
Announcements

• Project Milestone 2 due Wednesday, November 9 at 8pm
• Will open GradeScope submission tonight

• GPU option: AWS SageMaker Studio

• Quiz 9 is due Thursday, November 10 at 8pm

• HW 5 due Wednesday, November 16
• Please start early!

Word Embeddings, Ctd

Osbert Bastani and Zachary G. Ives
CIS 4190/5190 – Fall 2022

https://tinyurl.com/cis5190-11-7-2022

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Recall: Similar Words Are Used in Similar Contexts

“I	buy	food	for	my	cat at	the	pet	store”
vs

“I	buy	food	for	my	dog at	the	pet	store”

vs

“My	car guzzles	gas”

Intuition: we can “semantically cluster” words based on vectors
describing the contexts of their occurrences

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Capturing Context in a Vector
Term-Frequency	model:

§ For	each	term,	count	#	occurrences	in	each	document	in	a	corpus
§Vector	is	|terms| by	|documents|

A	“windows”	term-term	model:
§ For	each	term,	count	#	co-occurrences	with	other	words	within	an	n-word	window
§Vector	is	|terms| by	|terms| but	sparse	(n non-zero	entries)

These	are	huge	vectors,	likely	with	lots	of	zeros.	
Can	we	get	a	more	compact	representation?

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Intuition

Why	not	learn a	way	of	mapping	to	a	reduced	number	of	dimensions?

We’ll	do	this	in	a	surprising	(?)	way:
§Train	a	NN	classifier to	predict	words	that	will	co-occur	in	the	context

by	mapping	them	through	a	hidden	layer	with	fewer	dimensions

§Take	the	learned	weights as	a	compact	vector	space	representation!

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Neural Network, Sketched

Words

dog
car
cat

embed hidden context

Context

pet
tire
pet

V-dimensional
one-hot encoding

as input
(# unique words)

V-dimensional
one-hot encoding

as output
(# unique words)

N-dimensional
intermediate layer

(200-300 dim)

The hidden layer has a smaller number of dimensions – we’ll
learn N features useful in predicting context

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Training Data

“The	quick	brown	fox	jumped	over	the	lazy	dog”	(n=2)

Word Context
quick [the, brown]
brown [quick, fox]

fox [brown, jumped]
jumped [fox, over]

… …

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Training Data as Input/Output Pairs for Prediction

“The	quick	brown	fox	jumped	over	the	lazy	dog.”

Input Output
quick the
quick brown
brown quick
brown fox

fox brown
… …

Millions of training input-output pairs, from parsing huge, unlabeled
datasets (e.g., all of Wikipedia)

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Classifier

Source: https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html

One-Hot Encoding

for

the Input Word

One-Hot Encoding

for

the Output Word

quick brown

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Classifier

quick brown

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Classifier

Has N columns, V (vocabulary size) rows.

Each row corresponds to a word.
!!" row = a vector representation for word #i

“Target Embedding”

quick brown

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Classifier

Has V (vocabulary size) columns, N rows.

Each column corresponds to a word.

!!" column = another vector representation for
word #i

“Context Embedding”

quick brown

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Classifier

After training, we can make our final word vector a

concatenation of the two embeddings,

or just use W.

quick brown

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Word2Vec Training v1

Computing this denominator will be expensive.

Remember that the vocabulary size V is of the order of

millions of words!

! "" "#$ = exp((%!&
' . (%"#)

∑()*+ exp((%$& ' . (%"#)

Standard	softmax loss,	then	train	the	neural	network.	

!!" "#!"
!$"′##

Mikolov et al NeurIPS 2013

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Scaling Word2Vec Training

Simple Trick: Sample some random K-1<<V negative example words for

each sample. e.g., K=2, 5, 20 etc. [“Negative sampling”]

Also means we need to update many fewer weights

during each iteration of gradient descent.

! "" "#$ ≈ exp((%!&
' . (%"#)

∑()*, exp((%$& ' . (%"#)

!!" "#!"
!$"′##

Mikolov et al NeurIPS 2013

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Using Word2Vec Predictions

Predict word from bag-of-words context Predict context from word

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

From Words to Documents

• Sentence2Vec,	Paragraph2Vec	scale	these	Word2Vec	ideas	to	learn	direct	
embeddings	for	sentences	/	paragraphs.

• However,	much	more	common	to	treat	as	a	sequence	of	words,	and	represent	
each	word	by	its	word2vec-style	representation:	

Simple “sequence-to-sequence” models like these produced
huge advances in machine translation in 2014.

“I have a dog” word2vec(“I”)

word2vec(“have”)
word2vec(“a”)

“j'ai un chien”

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Properties of Word2Vec

Words	that	co-occur	have	vector	representations	that	are	close	together	
(Euclidean	distance).

“sofa”	and	“couch”	(synonyms)	will	be	close	together,	
but	also	things	like	“hot”	and	“cold”	(antonyms)

People	say	“It’s	____	outside	today”	for	both		

Ø “hot”	and	“cold”	co-occur	with	the	same	words	often	in	
sentences.

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Properties of Word2Vec

Vector	operations	(vector	addition	and	vector	subtraction)	on	word	vectors	often	
capture	the	semantic	relationships	of	their	words.

man	:	king	::	woman:	?

Source: https://www.ed.ac.uk/informatics/news-events/stories/2019/king-man-woman-queen-the-
hidden-algebraic-struct

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Use in Practice

GLoVe is	an	alternative	word	vector	embedding	similar	to	word2vec

Available	freely,	and	often	used	off-the-shelf:
• English	word2vec	weights	trained	on	Google	News	data
• GloVe vectors	trained	on	the	Common	Crawl	dataset	and	a	Twitter	dataset.

If	you	have	a	lot	of	training	data	or	a	very	different	/	niche	domain	(e.g.,	medical	
text),	you	might	want	to	train	your	own	word	vectors	on	your	dataset!

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Summary So Far

• The	journey	to	compact	vector	representations	of	words	by	their	context:

§ term	frequency	vectors
§ term-term	vectors
§word	embeddings	(learned	by	NN)

• We	can	use	measures	of	vector	similarity	(e.g.,	cosine	similarity,	L1	or	L2	
distance,	others)	to	find	related	terms

Words in Context

• While word2vec is trained based on context, after training, it is
applied independently to each word
• E.g., train linear regression of sum of word vectors, or n-grams

• Why is this problematic?
• “He ate a tasty apple”

• “He wrote his essay on his Apple computer”

• Both use the same embedding!

Recurrent Neural Networks

• Handle inputs/outputs that are sequences

• Naïve strategy
• Pad inputs to fixed length and use feedforward network

• Ignores temporal structure

• Recurrent neural networks (RNNs): Process input sequentially

Recurrent Neural Networks

! "(")#$! $ "(%) #& %&"(')#$" $ "(()

Recurrent Neural Networks

!"

"(")

#$!

"(%)#$" #$# "(')

!%

#$$

!'

#$%

#& %&"(()#$& #$' "())

!(

#$(

!)

#$)

Recurrent Neural Networks

!"

"(")

#$

"(%)#* #* "(')

!%

#$

!'

#$

#& %&"(()#* #* "())

!(

#$

!)

#$

Recurrent Neural Networks

• Initialize ! ! = 0

• Iteratively compute (for $ ∈ 1,… , T):

! " = * +," + .! "#$

• Compute output:

/ = 0%! &

Recurrent Neural Networks

Image

captioning

Sentiment

prediction

Machine

translation

Video

captioning

Fei-Fei Li, Justin Johnson, Serena Yeung

Recurrent Neural Networks

• Backpropagation works as before
• For shared parameters, overall gradient is sum of gradient at each usage

• Exploding/vanishing gradients can be particularly problematic

• LSTM (“long short-term memory”) and GRU (“gated recurrent unit”)
do clever things to better maintain hidden state

RNNs for Natural Language

• Apply RNN to sequence of words
• Encoding 1: One-hot encoding of each word

• Encoding 2: Sequence of word vectors

• Unsupervised pretraining
• Train on dataset of text to predict next word (classification problem)

• ! = ("(%…(+ and & = (+," (usually & is one-hot even if ! is not)

• Finetune pretrained RNN on downstream task

“Transfer Learning” Strategy

• Step 0: Pretrained on a large unlabeled text dataset
• Also called “self-supervised”

• Trained using supervised learning, but labels are predicting data itself

• Step 1: Replace next-word prediction layer with new layer for task

• Step 2: Train new layer or finetune end-to-end

RNNs for Natural Language

• Shortcomings
• Unidirectional information flow (must remember everything relevant)

• Computation time is proportional to sequence length

• Improvements/alternatives
• Bidirectional LSTMs

• CNNs

• Transformers

ELMo Model

• Bidirectional LSTM: Combine one LSTM to predict next word given
previous words, another to predict previous word given later words

CNNs

• Model
• 1D convolutional layers

• Input is word embedding sequence

• # channels is word embedding dimension

CNNs

• Shortcomings
• Hard to reason about interactions between words that are far apart

Figure credit to d2l.ai

http://d2l.ai/

Transformers

• Composition of self-attention layers

• Intuition
• Want sparse connection structure of CNNs, but with different structure

• Can we learn the connection structure?

Self-Attention Layer

• Self-attention layer:

/ $ =1
'($

&
attention , 8 , , $ ⋅ : , 8

• Input first processed by local layer #
• All inputs can affect & *
• But weighted by attention ! 1 , ! *

• Resembles convolution but connection is
learned instead of hardcoded

Figure credit to d2l.ai

vector, not a single

component!

http://d2l.ai/

Self-Attention Layer

• Self-attention layer:

/ $ =1
'($

&
softmax query , $ %key , 8 ⋅ value , 8

• Here, we have (learnable parameters are +), +* , and ++):

query , 8 = +), 8
key , 8 = +*, 8
value , 8 = ++, 8

Self-Attention Layer

-!
query

vectors

-" value
vectors

-# key
vectors

.×. matrix
matrix$% = query$&key%

row-wise
softmax

.×. matrix
attention'(
= softmax matrix$%

×

, 1

sequence of

input vectors

, G

⋮

= /[1] /[G]⋯

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Transformers

• Stack self-attention layers to form a neural network architecture

• Examples:
• BERT: Bidirectional transformer similar to ELMo, useful for prediction

• GPT: Unidirecitonal model suited to text generation

• Aside: Self-attention layers subsume convolutional layers
• Use “positional encodings” as auxiliary input so each input knows its position

• https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-

encoding.html#

• Then, the attention mechanism can learn convolutional connection structure

https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html

Visualizing Attention Outputs

https://transformer.huggingface.co/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Applications: Spam Detection

• “Bag of words” + SVMs for spam
classification

• Features: Words like “western union”, “wire
transfer”, “bank” are suggestive of spam

Applications: Search

• Use “bag of words” + TF-IDF to identify
relevant documents for a search query

Applications: Virtual Assistants

• Use word vectors to predict intent of queries users ask

Applications: Question Answering

• Models like ELMo and BERT can be
used to answer questions based on
a given passage

Applications: Generation

• Language models such as GPT can automatically generate text for
applications such as video games

AI Dungeon, an infinitely
generated text adventure

powered by deep learning.

Transformers for Computer Vision

Figure credit to “End-to-End Object Detection with Transformers”

https://arxiv.org/pdf/2005.12872.pdf

