
Phylogenetic Trees

common bear-raccoon ancestor
T common raccoon-red
ol panda ancestor
Features: gene sequences
1 common bear-panda ancestor
Clustering coefficient:
sl gene sequence
| similarity via edit distances
Plot “dendrogram”

- Panda is more closely

' R W e. ‘ related to modern bears,

BROWN '‘LAR BLACK SPECTACLED GIANT RACCOON RED PANDA not red pandaS!

BEAR HIAI\ BEAR BEAR PANDA

©2019:22D. Jayaraman, ©. Bastan, 2. Ives https://towardsdatascience.com/hierarchical-clustering-and-its-applications-41c1ad4441a6



Summary of Hierarchical Clustering

Hierarchical clustering is often easier to visualize and interpret with a taxonomy

“Dendrogram” plots

We don’t need to specify the number of clusters up front!

Limitation: Doesn’t scale well to big problems

24
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General Notes on Distance Measures

® In studying Clustering techniques, we assume that we are given a matrix of

distances between all pairs of data points.
[ ]

We assume that the input to the problem is:

X1 X2 X3 X4 Xm
xl T
X2 \
X3
x4 d(x;, x;j)
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Distance Measures

* In studying clustering techniques, we assume that we are given a
matrix of distances between all pairs of data points.

- A distance measure (metric) is a function d: R* x R* = R that
satisfies:

1.d(x,y) =20,d(x,y) =0 & x=y
2.d(x,y) +d(y,z) =d(x,z)

3.d(x,y) =d(y, x)

 For the purpose of clustering, sometimes the distance (similarity) is
not required to be a metric

= No Triangle Inequality
* No Symmetry
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Distance Measures

Examples:
= Euclidean Distance:

d
A y) =VG=y2 =G =9 G- = | ) (xi—»)?
Ni=1

=  Manhattan Distance: .
d(,y) =lx =yl = ) |xi =]
i=1

= [nfinity (Sup) Distance:
d(x,y) = max |x; — y;

1<i<d
» Notice that if d(x, y) is the Euclidean metric, d?(x,y) is not a metric

* But can be used as a measure (no triangle inequality)
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Distance Measures

« Examples:
= FEuclidean Distance:

dx,y) =JEx—-y)2=y(x—y)T (x—y) =

\

=  Manhattan Distance: .

d,y) = lx =yl = ) |x =]
i=1
= [nfinity (Sup) Distance:
d(x,y) = max |x; — y;

1<i<d

1
Euclidean: (42 + 2%)z = 4.47
Manhattan: 4 +2 =6

Sup: Max(4,2) =4




Comparing clustering algorithms

IMiniBatchKMeaAA‘inityPropagation MeanShift $pectralClusterind Ward chglomerativeClust eringDBSCAN OPTICS Birch GaussianMixture

Dataset 1 -
Dataset 2
Dataset 3
Dataset 4 ) . . Spectral Clustering and DBSCAN measure

' ' distances in terms of how “connected” 2 points

are, through the rest of the data ... the distance

' ' P function is tied to the geometry of the dataset

Dataset 5 . J
itself
Dataset 6
© 2019-22 D. Jayaraman, O. Bastani, Z. lves
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https://scikit-learn.org/stable/modules/clustering.html

Summary of Clustering

® (ritical to understanding the structure of our data
® Often useful for creating high-level features useful for supervised learning

®* We saw two approaches: k-Means vs hierarchical clustering
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Dimensionality
Reduction
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The Next Key Question:
How Do We Get the “Best” Features?

For a variety of reasons, we may want to reduce the number of
dimensions:

" Reduce the complexity of our learning problem

=" Remove multicollinearity / correlated features

" Remove less informative features (results in simpler model)
" Visualize the features

Key problem: mapping from D-dimensions down to a D’-dimensional subspace
(D’ << D)
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Consider: Visualizing High-Dimensional Data

LotFrontage LotArea Street LotShape Utilities LandSlope OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea ExterQual

ExterCond BsmtQual

BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2

... SaleCondition_Abnorml
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Data from: De Cock. Journal of Statistics Education 19(3), 2011
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Data Visualization

Maybe it isn’'t necessary to visualize all 227

dimensions
Is there a representation better than the raw features?

Idea: find a lower-dimensional
subspace that retains most of
the information about the
original data

There are many methods;
our focus will be on Principal
Components Analysis

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives 34
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https://arxiv.org/pdf/1703.08893.pdf

Dimensionality Reduction Objective

X11 " X1D
X = ' ;

XN1 " XND
We can write each row (each data sample) x; as:

NXD

Projections Origi

We are looking for a new coordinate system to (approximately) express x;:

Xi1

XiD
where the new axes v;’s are all D-dimensional unit norm, and D’ < D

=~ f1(x)vy + fL(x)vy + -+ (X)) v

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives




Principal Component Analysis

Z2

v
)
=)
NN
i=3
=
~
)

T

(Fig: stats.stackexchange)

Orthogonal projection of data onto lower-dimension linear space :
" maximizes variance of projected data (purple line)

" minimizes mean squared distance between data point and
projections (sum of blue lines)

raman, O. Bastani, Z. lves 36
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Reduce to D' = 1 dimension?

We are looking for a new coordinate system to (approximately) express x;:
Xi1
X = ] =~ (xl-.vl)vl + (xi.vz)vz + .o 4 (xi'le)vD’
XiD
where the new axes v;’s are all D-dimensional unit norm, and D’ «< D

Simplest case: D' = 17 A
We want to find v;and f; (x;) such that: v . v/V
Xi1 \/
X; = [ : | best approximates f; (x;)v; / o
XiD .\/\.
For a given v4, f;(x;) should be the projection x;. v, /||v4|l, /

So, only need to find v,

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives



Objective Function: Maximizing Variance

Find unit vector v, (with lv1]l, = 1), to optimize:

Reconstruction 2 |(x; - v{)v; — x; ||
MSE |lv 1||2—1N S o

Projection error
Can show, exactly equal to: )

max variance(x; - v1)
lv1ll2=1

Intuitively, if the variance of the projection on v; was low, then
v, would not be very informative about samples x;.

Conversely, directions with high variance projections preserve PP
the most information.

(Fig: stats.stackexchange)

So, how to find this direction of maximum variance?
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Covariance Matrix e VArenCe i - )

For zero-centered data,
Xi1Xi1 Xi1XiD
Covariance = C = IE[xixiT] =E : XijXik :
XiDXi1 XiDXiD

For any unit vector vy,
variance(x; - v;) = vICv,

To maximize vl Cv,, we can set v; = e,(C), the first unit eigenvector of C
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We are looking to Qnd a new way to express X;: [ upaconstruction”
n n 9 ?1
More than 1 dimension® o B | i = e 2 e
XiD

Repeat ford =1, ..., D’

® Subtract means of all dimensions of X g

®* Compute C; = E[x;x]]

® Set Vg = el(Cd)
®* Setx; =x; — (x;- v3)v, (i.e., subtract current

reconstructions to compute residuals... like
gradient boosting!) .

Equivalent to simply: Xi1 D
Repeat ford =1, ..., D’ Xi=1*"|~% z(xi-”d)”d
XiD

® Set Vg = ed(Cl)

So, the new low-dimensional representation is:
f(xi) — [xi "V, Xi "V, e, Xj - le]
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PCA on a 2D Gaussian Dataset
12

15t principal component indicates

Each subsequent principal component: the dlrect|on f Iargest varlnce

is orthogonal to all previous
components

indicates the direction of largest
variance of the residuals

Basis vectors originate
from the mean

©2019-22 D. Jayaraman, O. Bastani, Z. Ives
By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195



PCA Algorithm

Given data {x4, ... x,,}, compute covariance matrix C
" X is the NxD data matrix
" Compute data mean (average over all rows of X)
" Subtract mean from each row of X (centering the data)
" Compute covariance matrix C = X'X (Cis DxD)

PCA basis vectors (new coordinate axes) are given by the eigenvectors of C
" ), A = numpy.linalg.eig(C)
"{q4,Aa}a=1 . p are the eigenvectors/eigenvalues of C
A=Ay == Ap)

But there are D eigenvectors, so where is the dimensionality reduction?

" A: Larger eigenvalue = “more important” eigenvectors

© 2019-22 D. Jayaraman,%. Bastani, Z.



Dimensionality Reduction

Can ignore the components of lesser significance

25 -

20 -

o||||.....t

. PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 )
You do lose some information, but if the eigenvalues are small, you don’t lose much

—choose only the first D' eigenvectors, based on their eigenvalues

-
0
|

-
(@)

Variance (%)

&)
\

—final data set has only D’ dimensions
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Recap

Want to reconstruct data approximately in a new coordinate space

Must find axes of this coordinate space, because the weights on those axes are
just projections

Objective: axes with lowest reconstruction error

= Same as axes with high variance projections

Solution straight from linear algebra. Axes are eigenvectors of covariance matrix
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0 1
1 1
X=(0 0
10

- h oo

1

p—

0

1

X has D columns

Q is the eigenvectors of C = XTX;

columns are ordered by importance
(highest eigenvalues first)
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PCA

- 0.34 0.23

0.04 0.13
—0.64 0.93
—0.20 —-0.83

€1 €2

Each row of Q corresponds to
a feature; keep only first D’
columns of Q

—0.
0.61
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PCA

® Each column of Q gives weights for a linear combination of the original features

- 0.34 0.23
0.04 0.13
Q=1-0.64 0.93

—0.4
0.61

—0.20 —-0.83

= 0.34Xfeature; + 0.04X feature, — 0.64X feature; + ---
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PCA

Compute x. e, to get the new representation for each instance x
(% 1 0 1 1 - 0.23 -
1 1 0 1 1 '
¥ — A 0.13
S Q= 0.93
1 01 0 1 082,

The new 2D representation for x5 is given by [X37; = x3.€1, X33 = X3.€5]:

%31 = 0.34(0) 4 0.04(0) — 0.64(1) + ---
X3 = O+ O+ 1)+

The re-projected data matrix can be conveniently computed as X = XQ
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Using PCA for Feature Reduction / Compression

We could use the PCA transformation of the data instead of the original features
Keep only D’ < D PCA features

PCA tries to retain most of the variance in the data

® So, we're reducing the dataset to features that retain meaningful variations of the
data set

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives 48



Eigenfaces

What happens when you compute the principal components of face images?

Bill Gates Arnold Schwarzenegger Gwyneth Paltrow

Angelina Jolie

Lindsay Davenport George W Bush Vin Diesel Surakait Sathirathai

=l

Colin Powell Rubens Barrichello

David Beckham

LeBron James Michael jordan

Michael Jackson Dwayne Johnson Marilyn Monroe Azra Akin

\

Hillary Clinton George W Bush

-~

o

-

(1000 64%x64 images)

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606¢c328184
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https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

What happens when you compute the principal components of face images?

“Eigenfaces”: main directions of deviation from the mean face

eigenface 0 eigenface 1 eigenface 2 eigenface 3

|
eigenface 4 eigenface 5 el genface 6 eigenface 7

eigenface 8 eigenface 9 el genface 10 eigenface 11

| I &

eigenface 13 eigenface 14 eigenface 15
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eigenface 12



https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

Let’s try reconstructing these faces with the eigenfaces now!

Lindsay Davenport George W Bush Vin Diesel Surakait Sathirathai

Mary Carey

i

Dean Barkley

Frank Taylor Sheryl Crow

(1000 64%x64 images)

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606¢c328184
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https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

. with 1000 eigenvectors

Lindsay Davenport George W Bush Vin Diesel Surakait Sathirathai

i v

Colln Powell Rubens Barrichello Mary Carey

Dean Barkley

Frank Taylor Sheryl Crow Noah Wyle
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Eigenfaces

... with 250 eigenvectors

Vin Diesel Surakait Sathirathai

Lindsay Davenport George W Bush

Rubens Barrichello

Richard Myers Yasser Arafat

Colin Powell

Sheryl Crow
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... with 50 eigenvectors
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PCA Visualization of Digits

<
O
a.

o rT0o000ro~N
rmy o rmin b
wFrraell—J3mm
Sy ah oms o N
Nl e~ N S
A wad O e
L N e
R e e i R B
Jh-=RuPXg~\
M Ty oG N

56

Fig: Laurens van der Maaten
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Utility of PCA

® PCA is often used as a preprocessing step for supervised learning

" reduces dimensionality
" eliminates multicollinearity

® (Can also be used to aid in visualization
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Recap: Unsupervised Learning

Basic idea: reduce feature space to a much lower set of dimensions

Clustering: find structural similarity, return one k-valued higher-level feature

PCA: find orthonormal dimensions in order of most to least variance
Can be useful for human inspection (visualization) as well as supervised ML

Next time: a very prominent datatype - text and documents!
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Distance Measures

* Notice that:
* Infinity (Sup) Distance < Euclidean Distance < Manhattan Distance:

d d
Loo = max [x; = yi| 1, =(x-y)? = Z(xi —yi)? Li=Ix—-yl= lei = Vil
\ i=1 i=1
 But different distances do not induce same order on pairs of points
[ Ly(a,b) = (52 +&2)2=5+¢ Ly(c,d) > Ly(a,b)
s Leo(c, d) = 4
l CLy(c,d) = (4% + 42)% = 4/2 = 5.66
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