Announcements

• HW 5 due **Wednesday, November 16**

• Quiz 10 is due **Thursday, November 17 at 8pm**
Lecture 20: Bayesian Networks

CIS 4190/5190
Fall 2022
Class So Far

• **Supervised Learning**
 - Linear/logistic regression, MLE, decision trees, ensembles, neural networks
 - Application to computer vision, NLP

• **Unsupervised Learning**
 - PCA, K-Means, neural networks
 - Application to NLP

• **Today:** Bayesian networks
 - Very different viewpoint, but concepts are pervasive in ML research
 - Probability as a unifying framework for machine learning
Design Decisions

• Model family
 • Flexible architectures
 • Implicit functions (inference)
 • Very different from what we’ve seen so far!

• Optimization algorithm
 • Typically straightforward
Models So Far

\[f_\beta(x) \]
Bayesian Network Inference

\[x \quad \beta \quad \text{“Inference Algorithm”} \quad y \]
Logic & AI

• Efficient algorithm for logical reasoning was a major focus of early research on artificial intelligence

• **Logical inference problem**
 • Given a set of “facts”, is a given statement true or false?
 • “Facts” can be formalized as a set of logical formulas

• **Example:**
 • **Facts:** All men are mortal. Socrates is a man.
 • **Question:** Is Socrates mortal?
 • **Answer:** Yes!
Logic & AI

• Pure logic is very limited compared to human reasoning

• Example (McDermott 1987):
 • Facts: There is an empty can of soda
 • Question: Did someone drink soda?
 • Answer: Probably!

• Issues
 • Consider the facts “only people drink soda”, “soda cans start out full”
 • These facts often have many exceptions that can typically be ignored
Probabilistic Inference

• **Solution**: Probabilistic inference
 • **Input**: Facts that hold with some probability, desired query
 • **Output**: Probability of query holding

• Use simplified facts but account for the fact that they may be wrong
Probabilistic Inference

• **Probabilistic models**
 • Probability distribution designed to describe how portion of the world works

 \[P(X_1 = x_1, \ldots, X_n = x_n) \]

 • Encode world as set of random variables and their relationships

• Always simplifications (e.g., may not account for every variable, or all dependences between variables)

• **Example:** “Drinking can of soda” and “can being empty/full”
Probabilistic Inference

• **Probabilistic inference**: Compute distribution of unobserved variables
 - **Example**: Explanation (i.e., observe empty soda can, infer someone drank it)
 - **Example**: Prediction (i.e., observe soda can purchase, infer they will drink it)

• **Problem**: Probabilistic inference is computationally challenging!
 - We won’t address the question of where the facts come from (huge literature on inducing knowledge graphs that aims to solve this problem)
Bayesian Networks

- **Bayesian networks** (Pearl 1985) are a graph-based data structure for representing probability distributions

- Expose structure in the form of dependences between variables that can make probabilistic inference more tractable

- As with neural networks, you can design the model family!
 - Widely used in computer vision and NLP prior to success of deep learning
 - Incorporated into modern neural network architectures (e.g., VAEs)
Bayesian Networks

- **Logic**: Inference is checking if a fact can be deduced from given facts

- **Bayesian network**: Inference is evaluating the probability of a fact given the probabilities of other facts
Random Variables

• A random variable represents a quantity we are uncertain about

• Random variable takes values in a domain
 • We will focus on random variables with finite domains

• Examples:
 • $R = $ Is it raining? ($R \in \{\text{true, false}\}$, which we may write as $\{+r, -r\}$)
 • $T = $ Is it hot or cold? ($T \in \{\text{hot, cold}\}$)
 • $D = $ How long will it take to drive to work? ($D \in [0, \infty)$)
Probability Distributions

• **Probability distribution:** For random variable X, $P(X = x) \in [0,1]$ is probability X has value x

• **Recall:** Probabilities satisfy $P(X = x) \geq 0$ and $\sum_x P(X = x) = 1$

• **Notation:** When unambiguous, we drop the random variable

\[
\begin{align*}
P(\text{hot}) &= P(T = \text{hot}), \\
P(\text{cold}) &= P(T = \text{cold}), \\
P(\text{rain}) &= P(W = \text{rain}),
\end{align*}
\]
Probability Distributions

• For finite domains, the distribution can be represented as a table

• Examples:

<table>
<thead>
<tr>
<th>T</th>
<th>$P(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>$P(W)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>fog</td>
<td>0.3</td>
</tr>
<tr>
<td>meteor</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Joint Distributions

• Given random variables X_1, \ldots, X_n, they have a joint distribution

$$P(X_1 = x_1, \ldots, X_n = x_n)$$

• As before, satisfy
 • $P(X_1 = x_1, \ldots, X_n = x_n) \geq 0$
 • $\sum_{(x_1, \ldots, x_n)} P(X_1 = x_1, \ldots, X_n = x_n) = 1$
Joint Distributions

• For finite domains, the distribution can be represented as a table

• Example:

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
<th>$P(T,R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>no rain</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>no rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Designing a Probabilistic Model

• **Naïve idea**
 - Write down the full joint distribution $P(x_1, ..., x_n)$
 - Perform inference using this distribution

• **Problem:** For n random variables with domain size $|D| = d$, the table representing the joint distribution has d^n entries!
 - Learning and inference are both intractable!

• Is there structure we can exploit to improve tractability?
 - Yes, *conditional independence*!
Independence

• Two random variables are independent (denoted $X \perp Y$) if

$$\forall x, y \cdot P(x, y) = P(x)P(y)$$

• Here, $P(x) = \sum_y P(x, y)$ is the marginal distribution

• That is, the joint distribution factors into two simpler distributions
Independence

- Example (not independent):

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
<th>$P(T, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>no rain</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>no rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Independence

• Example (independent):

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
<th>$P(T, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>no rain</td>
<td>0.3</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>no rain</td>
<td>0.3</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\times

<table>
<thead>
<tr>
<th>T</th>
<th>$P(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Independence

• **Example:** Coin flips

\[
\begin{array}{|c|c|}
\hline
X_1 & P(X_1) \\
\hline
\text{heads} & 0.5 \\
\text{tails} & 0.5 \\
\hline
\end{array}
\times \cdots \times
\begin{array}{|c|c|}
\hline
X_n & P(X_n) \\
\hline
\text{heads} & 0.5 \\
\text{tails} & 0.5 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
X_1 & \cdots \\
\hline
\text{heads} & \cdots \\
\text{...} & \text{...} \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
X_n & P(X_1,\ldots,X_n) \\
\hline
\text{heads} & 2^{-n} \\
\text{...} & 2^{-n} \\
\hline
\end{array}
\]

\[
\text{2}^n \text{ rows}
\]

Independence can lead to much more compact representations!
Conditional Probabilities

• **Conditional probability:**

\[P(x \mid y) = \frac{P(x, y)}{P(y)} \]

• **Product rule:** \(P(x, y) = P(x \mid y)P(y) \)

• **Chain rule:** \(P(x_1, ..., x_n) = P(x_1)P(x_2 \mid x_1) \cdots P(x_n \mid x_1, ..., x_{n-1}) \)
Conditional Probabilities

• Conditional probability:

\[P(x \mid y) = \frac{P(x, y)}{P(y)} \]

• Product rule: \(P(x, y) = P(x \mid y)P(y) \)

• Chain rule: \(P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i \mid x_1, \ldots, x_{i-1}) \)

• Note: Independence is equivalently \(\forall x, y \ . \ P(y \mid x) = P(y) \)
Conditional Independence

• Independence \textit{conditioned} on other random variables

• \textbf{Example:} \(P(\text{rain, traffic, umbrella}) \)
 • “Having traffic” and “needing an umbrella” are not independent!
 • But if we know there is rain, traffic does not depend on umbrella:

\[
P(+\text{traffic}|+\text{rain}, +\text{umbrella}) = P(+\text{traffic}|+\text{rain})
\]

• Similarly for not having rain:

\[
P(+\text{traffic}|-\text{rain}, +\text{umbrella}) = P(+\text{traffic}|-\text{rain})
\]
Conditional Independence

• Traffic is **conditionally independent** of umbrella given rain

\[P(\text{traffic}|\text{rain}, \text{umbrella}) = P(\text{traffic}|\text{rain}) \]

• The following statements are equivalent to the one above:
 • \[P(\text{umbrella}|\text{rain}, \text{traffic}) = P(\text{umbrella}|\text{rain}) \]
 • \[P(\text{traffic}, \text{umbrella}|\text{rain}) = P(\text{traffic}|\text{rain})P(\text{umbrella}|\text{rain}) \]

• Traffic and umbrella are **conditionally independent** given rain
Conditional Independence

• *X* is **conditionally independent** of *Y* given *Z*₁, ..., *Zₙ* if

\[\forall x, y, z₁, ..., zₙ \cdot P(x, y|z₁, ..., zₙ) = P(x|z₁, ..., zₙ)P(y|z₁, ..., zₙ) \]

• Equivalently:

\[\forall x, y, z₁, ..., zₙ \cdot P(x|z₁, ..., zₙ, y) = P(x|z₁, ..., zₙ) \]

• Denoted \(X \perp Y \mid Z₁, ..., Zₙ \)
Designing a Probabilistic Model

• **Idea:** Restrict to joint distributions with given independence relations
 • Posit set of conditional independence relationships $X_i \perp X_j \mid \{X_k\}$
 • Only learn joint distributions $P(x_1, \ldots, x_n)$ that satisfy these relationships
 • **Intuition:** Conditional independences define “local” distributions that are chained together to form “global” distribution

• This is the approach taken by **Bayesian networks**
 • **Note on terminology:** Special kind of **graphical model**

• Rarely have exact independence, but useful modeling assumption
Bayesian Networks

• Represent conditional independences via a directed acyclic graph

• **Nodes/vertices:** Variables \(\{(X_k, D_k)\} \) (and their domains)

• **Arcs/edges:** Encode conditional independences
 • For any \(X_i \) and any \(X_j \) not connected to \(X_i \), we have \(X_i \perp X_j \mid \text{neighbors}(X_i) \)
 • Neighbors include parents and children

• **Parameters:** Distribution of each \(X_i \) given its parents
Example: Coin Flips

<table>
<thead>
<tr>
<th>X_1</th>
<th>$P(X_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>heads</td>
<td>0.5</td>
</tr>
<tr>
<td>tails</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_n</th>
<th>$P(X_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>heads</td>
<td>0.5</td>
</tr>
<tr>
<td>tails</td>
<td>0.5</td>
</tr>
</tbody>
</table>

no interactions \Rightarrow all random variables are independent
Example: Weather

Rain

Traffic
Parameters

• Conditional probabilities of node given parents:

\[\theta_{i,x_1,...,x_{k_i},x} = P(X_i = x \mid X_{i_1} = x_1, ..., X_{i_k} = x_{k_i}) \]

• Here, \(x_i \in D_i \) is in the domain of \(X_i \)
Example: Weather

<table>
<thead>
<tr>
<th>R</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(T \mid R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.75</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.25</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.25</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Example: Weather

<table>
<thead>
<tr>
<th>R</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

$$P(R,T) = P(T | R)P(R)$$

| R | T | $P(T | R)$ |
|--------|---------------|-----------|
| no rain| no traffic | 0.75 |
| no rain| traffic | 0.25 |
| rain | no traffic | 0.25 |
| rain | traffic | 0.75 |
Example: Weather

\[
P(R, T) = P(T | R)P(R)
\]

Weather

Rain

<table>
<thead>
<tr>
<th>(R)</th>
<th>(P(R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Traffic

| \(R \) | \(T \) | \(P(T | R) \) |
|------------|-------------|----------------|
| no rain | no traffic | 0.75 |
| no rain | traffic | 0.25 |
| rain | no traffic | 0.25 |
| rain | traffic | 0.75 |
Example: Weather

\[P(R,T) = P(T | R) P(R) \]
Example: Weather

<table>
<thead>
<tr>
<th></th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

| | $P(T | R)$ |
|---|-----------|
| no rain | no traffic | 0.75 |
| no rain | traffic | 0.25 |
| rain | no traffic | 0.25 |
| rain | traffic | 0.75 |

$$P(R, T) = P(T | R)P(R)$$
Example: Weather

<table>
<thead>
<tr>
<th>R</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(R,T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.45</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.1</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(R, T) = P(T | R) P(R)
\]
Example: Weather

<table>
<thead>
<tr>
<th>R</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(T \mid R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.75</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.25</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.25</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(R, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.45</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.1</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$P(R, T) = P(T \mid R)P(R)$
Summary

• **Bayesian network**
 • Nodes represent random variables
 • Edges encode conditional independences
 • For each node, parameters at that node encode probability distribution of node conditioned on its parents

• **Edge directions**
 • Determines parameters
 • Often encode intuitive notion of causality (can be formalized)
Summary

• Any joint distribution satisfying the conditional independencies can be expressed as product of $P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$

• We can compute the corresponding joint distribution using chain rule:

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(X_i = x_i \mid (X_1, ..., X_{i-1}) = (x_1, ..., x_{i-1}))$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$$

• First equality holds for any distribution by chain rule
• Second equality can be shown to hold by conditional independence of X_i given its neighbors (assumes topological order)
Example: More Complex Traffic Model

• Variables:
 • Low pressure (L)
 • Rain (R)
 • Traffic (T)
 • Roof damage (D)
 • Ballgame (B)
 • Mood (M)
Example

\[P(L, B, R, T, D, M) = \]
\[P(L) \]
\[P(B) \]
\[P(R | L) \]
\[P(T | R, B) \]
\[P(D | R, T) \]
\[P(M | B, D) \]
Example: Insurance
Queries on Bayesian Networks

• Which variables are conditionally independent?
 • For any values of the parameters
 • Called d-separation

• What is the most likely assignment, i.e., \(\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n) \)?
 • Called maximum a posteriori (MAP) inference

• What is the conditional distribution \(P(X_i \mid X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k}) \)?
 • For any \(X_i \) and any \(X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k} \)
 • Called marginal inference
Queries on Bayesian Networks

• Which variables are conditionally independent?
 • For any values of the parameters
 • Called d-separation

• What is the most likely assignment, i.e., \(\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n) \)?
 • Called maximum a posteriori (MAP) inference

• What is the conditional distribution \(P(X_i \mid X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k}) \)?
 • For any \(X_i \) and any \(X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k} \)
 • Called marginal inference
D-Separation Strategy

• **Step 1:** Look at three special cases
 • Causal chain
 • Common cause
 • Common effect

• **Step 2:** Piece them together
Causal Chain

• $X \rightarrow Y \rightarrow Z$

• Is $X \perp Z$? Not necessarily
 • E.g., Rain = Pressure and Traffic = Rain

• Is $X \perp Z \mid Y$? Yes
 • $P(z \mid x, y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z \mid y)$
Common Cause

• $X \leftarrow Y \rightarrow Z$

• Is $X \perp Z$? Not necessarily
 • E.g., Traffic = Rain and Damage = Rain

• Is $X \perp Z \mid Y$? Yes
 • $P(z \mid x, y) = \frac{P(x, y, z)}{P(x, y)}$

 $= \frac{P(x)P(x \mid y)P(z \mid y)}{P(x)P(x \mid y)} = P(z \mid y)$
Common Effect

• $X \rightarrow Y \leftarrow Z$

• Is $X \perp Z$? Yes
 • Proof left as exercise

• Is $X \perp Z \mid Y$? Not necessarily
 • E.g., for $Y = X \oplus Z$ (XOR), then if $Y = \text{False}$, then $X = \neg Z$
 • Example: Medical diagnosis

• Observation “activates” path
General Case

• **Query:** For a general Bayesian network, is $X \perp Y \mid Z_1, \ldots, Z_k$?

• **Algorithm**
 - Look for paths from X to Y
 - Segment $A \rightarrow B \rightarrow C$ only “active” (from previous three cases, see next slide)

• If there are **no** paths from X to Y such that **all** segments are active, then $X \perp Y \mid Z_1, \ldots, Z_k$
 - Otherwise, conditional independence is not guaranteed
General Case

- **Causal chain**
 - \(A \rightarrow B \rightarrow C \)
 - Active iff \(B \not\in \{Z_i\} \)

- **Common cause**
 - \(A \leftarrow B \rightarrow C \)
 - Active iff \(B \not\in \{Z_i\} \)

- **Common effect**
 - \(A \rightarrow B \leftarrow C \)
 - Active iff \(B \in \{Z_i\} \) (or descendant \(\in \{Z_i\} \))
Example

• **Query:** Is $L \perp M$?
 • No, $L \rightarrow R \rightarrow D \rightarrow M$

• **Query:** Is $L \perp B$?
 • Yes!
 • $L \rightarrow R \rightarrow T \leftarrow B$
 • $L \rightarrow R \rightarrow D \leftarrow T \leftarrow B$
 • $L \rightarrow R \rightarrow D \rightarrow M \leftarrow B$

• **Note:** If we observe T, D, or M, breaks independence
 • None of $L \perp B \mid T$, $L \perp B \mid D$, and $L \perp B \mid M$ hold
Queries on Bayesian Networks

• Which variables are conditionally independent?
 • For any values of the parameters
 • Called d-separation

• What is the most likely assignment, i.e., $\max_{x_1, \ldots, x_n} P(x_1, \ldots, x_n)$?
 • Called maximum a posteriori (MAP) inference

• What is the conditional distribution $P(X_i \mid X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k})$?
 • For any X_i and any $X_{i_1} = x_{i_1}, \ldots, X_{i_k} = x_{i_k}$
 • Called marginal inference
Marginal Inference

• **Input:**
 - **Evidentiary variables:** \(E_1 = e_1, \ldots, E_k = e_k \) (features)
 - **Query variable:** \(Q \) (label)
 - **Hidden variables:** \(H_1, \ldots, H_m \) (all remaining, “latent” variables)

• **Goal:** For each \(q \), compute

\[
P(Q = q \mid E_1 = e_1, \ldots, E_k = e_k)
\]

• **Equivalently:** Likelihood \(p(y \mid x) \)
Enumerative Algorithm

• **Step 1:** Construct table for joint distribution \(P(q, h_1, \ldots, h_m, e_1, \ldots, e_k) \)

• **Step 2:** Select rows consistent with evidence
 • I.e., \(P(q, h_1, \ldots, h_m, e_1, \ldots, e_k) \) for some \(h_1, \ldots, h_m \)

• **Step 3:** Sum out hidden variables and normalize:

\[
P(Q = q \mid e_1, \ldots, e_k) = \frac{1}{Z} \sum_{h_1, \ldots, h_h} P(q, h_1, \ldots, h_m, e_1, \ldots, e_k)
\]

• Normalizing constant \(Z = \sum_{q, h_1, \ldots, h_h} P(q, h_1, \ldots, h_m, e_1, \ldots, e_k) \)
Step 1: Construct Joint Distribution

Rain

<table>
<thead>
<tr>
<th>Rain</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Traffic

| Rain | Traffic | $P(T | R)$ |
|------|----------|-----------|
| no rain | no traffic | 0.75 |
| no rain | traffic | 0.25 |
| rain | no traffic | 0.25 |
| rain | traffic | 0.75 |

$P(R,T) = P(T | R)P(R)$

Query: $P(R | traffic)$
Step 2: Select Rows

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(R, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.45</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.1</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Query: $P(R \mid \text{traffic})$
Step 2: Select Rows

<table>
<thead>
<tr>
<th>R</th>
<th>T</th>
<th>$P(R, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.45</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.1</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Query: $P(R \mid \text{traffic})$
Step 3: Sum and Normalize

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P(R, T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>rain</td>
<td>no traffic</td>
<td>0.1</td>
</tr>
<tr>
<td>no rain</td>
<td>no traffic</td>
<td>0.45</td>
</tr>
<tr>
<td>no rain</td>
<td>traffic</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>traffic</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(\text{rain} \mid \text{traffic}) = \frac{0.15}{0.3 + 0.15} = \frac{1}{3}
\]

\[
P(\text{no rain} \mid \text{traffic}) = \frac{0.3}{0.3 + 0.15} = \frac{2}{3}
\]

Query: \(P(R \mid \text{traffic})\)
Enumerative Algorithm

• Constructing the joint distribution is very computationally expensive!

• NP hard in general, but we can do better in practice

• **Idea:** Marginalize hidden variables before the end
Factors and Operations

• **Factor:** A table encoding a distribution $P(x_1, \ldots, x_k \mid y_1, \ldots, y_h)$
 - In general, we denote factors by $\phi(z_1, \ldots, z_m)$

• **Join:** Given $\phi(x_1, \ldots, x_k, y_1, \ldots, y_m)$ and $\phi(x_1, \ldots, x_k, z_1, \ldots, z_n)$ output

$$\phi(x_1, \ldots, x_k, y_1, \ldots, y_m, z_1, \ldots, z_n) = \phi(x_1, \ldots, x_k, y_1, \ldots, y_m) \phi(x_1, \ldots, x_k, z_1, \ldots, z_n)$$

• **Eliminate:** Given $\phi(x, y_1, \ldots, y_k)$ output

$$\phi(y_1, \ldots, y_k) = \sum_x \phi(x, y_1, \ldots, y_k)$$
Enumerative Algorithm

• **Step 0:** Initial factors are \(P(X_i \mid \text{parents}(X_i)) \) for each node \(X_i \)
 • Immediately drop rows conditioned on evidentiary variables

• **Step 1:** Join all factors

• **Step 2:** Eliminate all hidden variables

• **Output:** Remaining factor is \(P(Q, e_1, ..., e_k) \), which can be normalized
Example Query

\[P(R) \]
\[
\begin{array}{c|c}
+r & 0.1 \\
-r & 0.9 \\
\end{array}
\]

\[P(T | R) \]
\[
\begin{array}{c|c|c}
+r & +t & 0.8 \\
+r & -t & 0.2 \\
-r & +t & 0.1 \\
-r & -t & 0.9 \\
\end{array}
\]

\[P(L | T) \]
\[
\begin{array}{c|c|c}
+t & +l & 0.3 \\
+t & -l & 0.7 \\
-t & +l & 0.1 \\
-t & -l & 0.9 \\
\end{array}
\]

Query: \(P(L) \)
Step 0: Initial Factors

\[
P(R) \quad P(T \mid R) \quad P(L \mid T)
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>0.8</td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>0.2</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>0.1</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>+l</td>
<td>0.3</td>
</tr>
<tr>
<td>+t</td>
<td>-l</td>
<td>0.7</td>
</tr>
<tr>
<td>-t</td>
<td>+l</td>
<td>0.1</td>
</tr>
<tr>
<td>-t</td>
<td>-l</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Step 1: Join All Factors

\[P(R) = \begin{array}{c|c}
+r & 0.1 \\
-r & 0.9 \\
\end{array} \]

\[P(T \mid R) = \begin{array}{c|cc}
+ & t & 0.8 \\
+ & -t & 0.2 \\
- & t & 0.1 \\
- & -t & 0.9 \\
\end{array} \]

\[P(R, T) = P(T \mid R)P(R) = \begin{array}{c|cc}
+ & t & 0.08 \\
+ & -t & 0.02 \\
- & t & 0.09 \\
- & -t & 0.81 \\
\end{array} \]

\[P(R, T, L) = P(L \mid T)P(R, T) = \begin{array}{c|ccc}
+ & t & +l & 0.024 \\
+ & t & -l & 0.056 \\
+ & -t & +l & 0.002 \\
+ & -t & -l & 0.018 \\
- & t & +l & 0.027 \\
- & t & -l & 0.063 \\
- & -t & +l & 0.081 \\
- & -t & -l & 0.729 \\
\end{array} \]
Step 2: Eliminate Hidden Variables

\[P(R, T, L) \]

+r	+t	+l	0.024
+r	+t	-l	0.056
+r	-t	+l	0.002
+r	-t	-l	0.018
-r	+t	+l	0.027
-r	+t	-l	0.063
-r	-t	+l	0.081
-r	-t	-l	0.729

\[P(T, L) = \sum_r P(R, T, L) \]

+t	+l	0.051
+t	-l	0.119
-t	+l	0.083
-t	-l	0.747

\[P(L) = \sum_t P(T, L) \]

| +l | 0.134 |
| -l | 0.886 |
Variable Elimination Strategy

\[P(R) = \begin{array}{c|c} +r & 0.1 \\ -r & 0.9 \end{array} \]

\[P(R, T) = P(T | R) P(R) \]

\[P(T | R) = \begin{array}{c|c|c} +r & +t & 0.88 \\ +r & -t & 0.02 \\ -r & +t & 0.09 \\ -r & -t & 0.81 \end{array} \]

\[P(T) = \sum_r P(R, T) = \begin{array}{c|c} +t & 0.17 \\ -t & 0.83 \end{array} \]

\[P(T, L) = P(L | T) P(T) \]

\[P(T, L) = \sum_r P(L, T) = \begin{array}{c|c|c} +t & +l & 0.051 \\ +t & -l & 0.119 \\ -t & +l & 0.083 \\ -t & -l & 0.747 \end{array} \]

\[P(L) = \sum_t P(L, T) = \begin{array}{c} +l & 0.134 \\ -l & 0.866 \end{array} \]
Variable Elimination Strategy
What about evidence?

• When there are evidentiary variables, select those rows first

| P(R) | P(T | R) | P(L | T) |
|------|--------|--------|
| +r | +t 0.8 | +t 0.3 |
| +r | -t 0.2 | +t 0.7 |
| -r | +t 0.1 | -t 0.1 |
| -r | -t 0.9 | -t 0.9 |

Query: \(P(L \mid +r) \)
What about evidence?

• At the end, obtain an unnormalized distribution, which we normalize

\[
P(+r, L)
\]

<table>
<thead>
<tr>
<th>+r</th>
<th>+l</th>
<th>0.026</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>-l</td>
<td>0.074</td>
</tr>
</tbody>
</table>

\[
P(L \mid +r)
\]

<table>
<thead>
<tr>
<th>+l</th>
<th>0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Query: \(P(L \mid +r) \)
Alternative View

\[P(\ell) = \sum_t \sum_r P(\ell | t) P(r) P(t | r) \]

Enumeration

1. Join on \(r \)
2. Join on \(t \)
3. Eliminate \(r \)
4. Eliminate \(t \)

\[P(\ell) = \sum_t P(\ell | t) \sum_r P(r) P(t | r) \]

Variable Elimination

1. Join on \(r \)
2. Eliminate \(r \)
3. Join on \(t \)
4. Eliminate \(t \)
General Variable Elimination Strategy

• **Step 0:** Initial factors are $P(X_i \mid \text{parents}(X_i))$ for each node X_i
 • Immediately drop rows conditioned on evidentiary variables

• **Step 1:** For each H_i:
 • **Step 1a:** Join all factors containing H_i
 • **Step 1b:** Eliminate H_i

• **Output:** Join all remaining factors and normalize
Variable Elimination Order

- **Query:** \(P(X_n \mid y_1, \ldots, y_n) \)

- Eliminating \(Z \) first results in a factor of size \(2^{n+1} \)

- Eliminating \(X_1, \ldots, X_{n-1} \) first results in factors of size 2
Variable Elimination Order

• Order in which hidden variables are eliminated can greatly affect performance (e.g., exponential vs. constant)

• May not exist an efficient ordering (problem is NP hard in general)

• Computing optimal ordering is also NP hard
Learning Bayesian Networks

• **Supervised learning**
 • Features x are evidentiary variables
 • Label y is query variable
 • Parameters are the conditional probabilities
 • Marginal inference evaluates likelihood $p(y \mid x)$

• How to learn the parameters?
Maximum Likelihood Learning

• Minimize the NLL:

\[\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \sum_{j=1}^{d} \log P_{\theta} \left(X_j = x_{i,j} \mid \text{parents}(X_j) = (x_{i,k_1}, \ldots, x_{i,k_j}) \right) \]

• Can use gradient descent to optimize
 • There is a nice formula for the gradient
Simplest Example: Naïve Bayes

• Model:

\[P(Y, X_1, \ldots, X_n) = P(Y) \prod_{i=1}^{n} P(X_i \mid Y) \]

• If \(Y \) has domain \(D_Y \) and \(X_i \) has domain \(D_X \), then \(n \cdot |D_X| \cdot |D_Y| \) parameters
Inference in Naïve Bayes

• **Step 1:** For each $y \in D_Y$, compute joint probability distribution

$$P(y, x_1, ..., x_n) = P(y) \prod_{i=1}^{n} P(x_i \mid y)$$

• **Step 2:** Normalize distribution:

$$P(y \mid x_1, ..., x_n) = \frac{P(y, x_1, ..., x_n)}{Z}$$

• Here, $Z = \sum_{y' \in D_Y} P(y', x_1, ..., x_n)$
Naïve Bayes for Spam Detection

• Bag of words model

• Parameter sharing via “tied” distribution: For all i, j, constrain

$$P(X_i = x \mid Y) = P(X_j = x \mid Y)$$

• Encodes invariant structure in bag of words models
Naïve Bayes for Spam Detection

\[
P(y) \quad \quad \quad \quad \quad \quad \quad P(x \mid \text{spam}) \quad \quad \quad \quad \quad \quad \quad P(x \mid \text{not spam})
\]

<table>
<thead>
<tr>
<th></th>
<th>not spam: 0.66</th>
<th>spam: 0.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>0.0156</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>0.0153</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>0.0115</td>
<td></td>
</tr>
<tr>
<td>of</td>
<td>0.0095</td>
<td></td>
</tr>
<tr>
<td>of</td>
<td>0.0093</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.0086</td>
<td></td>
</tr>
<tr>
<td>with</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>from</td>
<td>0.0075</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	the: 0.0210	
	to: 0.0133	
	of: 0.0119	
	2002: 0.0110	
	with: 0.0108	
	from: 0.0107	
	and: 0.0105	
	a: 0.0100	
	...	
Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

\[
\hat{\theta} = \arg \min_{\theta} \sum_{i=1}^{n} \left\{ \log P_\theta(y_i) + \log \sum_{j=1}^{d} P_\theta(x_{i,j} \mid y_i) \right\}
\]

• Can show that parameters are counts:

\[
P_\theta(x \mid y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{d} 1(y_i = y \land x_{i,j} = x)}{\sum_{i=1}^{n} \sum_{j=1}^{d} 1(y_i = y)}
\]
Maximum Likelihood Learning

• Can overfit
 • If a word never occurs in the training dataset, probabilities are all undefined

• Regularization via **Laplace smoothing**
 • Assume each word occurs k extra times in the dataset (increase counts by k)

\[
P_{\theta}(x \mid y) = \frac{k + \sum_{i=1}^{n} \sum_{j=1}^{d} 1(y_i = y \land x_{i,j} = x)}{k \cdot d + \sum_{i=1}^{n} \sum_{j=1}^{d} 1(y_i = y)}
\]

• Can be interpreted as a prior on θ (in particular, the Dirichlet prior)
Example: Works Well

Recipients

Send me the money right away

??????

????????! ?? ?? ??, wire the money! ???????

???? ?????

Prince ?????
Example: Works Poorly

I wanted to love XXXXX, but I couldn't.

I wanted to love XXXXX, and I did!
Reasoning Through Time

• One strength of the framework is for modeling time varying processes
 • E.g., use (partial) measurements of factors to estimate future crop yield

Hidden Markov Model

• Speech recognition, machine translation, object tracking

We want a model of sequences y and observations x

$$p(x_1 \ldots x_n, y_1 \ldots y_n) = q(STOP|y_n) \prod_{i=1}^{n} q(y_i|y_{i-1}) e(x_i|y_i)$$

where $y_0 = START$ and we call $q(y_i|y_{i-1})$ the transition distribution and $e(x_i|y_i)$ the emission (or observation) distribution.