
Announcements

• HW 5 due Wednesday, November 16

• Quiz 10 is due Thursday, November 17 at 8pm



Lecture 20: Bayesian Networks

CIS 4190/5190
Fall 2022



Class So Far

• Supervised Learning
• Linear/logistic regression, MLE, decision trees, ensembles, neural networks
• Application to computer vision, NLP

• Unsupervised Learning
• PCA, K-Means, neural networks
• Application to NLP

• Today: Bayesian networks
• Very different viewpoint, but concepts are pervasive in ML research
• Probability as a unifying framework for machine learning



Design Decisions

• Model family
• Flexible architectures
• Implicit functions (inference)
• Very different from what we’ve seen so far!

• Optimization algorithm
• Typically straightforward



Models So Far

𝑥

𝛽

𝑓! 𝑥 𝑦



Bayesian Network Inference

𝑥

𝛽

“Inference Algorithm” 𝑦



Logic & AI

• Efficient algorithm for logical reasoning was a major focus of early 
research on artificial intelligence

• Logical inference problem
• Given a set of “facts”, is a given statement true or false?
• “Facts” can be formalized as a set of logical formulas

• Example:
• Facts: All men are mortal. Socrates is a man.
• Question: Is Socrates mortal?
• Answer: Yes!



Logic & AI

• Pure logic is very limited compared to human reasoning

• Example (McDermott 1987):
• Facts: There is an empty can of soda
• Question: Did someone drink soda?
• Answer: Probably!

• Issues
• Consider the facts “only people drink soda”, “soda cans start out full”
• These facts often have many exceptions that can typically be ignored



Probabilistic Inference

• Solution: Probabilistic inference
• Input: Facts that hold with some probability, desired query
• Output: Probability of query holding

• Use simplified facts but account for the fact that they may be wrong



Probabilistic Inference

• Probabilistic models
• Probability distribution designed to describe how portion of the world works

𝑃 𝑋! = 𝑥!, … , 𝑋" = 𝑥"

• Encode world as set of random variables and their relationships

• Always simplifications (e.g., may not account for every variable, or all 
dependences between variables)

• Example: “Drinking can of soda” and “can being empty/full”



Probabilistic Inference

• Probabilistic inference: Compute distribution of unobserved variables
• Example: Explanation (i.e., observe empty soda can, infer someone drank it)
• Example: Prediction (i.e., observe soda can purchase, infer they will drink it)

• Problem: Probabilistic inference is computationally challenging!
• We won’t address the question of where the facts come from (huge literature 

on inducing knowledge graphs that aims to solve this problem)



Bayesian Networks

• Bayesian networks (Pearl 1985) are a graph-based data structure for 
representing probability distributions

• Expose structure in the form of dependences between variables that 
can make probabilistic inference more tractable

• As with neural networks, you can design the model family!
• Widely used in computer vision and NLP prior to success of deep learning
• Incorporated into modern neural network architectures (e.g., VAEs)



Bayesian Networks

• Logic: Inference is checking if a fact can be deduced from given facts

• Bayesian network: Inference is evaluating the probability of a fact 
given the probabilities of other facts



Random Variables

• A random variable represents a quantity we are uncertain about

• Random variable takes values in a domain 
• We will focus on random variables with finite domains

• Examples:
• 𝑅 = Is it raining? (𝑅 ∈ true, false , which we may write as +𝑟,−𝑟 )
• 𝑇 = Is it hot or cold? (𝑇 ∈ {hot, cold})
• 𝐷 = How long will it take to drive to work? (𝐷 ∈ 0,∞ )



Probability Distributions

• Probability distribution: For random variable 𝑋, 𝑃 𝑋 = 𝑥 ∈ 0,1 is 
probability 𝑋 has value 𝑥

• Recall: Probabilities satisfy 𝑃 𝑋 = 𝑥 ≥ 0 and ∑# 𝑃 𝑋 = 𝑥 = 1

• Notation: When unambiguous, we drop the random variable



Probability Distributions

• For finite domains, the distribution can be represented as a table

• Examples:

𝑇 𝑃 𝑇
hot 0.5
cold 0.5

𝑊 𝑃 𝑊
sun 0.6
rain 0.1
fog 0.3

meteor 0.0



Joint Distributions

• Given random variables 𝑋!, … , 𝑋", they have a joint distribution

𝑃 𝑋! = 𝑥!, … , 𝑋" = 𝑥"

• As before, satisfy
• 𝑃 𝑋! = 𝑥!, … , 𝑋" = 𝑥" ≥ 0
• ∑ #!,…,#" 𝑃 𝑋! = 𝑥!, … , 𝑋" = 𝑥" = 1



Joint Distributions

• For finite domains, the distribution can be represented as a table

• Example:
𝑇 𝑅 𝑃 𝑇, 𝑅

hot no rain 0.4
hot rain 0.1
cold no rain 0.2
cold rain 0.3



Designing a Probabilistic Model

• Naïve idea
• Write down the full joint distribution 𝑃 𝑥!, … , 𝑥"
• Perform inference using this distribution

• Problem: For 𝑛 random variables with domain size 𝐷 = 𝑑, the table 
representing the joint distribution has 𝑑" entries!
• Learning and inference are both intractable!

• Is there structure we can exploit to improve tractability?
• Yes, conditional independence!



Independence

• Two random variables are independent (denoted 𝑋⫫𝑌) if

∀𝑥, 𝑦 . 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦

• Here, 𝑃 𝑥 = ∑$ 𝑃 𝑥, 𝑦 is the marginal distribution

• That is, the joint distribution factors into two simpler distributions



Independence

• Example (not independent):

𝑇 𝑅 𝑃 𝑇, 𝑅
hot no rain 0.4
hot rain 0.1
cold no rain 0.2
cold rain 0.3



Independence

• Example (independent):

𝑇 𝑅 𝑃 𝑇, 𝑅
hot no rain 0.3
hot rain 0.2
cold no rain 0.3
cold rain 0.2

𝑇 𝑃 𝑇
hot 0.5
cold 0.5

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

×=



Independence

• Example: Coin flips

𝑋! 𝑃 𝑋!
heads 0.5
tails 0.5

× ⋯ ×
𝑋" 𝑃 𝑋"

heads 0.5
tails 0.5

𝑋! ⋯ 𝑋" 𝑃 𝑋!, … , 𝑋"
heads ⋯ heads 2&"

⋯ ⋯ ⋯ 2&"
2" rows=

Independence can lead to much more compact representations!



Conditional Probabilities

• Conditional probability:

𝑃 𝑥 𝑦 =
𝑃 𝑥, 𝑦
𝑃 𝑦

• Product rule: 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃 𝑦

• Chain rule: 𝑃 𝑥!, … , 𝑥" = 𝑃 𝑥! 𝑃 𝑥% 𝑥! ⋯𝑃 𝑥" 𝑥!, … , 𝑥"&!



Conditional Probabilities

• Conditional probability:

𝑃 𝑥 𝑦 =
𝑃 𝑥, 𝑦
𝑃 𝑦

• Product rule: 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃 𝑦

• Chain rule: 𝑃 𝑥!, … , 𝑥" = ∏'(!
" 𝑃 𝑥' 𝑥!, … , 𝑥'&!

• Note: Independence is equivalently ∀𝑥, 𝑦 . 𝑃 𝑦 ∣ 𝑥 = 𝑃 𝑦



Conditional Independence

• Independence conditioned on other random variables

• Example: 𝑃 rain, traf>ic, umbrella
• “Having traffic” and “needing an umbrella” are not independent!
• But if we know there is rain, traffic does not depend on umbrella:

𝑃 +traf>ic +rain, +umbrella = 𝑃 +traf>ic +rain

• Similarly for not having rain:

𝑃 +traf>ic −rain, +umbrella = 𝑃 +traf>ic −rain



Conditional Independence

• Traffic is conditionally independent of umbrella given rain

𝑃 traf>ic rain, umbrella = 𝑃 traf>ic rain

• The following statements are equivalent to the one above:
• 𝑃 umbrella rain, trafOic = 𝑃 umbrella rain
• 𝑃 trafOic, umbrella rain = 𝑃 trafOic rain 𝑃 umbrella rain

• Traffic and umbrella are conditionally independent given rain



Conditional Independence

• 𝑋 is conditionally independent of 𝑌 given 𝑍!, … , 𝑍" if

∀𝑥, 𝑦, 𝑧!, … , 𝑧" . 𝑃 𝑥, 𝑦 𝑧!, … , 𝑧" = 𝑃 𝑥 𝑧!, … , 𝑧" 𝑃 𝑦 𝑧!, … , 𝑧"

• Equivalently:

∀𝑥, 𝑦, 𝑧!, … , 𝑧" . 𝑃 𝑥 𝑧!, … , 𝑧" , 𝑦 = 𝑃 𝑥 𝑧!, … , 𝑧"

• Denoted 𝑋⫫𝑌 ∣ 𝑍!, … , 𝑍"



Designing a Probabilistic Model

• Idea: Restrict to joint distributions with given independence relations
• Posit set of conditional independence relationships 𝑋'⫫𝑋( ∣ 𝑋)
• Only learn joint distributions 𝑃 𝑥!, … , 𝑥" that satisfy these relationships
• Intuition: Conditional independences define “local” distributions that are 

chained together to form “global” distribution

• This is the approach taken by Bayesian networks
• Note on terminology: Special kind of graphical model

• Rarely have exact independence, but useful modeling assumption



Bayesian Networks

• Represent conditional independences via a directed acyclic graph

• Nodes/vertices: Variables 𝑋) , 𝐷) (and their domains)

• Arcs/edges: Encode parameter structure
• Parameters: Distribution of each 𝑋' given its parents



Example: Coin Flips

𝑋! ⋯ 𝑋"

no interactions à all random variables are independent

𝑋! 𝑃 𝑋!
heads 0.5
tails 0.5

𝑋" 𝑃 𝑋"
heads 0.5
tails 0.5



Example: Weather

Rain

Traffic



Parameters

• Conditional probabilities of node given parents:

𝜃',#!,…,#"# ,# = 𝑃 𝑋' = 𝑥 𝑋'! = 𝑥!, … , 𝑋'" = 𝑥)#

• Here, 𝑥' ∈ 𝐷' is in the domain of 𝑋'



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Example: Weather

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅



Summary

• Bayesian network
• Nodes represent random variables
• Edges encode conditional independences
• For each node, parameters at that node encode probability distribution of 

node conditioned on its parents

• Edge directions
• Determines parameters
• Often encode intuitive notion of causality (can be formalized)



Summary

• Any joint distribution satisfying the conditional independencies can 
be expressed as product of 𝑃 𝑋' = 𝑥' parents 𝑋' = 𝑥'! , … , 𝑥'"

• We can compute the corresponding joint distribution using chain rule:

𝑃 𝑥!, … , 𝑥" = ∏'(!
" 𝑃 𝑋' = 𝑥' 𝑋!, …𝑋'&! = 𝑥!, … , 𝑥'&!

𝑃 𝑥!, … , 𝑥" = ∏'(!
" 𝑃 𝑋' = 𝑥' parents 𝑋' = 𝑥'! , … , 𝑥'"

• First equality holds for any distribution by chain rule
• Second equality holds by assumption (assumes topological order)



Example: More Complex Traffic Model

• Variables:
• Low pressure (𝐿)
• Rain (𝑅)
• Traffic (𝑇)
• Roof damage (𝐷)
• Ballgame (𝐵)
• Mood (𝑀)

𝐿

𝑅

𝑇𝐵 𝐷

𝑀



𝑃 𝐿, 𝐵, 𝑅, 𝑇, 𝐷,𝑀 =
𝑃 𝐿
𝑃 𝐵
𝑃 𝑅 𝐿
𝑃 𝑇 𝑅, 𝐵
𝑃 𝐷 𝑅, 𝑇
𝑃 𝑀 𝐵,𝐷

Example

𝐿

𝑅

𝑇𝐵 𝐷

𝑀



Example: Insurance

https://www.bnlearn.com/bnrepository/discrete-medium.html#insurance



Queries on Bayesian Networks

• Which variables are conditionally independent?
• For any values of the parameters
• Called d-separation

• What is the most likely assignment, i.e., max
#!,…,#$

𝑃 𝑥!, … , 𝑥" ?

• Called maximum a posteriori (MAP) inference

• What is the conditional distribution 𝑃 𝑋' ∣ 𝑋'! = 𝑥'! , … , 𝑋'" = 𝑥'" ?
• For any 𝑋' and any 𝑋'! = 𝑥'! , … , 𝑋'# = 𝑥'#
• Called marginal inference



Queries on Bayesian Networks

• Which variables are conditionally independent?
• For any values of the parameters
• Called d-separation

• What is the most likely assignment, i.e., max
#!,…,#$

𝑃 𝑥!, … , 𝑥" ?

• Called maximum a posteriori (MAP) inference

• What is the conditional distribution 𝑃 𝑋' ∣ 𝑋'! = 𝑥'! , … , 𝑋'" = 𝑥'" ?
• For any 𝑋' and any 𝑋'! = 𝑥'! , … , 𝑋'# = 𝑥'#
• Called marginal inference



D-Separation Strategy

• Step 1: Look at three special cases
• Causal chain
• Common cause
• Common effect

• Step 2: Piece them together



Causal Chain

• 𝑋 → 𝑌 → 𝑍

• Is 𝑋⫫𝑍? Not necessarily
• E.g., Rain = Pressure and TrafOic = Rain

• Is 𝑋⫫𝑍 ∣ 𝑌? Yes
• 𝑃 𝑧 𝑥, 𝑦 = * #,+,,

* #,+ = * # * 𝑦 𝑥 * 𝑧 𝑦
* # * 𝑦 𝑥 = 𝑃 𝑧 𝑦

Rain

Traffic

Pressure



Common Cause

• 𝑋 ← 𝑌 → 𝑍

• Is 𝑋⫫𝑍? Not necessarily
• E.g., TrafOic = Rain and 
Damage = Rain

• Is 𝑋⫫𝑍 ∣ 𝑌? Yes
• 𝑃 𝑧 𝑥, 𝑦 = * #,+,,

* #,+

• = * # * 𝑥 𝑦 * 𝑧 𝑦
* # * 𝑥 𝑦 = 𝑃 𝑧 𝑦

Rain

Traffic Damage



Common Effect

• 𝑋 → 𝑌 ← 𝑍

• Is 𝑋⫫𝑍? Yes
• Proof left as exercise 

• Is 𝑋⫫𝑍 ∣ 𝑌? Not necessarily
• E.g., for 𝑌 = 𝑋⊕ 𝑍 (XOR), then if 
𝑌 = False, then 𝑋 = ¬𝑍
• Example: Medical diagnosis

• Observation “activates” path

Mood

Ballgame Damage



General Case

• Query: For a general Bayesian network, is 𝑋⫫𝑌 ∣ 𝑍!, … , 𝑍)?

• Algorithm
• Look for paths from 𝑋 to 𝑌
• Segment 𝐴 − 𝐵 − 𝐶 only “active” (from previous three cases, see next slide)

• If there are no paths from 𝑋 to 𝑌 such that all segments are active, 
then 𝑋⫫𝑌 ∣ 𝑍!, … , 𝑍)
• Otherwise, conditional independence is not guaranteed



General Case

• Causal chain
• 𝐴 → 𝐵 → 𝐶
• Active iff 𝐵 ∉ 𝑍'

• Common cause
• 𝐴 ← 𝐵 → 𝐶
• Active iff 𝐵 ∉ 𝑍'

• Common effect
• 𝐴 → 𝐵 ← 𝐶
• Active iff 𝐵 ∈ 𝑍' (or descendant ∈ 𝑍' )

Active Triples Inactive Triples



• Query: Is 𝐿⫫𝑀?
• No, 𝐿 → 𝑅 → 𝐷 → 𝑀

• Query: Is 𝐿⫫𝐵?
• Yes!
• 𝐿 → 𝑅 → 𝑇 ← 𝐵
• 𝐿 → 𝑅 → 𝐷 ← 𝑇 ← 𝐵
• 𝐿 → 𝑅 → 𝐷 → 𝑀 ← 𝐵

• Note: If we observe 𝑇, 𝐷, or 𝑀, breaks independence
• None of 𝐿⫫𝐵 ∣ 𝑇, 𝐿⫫𝐵 ∣ 𝐷, and 𝐿⫫𝐵 ∣ 𝑀 hold

Example

𝐿

𝑅

𝑇𝐵 𝐷

𝑀



Queries on Bayesian Networks

• Which variables are conditionally independent?
• For any values of the parameters
• Called d-separation

• What is the most likely assignment, i.e., max
#!,…,#$

𝑃 𝑥!, … , 𝑥" ?

• Called maximum a posteriori (MAP) inference

• What is the conditional distribution 𝑃 𝑋' ∣ 𝑋'! = 𝑥'! , … , 𝑋'" = 𝑥'" ?
• For any 𝑋' and any 𝑋'! = 𝑥'! , … , 𝑋'# = 𝑥'#
• Called marginal inference



Marginal Inference

• Input:
• Evidentiary variables: 𝐸! = 𝑒!, … , 𝐸) = 𝑒) (features)
• Query variable: 𝑄 (label)
• Hidden variables: 𝐻!, … , 𝐻- (all remaining, “latent” variables)

• Goal: For each 𝑞, compute

𝑃 𝑄 = 𝑞 ∣ 𝐸! = 𝑒!, … , 𝐸) = 𝑒)

• Equivalently: Likelihood 𝑝 𝑦 𝑥



Enumerative Algorithm

• Step 1: Construct table for joint distribution 𝑃 𝑞, ℎ!, … , ℎ, , 𝑒!, … , 𝑒)

• Step 2: Select rows consistent with evidence
• I.e., 𝑃 𝑞, ℎ!, … , ℎ-, 𝑒!, … , 𝑒) for some ℎ!, … , ℎ-

• Step 3: Sum out hidden variables and normalize:

𝑃 𝑄 = 𝑞 ∣ 𝑒!, … , 𝑒) =
1
𝑍

k
.!,…,.$

𝑃 𝑞, ℎ!, … , ℎ-, 𝑒!, … , 𝑒)

• Normalizing constant 𝑍 = ∑/,.!,…,.$ 𝑃 𝑞, ℎ!, … , ℎ-, 𝑒!, … , 𝑒)



Step 1: Construct Joint Distribution

Rain

Traffic

𝑅 𝑃 𝑅
no rain 0.6

rain 0.4

𝑅 𝑇 𝑃 𝑇 ∣ 𝑅
no rain no traffic 0.75
no rain traffic 0.25

rain no traffic 0.25
rain traffic 0.75

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅

Query: 𝑃 𝑅 ∣ traf+ic



Step 2: Select Rows

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

Query: 𝑃 𝑅 ∣ traf+ic



Step 2: Select Rows

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

Query: 𝑃 𝑅 ∣ traf+ic



Step 3: Sum and Normalize

𝑅 𝑇 𝑃 𝑅, 𝑇
no rain no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

Query: 𝑃 𝑅 ∣ traf+ic

𝑃 rain ∣ traf>ic = -.!/
-.01-.!/

= !
0

𝑃 no rain ∣ traf>ic = -.0
-.01-.!/

= %
0



Enumerative Algorithm

• Constructing the joint distribution is very computationally expensive!

• NP hard in general, but we can do better in practice

• Idea: Marginalize hidden variables before the end



Factors and Operations

• Factor: A table encoding a distribution 𝑃 𝑥!, … , 𝑥) 𝑦!, … , 𝑦2
• In general, we denote factors by 𝜙 𝑧!, … , 𝑧-

• Join: Given 𝜙 𝑥!, … , 𝑥) , 𝑦!, … , 𝑦, and 𝜙 𝑥!, … , 𝑥) , 𝑧!, … , 𝑧" output

𝜙 𝑥!, … , 𝑥), 𝑦!, … , 𝑦-, 𝑧!, … , 𝑧" = 𝜙 𝑥!, … , 𝑥), 𝑦!, … , 𝑦- 𝜙 𝑥!, … , 𝑥), 𝑧!, … , 𝑧"

• Eliminate: Given 𝜙 𝑥, 𝑦!, … , 𝑦) output

𝜙 𝑦!, … , 𝑦) =k
#

𝜙 𝑥, 𝑦!, … , 𝑦)



Enumerative Algorithm

• Step 0: Initial factors are 𝑃 𝑋' parents 𝑋' for each node 𝑋'
• Immediately drop rows conditioned on evidentiary variables

• Step 1: Join all factors

• Step 2: Eliminate all hidden variables

• Output: Remaining factor is 𝑃 𝑄, 𝑒!, … , 𝑒) , which can be normalized



Example Query

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝑅

𝑃 𝑇 ∣ 𝑅

𝑃 𝐿 ∣ 𝑇

T

R

L

Query: 𝑃 𝐿



Step 0: Initial Factors

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝑅 𝑃 𝑇 ∣ 𝑅 𝑃 𝐿 ∣ 𝑇



Step 1: Join All Factors
𝑃 𝑅

𝑃 𝑇 ∣ 𝑅

𝑃 𝐿 ∣ 𝑇

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝐿 ∣ 𝑇

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

𝑃 𝑅, 𝑇, 𝐿 = 𝑃 𝐿 𝑇 𝑃 𝑅, 𝑇



Step 2: Eliminate Hidden Variables

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

𝑃 𝑅, 𝑇, 𝐿

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886

𝑃 𝑇, 𝐿 = ∑!𝑃 𝑅, 𝑇, 𝐿
𝑃 𝐿 = ∑"𝑃 𝑇, 𝐿



Variable Elimination Strategy
𝑃 𝑅

𝑃 𝑇 ∣ 𝑅

𝑃 𝐿 ∣ 𝑇

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝐿 ∣ 𝑇

𝑃 𝑅, 𝑇 = 𝑃 𝑇 𝑅 𝑃 𝑅

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝑇 = ∑!𝑃 𝑅, 𝑇

𝑃 𝐿 ∣ 𝑇

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

𝑃 𝑇, 𝐿 = 𝑃 𝐿 𝑇 𝑃 𝑇

+l 0.134
-l 0.866

𝑃 𝐿 = ∑"𝑃 𝐿, 𝑇



Variable Elimination Strategy

T

L

T

R

L

R, T

L

T, L L



What about evidence?

• When there are evidentiary variables, select those rows first

+r 0.1 +r +t 0.8
+r -t 0.2

𝑃 +𝑟 𝑃 𝑇 ∣ +𝑟
+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝐿 ∣ 𝑇

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

𝑃 𝑅 𝑃 𝑇 ∣ 𝑅 𝑃 𝐿 ∣ 𝑇

Query: 𝑃 𝐿 ∣ +𝑟



What about evidence?

• At the end, obtain an unnormalized distribution, which we normalize

𝑃 𝐿 ∣ +𝑟

𝑃 +𝑟, 𝐿

Query: 𝑃 𝐿 ∣ +𝑟

+r +l 0.026
+r -l 0.074

+l 0.26
-l 0.74



Alternative View

𝑃 ℓ ==
"

=
!

𝑃 ℓ 𝑡 𝑃 𝑟 𝑃 𝑡 𝑟

join on 𝑟

join on 𝑡

eliminate 𝑟

eliminate 𝑡

Enumeration

𝑃 ℓ ==
"

𝑃 ℓ 𝑡 =
!

𝑃 𝑟 𝑃 𝑡 𝑟

join on 𝑟

eliminate 𝑟

join on  𝑡

eliminate 𝑡

Variable Elimination



General Variable Elimination Strategy

• Step 0: Initial factors are 𝑃 𝑋' parents 𝑋' for each node 𝑋'
• Immediately drop rows conditioned on evidentiary variables

• Step 1: For each 𝐻':
• Step 1a: Join all factors containing 𝐻'
• Step 1b: Eliminate 𝐻'

• Output: Join all remaining factors and normalize



Variable Elimination Order

• Query: 𝑃 𝑋" 𝑦!, … , 𝑦"

• Eliminating 𝑍 first results in 
factor of size 2"1!

• Eliminating 𝑋!, … , 𝑋"&! first 
results in factors of size 2

𝑋! ⋯ 𝑋"

𝑌! 𝑌"

𝑍

⋯



Variable Elimination Order

• Order in which hidden variables are eliminated can greatly affect 
performance (e.g., exponential vs. constant)

• May not exist an efficient ordering (problem is NP hard in general)

• Computing optimal ordering is also NP hard



Learning Bayesian Networks

• Supervised learning
• Features 𝑥 are evidentiary variables
• Label 𝑦 is query variable
• Parameters are the conditional probabilities
• Marginal inference evaluates likelihood 𝑝 𝑦 𝑥

• How to learn the parameters?



Maximum Likelihood Learning

• Minimize the NLL:

n𝜃 = arg min
0

k
'1!

"

k
(1!

2

log 𝑃0 𝑋( = 𝑥',( parents 𝑋( = 𝑥',)! , … , 𝑥',)%

• Can use gradient descent to optimize
• There is a nice formula for the gradient



Simplest Example: Naïve Bayes

• Model:

𝑃 𝑌, 𝑋!… ,𝑋" = 𝑃 𝑌 _
'(!

"

𝑃 𝑋' 𝑌

• If 𝑌 has domain 𝐷? and 𝑋' has domain 𝐷@, 
then 𝑛 ⋅ 𝐷@ ⋅ 𝐷? parameters 𝑋! ⋯ 𝑋"

𝑌



Inference in Naïve Bayes

• Step 1: For each 𝑦 ∈ 𝐷?, compute joint probability distribution

𝑃 𝑦, 𝑥!, … , 𝑥" = 𝑃 𝑦 _
'(!

"

𝑃 𝑥' 𝑦

• Step 2: Normalize distribution:

𝑃 𝑦 ∣ 𝑥!, … , 𝑥" =
𝑃 𝑦, 𝑥!, … , 𝑥"

𝑍

• Here, 𝑍 = ∑+&∈4' 𝑃 𝑦5, 𝑥!, … , 𝑥"



Naïve Bayes for Spam Detection

• Bag of words model

• Parameter sharing via “tied” distribution: For all 𝑖, 𝑗, constrain

𝑃 𝑋' = 𝑥 𝑌 = 𝑃(𝑋A = 𝑥 ∣ 𝑌

• Encodes invariant structure in bag of words models



Naïve Bayes for Spam Detection

the :  0.0156
to  :  0.0153
and :  0.0115
of  :  0.0095
you :  0.0093
a   :  0.0086
with:  0.0080
from:  0.0075
...

the :  0.0210
to  :  0.0133
of  :  0.0119
2002:  0.0110
with:  0.0108
from:  0.0107
and :  0.0105
a   :  0.0100
...

not spam: 0.66
spam:     0.33

𝑃 𝑦 𝑃 𝑥 ∣ spam 𝑃 𝑥 ∣ not spam



Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

d𝜃 = arg min
B

f
'(!

"

log 𝑃B 𝑦' + logf
A(!

C

𝑃B 𝑥',A 𝑦'

• Can show that parameters are counts:

𝑃B 𝑥 𝑦 =
∑'(!" ∑A(!C 1 𝑦' = 𝑦 ∧ 𝑥',A = 𝑥

∑'(!" ∑A(!C 1 𝑦' = 𝑦



Maximum Likelihood Learning

• Can overfit
• If a word never occurs in the training dataset, probabilities are all undefined

• Regularization via Laplace smoothing
• Assume each word occurs 𝑘 extra times in the dataset (increase counts by 𝑘)

𝑃B 𝑥 𝑦 =
𝑘 + ∑'(!" ∑A(!C 1 𝑦' = 𝑦 ∧ 𝑥',A = 𝑥

𝑘 ⋅ 𝑑 + ∑'(!" ∑A(!C 1 𝑦' = 𝑦

• Can be interpreted as a prior on 𝜃 (in particular, the Dirichlet prior)



Example: Works Well



Example: Works Poorly



Reasoning Through Time

• One strength of the framework is for modeling time varying processes
• E.g., use (partial) measurements of factors to estimate future crop yield

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=01495B0A3249E426AD4C55FA02C14200?doi=10.1.1.30.9931&rep=rep1&type=pdf



Hidden Markov Model

• Speech recognition, machine translation, object tracking


