Announcements

- HW 5 due Wednesday, November 16
- Quiz 10 is due Thursday, November 17 at 8pm

Lecture 20: Bayesian Networks

CIS 4190/5190 Fall 2022

Class So Far

Supervised Learning

- Linear/logistic regression, MLE, decision trees, ensembles, neural networks
- Application to computer vision, NLP

Unsupervised Learning

- PCA, K-Means, neural networks
- Application to NLP
- **Today:** Bayesian networks
 - Very different viewpoint, but concepts are pervasive in ML research
 - Probability as a unifying framework for machine learning

Design Decisions

Model family

- Flexible architectures
- Implicit functions (inference)
- Very different from what we've seen so far!

Optimization algorithm

• Typically straightforward

Models So Far

Bayesian Network Inference

Logic & Al

• Efficient algorithm for logical reasoning was a major focus of early research on artificial intelligence

• Logical inference problem

- Given a set of "facts", is a given statement true or false?
- "Facts" can be formalized as a set of logical formulas
- Example:
 - Facts: All men are mortal. Socrates is a man.
 - Question: Is Socrates mortal?
 - Answer: Yes!

Logic & Al

• Pure logic is very limited compared to human reasoning

• Example (McDermott 1987):

- Facts: There is an empty can of soda
- Question: Did someone drink soda?
- Answer: Probably!

Issues

- Consider the facts "only people drink soda", "soda cans start out full"
- These facts often have many exceptions that can typically be ignored

Probabilistic Inference

- Solution: Probabilistic inference
 - Input: Facts that hold with some probability, desired query
 - **Output:** Probability of query holding
- Use simplified facts but account for the fact that they may be wrong

Probabilistic Inference

- Probabilistic models
 - Probability distribution designed to describe how portion of the world works

$$P(X_1 = x_1, \dots, X_n = x_n)$$

- Encode world as set of random variables and their relationships
- Always simplifications (e.g., may not account for every variable, or all dependences between variables)
- Example: "Drinking can of soda" and "can being empty/full"

Probabilistic Inference

- Probabilistic inference: Compute distribution of unobserved variables
 - Example: Explanation (i.e., observe empty soda can, infer someone drank it)
 - **Example:** Prediction (i.e., observe soda can purchase, infer they will drink it)
- **Problem:** Probabilistic inference is computationally challenging!
 - We won't address the question of where the facts come from (huge literature on inducing knowledge graphs that aims to solve this problem)

Bayesian Networks

- **Bayesian networks** (Pearl 1985) are a graph-based data structure for representing probability distributions
- Expose structure in the form of dependences between variables that can make probabilistic inference more tractable
- As with neural networks, you can design the model family!
 - Widely used in computer vision and NLP prior to success of deep learning
 - Incorporated into modern neural network architectures (e.g., VAEs)

Bayesian Networks

- Logic: Inference is checking if a fact can be deduced from given facts
- **Bayesian network:** Inference is evaluating the probability of a fact given the probabilities of other facts

Random Variables

- A random variable represents a quantity we are uncertain about
- Random variable takes values in a **domain**
 - We will focus on random variables with finite domains

• Examples:

- R =Is it raining? ($R \in \{$ true, false $\}$, which we may write as $\{+r, -r\}$)
- T =Is it hot or cold? ($T \in {\text{hot, cold}}$)
- D = How long will it take to drive to work? ($D \in [0, \infty)$)

Probability Distributions

- **Probability distribution:** For random variable X, $P(X = x) \in [0,1]$ is probability X has value x
- **Recall:** Probabilities satisfy $P(X = x) \ge 0$ and $\sum_{x} P(X = x) = 1$
- Notation: When unambiguous, we drop the random variable

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

Probability Distributions

- For finite domains, the distribution can be represented as a table
- Examples:

		-		
Т	P(T)		W	P(W)
hot	0.5		sun	0.6
cold	0.5		rain	0.1
			fog	0.3

meteor

0.0

Joint Distributions

• Given random variables X_1, \ldots, X_n , they have a **joint distribution**

$$P(X_1 = x_1, \dots, X_n = x_n)$$

• As before, satisfy

•
$$P(X_1 = x_1, ..., X_n = x_n) \ge 0$$

•
$$\sum_{(x_1,...,x_n)} P(X_1 = x_1,...,X_n = x_n) = 1$$

Joint Distributions

- For finite domains, the distribution can be represented as a table
- Example:

Т	R	P(T,R)
hot	no rain	0.4
hot	rain	0.1
cold	no rain	0.2
cold	rain	0.3

Designing a Probabilistic Model

• Naïve idea

- Write down the full joint distribution $P(x_1, ..., x_n)$
- Perform inference using this distribution
- **Problem:** For *n* random variables with domain size |D| = d, the table representing the joint distribution has d^n entries!
 - Learning and inference are both intractable!
- Is there structure we can exploit to improve tractability?
 - Yes, conditional independence!

• Two random variables are **independent** (denoted $X \perp Y$) if

$$\forall x, y . P(x, y) = P(x)P(y)$$

- Here, $P(x) = \sum_{y} P(x, y)$ is the marginal distribution
- That is, the joint distribution factors into two simpler distributions

• Example (not independent):

Т	R	P(T,R)
hot	no rain	0.4
hot	rain	0.1
cold	no rain	0.2
cold	rain	0.3

• Example (independent):

Т	R	P(T,R)
hot	no rain	0.3
hot	rain	0.2
cold	no rain	0.3
cold	rain	0.2

Т	P(T)
hot	0.5
cold	0.5

Х

R	P(R)
no rain	0.6
rain	0.4

• Example: Coin flips

X ₁	$P(X_1)$				X _n	$P(X_n)$
heads	0.5	×	• • •	×	heads	0.5
tails	0.5				tails	0.5

	<i>X</i> ₁	•••	X _n	$P(X_1, \ldots, X_n)$	
=	heads	•••	heads	2 ⁻ⁿ	$\int 2^n$
	•••	•••	•••	2 ⁻ⁿ	2^n rows

Independence can lead to much more compact representations!

Conditional Probabilities

• Conditional probability:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

- Product rule: P(x, y) = P(x | y)P(y)
- Chain rule: $P(x_1, ..., x_n) = P(x_1)P(x_2 | x_1) \cdots P(x_n | x_1, ..., x_{n-1})$

Conditional Probabilities

• Conditional probability:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

- Product rule: P(x, y) = P(x | y)P(y)
- Chain rule: $P(x_1, ..., x_n) = \prod_{i=1}^n P(x_i \mid x_1, ..., x_{i-1})$
- Note: Independence is equivalently $\forall x, y . P(y | x) = P(y)$

Conditional Independence

- Independence **conditioned** on other random variables
- **Example:** *P*(rain, traffic, umbrella)
 - "Having traffic" and "needing an umbrella" are **not independent**!
 - But if we know there is rain, traffic does not depend on umbrella:

P(+traffic|+rain,+umbrella) = P(+traffic|+rain)

• Similarly for not having rain:

P(+traffic|-rain,+umbrella) = P(+traffic|-rain)

Conditional Independence

• Traffic is conditionally independent of umbrella given rain

P(traffic|rain, umbrella) = P(traffic|rain)

- The following statements are equivalent to the one above:
 - *P*(umbrella|rain, traffic) = *P*(umbrella|rain)
 - P(traffic, umbrella|rain) = P(traffic|rain)P(umbrella|rain)
- Traffic and umbrella are **conditionally independent** given rain

Conditional Independence

• X is conditionally independent of Y given Z_1, \ldots, Z_n if

$$\forall x, y, z_1, \dots, z_n . P(x, y | z_1, \dots, z_n) = P(x | z_1, \dots, z_n) P(y | z_1, \dots, z_n)$$

• Equivalently:

$$\forall x, y, z_1, \dots, z_n . P(x|z_1, \dots, z_n, y) = P(x|z_1, \dots, z_n)$$

• Denoted $X \perp Y \mid Z_1, \dots, Z_n$

Designing a Probabilistic Model

- Idea: Restrict to joint distributions with given independence relations
 - Posit set of conditional independence relationships $X_i \perp X_j \mid \{X_k\}$
 - Only learn joint distributions $P(x_1, ..., x_n)$ that satisfy these relationships
 - Intuition: Conditional independences define "local" distributions that are chained together to form "global" distribution
- This is the approach taken by **Bayesian networks**
 - Note on terminology: Special kind of graphical model
- Rarely have exact independence, but useful modeling assumption

Bayesian Networks

- Represent conditional independences via a directed acyclic graph
- Nodes/vertices: Variables $\{(X_k, D_k)\}$ (and their domains)
- Arcs/edges: Encode parameter structure
 - **Parameters:** Distribution of each X_i given its parents

Example: Coin Flips

no interactions \rightarrow all random variables are independent

Parameters

• Conditional probabilities of node given parents:

$$\theta_{i,x_1,...,x_{k_i},x} = P(X_i = x \mid X_{i_1} = x_1, ..., X_{i_k} = x_{k_i})$$

• Here, $x_i \in D_i$ is in the domain of X_i

		R		P(R)	
		no rain		0.6	(Rain
		rai	n	0.4	
R	Т		P(7	" <i>R</i>)	
no rain	no traffic		0.75		
no rain traf		ffic C).25	(Traffic
rain no traffic		C).25		
rain	tra	ffic	C).75	

Summary

• Bayesian network

- Nodes represent random variables
- Edges encode conditional independences
- For each node, parameters at that node encode probability distribution of node conditioned on its parents

• Edge directions

- Determines parameters
- Often encode intuitive notion of causality (can be formalized)

Summary

- Any joint distribution satisfying the conditional independencies can be expressed as product of $P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$
- We can compute the corresponding joint distribution using chain rule:

$$P(x_1, ..., x_n) = \prod_{i=1}^n P(X_i = x_i \mid (X_1, ..., X_{i-1}) = (x_1, ..., x_{i-1}))$$

= $\prod_{i=1}^n P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$

- First equality holds for any distribution by chain rule
- Second equality holds by assumption (assumes topological order)

Example: More Complex Traffic Model

- Variables:
 - Low pressure (L)
 - Rain (*R*)
 - Traffic (T)
 - Roof damage (D)
 - Ballgame (B)
 - Mood (*M*)

Example

P(L, B, R, T, D, M) =P(L)P(B) $P(R \mid L)$ $P(T \mid R, B)$ $P(D \mid R,T)$ $P(M \mid B, D)$

Example: Insurance

Queries on Bayesian Networks

- Which variables are conditionally independent?
 - For **any** values of the parameters
 - Called d-separation
- What is the most likely assignment, i.e., $\max_{x_1,\dots,x_n} P(x_1,\dots,x_n)$?
 - Called maximum a posteriori (MAP) inference
- What is the conditional distribution $P(X_i | X_{i_1} = x_{i_1}, ..., X_{i_k} = x_{i_k})$?
 - For any X_i and any $X_{i_1} = x_{i_1}, ..., X_{i_k} = x_{i_k}$
 - Called marginal inference

Queries on Bayesian Networks

- Which variables are conditionally independent?
 - For **any** values of the parameters
 - Called d-separation
- What is the most likely assignment, i.e., max P(x₁,...,x_n)?
 Called maximum a posteriori (MAP) inference
- What is the conditional distribution $P(X_i | X_{i_1} = x_{i_1}, ..., X_{i_k} = x_{i_k})$?
 - For any X_i and any $X_{i_1} = x_{i_1}, \dots, X_{i_k} = x_{i_k}$
 - Called marginal inference

D-Separation Strategy

- Step 1: Look at three special cases
 - Causal chain
 - Common cause
 - Common effect
- Step 2: Piece them together

Causal Chain

- $\bullet \: X \to Y \to Z$
- Is X II Z? Not necessarily
 - E.g., Rain = Pressure and Traffic = Rain
- Is $X \perp Z \mid Y$? Yes • $P(z \mid x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z \mid y)$

Common Cause

- $X \leftarrow Y \rightarrow Z$
- Is X II Z? Not necessarily
 - E.g., Traffic = Rain and Damage = Rain

• Is $X \perp Z \mid Y$? Yes • $P(z \mid x, y) = \frac{P(x, y, z)}{P(x, y)}$ $= \frac{P(x)P(x|y)P(z|y)}{P(x)P(x|y)} = P(z \mid y)$

Common Effect

- $\bullet \: X \to Y \leftarrow Z$
- Is *X* **⊥***Z* ? Yes
 - Proof left as exercise
- Is X II Z | Y? Not necessarily
 - E.g., for $Y = X \bigoplus Z$ (XOR), then if Y = False, then $X = \neg Z$
 - Example: Medical diagnosis
- Observation "activates" path

General Case

- Query: For a general Bayesian network, is $X \perp Y \mid Z_1, \dots, Z_k$?
- Algorithm
 - Look for paths from X to Y
 - Segment A B C only "active" (from previous three cases, see next slide)
- If there are **no** paths from X to Y such that **all** segments are active, then $X \perp Y \mid Z_1, \dots, Z_k$
 - Otherwise, conditional independence is not guaranteed

General Case

- Causal chain
 - $A \to B \to C$
 - Active iff $B \notin \{Z_i\}$
- Common cause
 - $A \leftarrow B \rightarrow C$
 - Active iff $B \notin \{Z_i\}$
- Common effect
 - $A \rightarrow B \leftarrow C$
 - Active iff $B \in \{Z_i\}$ (or descendant $\in \{Z_i\}$)

Example

- Query: Is $L \perp M$?
 - No, $L \to R \to D \to M$
- **Query:** Is *L***⊥***B*?
 - Yes!
 - $L \to R \to T \leftarrow B$
 - $L \to R \to D \leftarrow T \leftarrow B$
 - $L \to R \to D \to M \leftarrow B$
- Note: If we observe T, D, or M, breaks independence
 - None of $L \amalg B \mid T, L \amalg B \mid D$, and $L \amalg B \mid M$ hold

Queries on Bayesian Networks

- Which variables are conditionally independent?
 - For **any** values of the parameters
 - Called d-separation
- What is the most likely assignment, i.e., $\max_{x_1,...,x_n} P(x_1,...,x_n)$?
 - Called maximum a posteriori (MAP) inference
- What is the conditional distribution $P(X_i | X_{i_1} = x_{i_1}, ..., X_{i_k} = x_{i_k})$?
 - For any X_i and any $X_{i_1} = x_{i_1}, ..., X_{i_k} = x_{i_k}$
 - Called marginal inference

Marginal Inference

- Input:
 - Evidentiary variables: $E_1 = e_1, \dots, E_k = e_k$ (features)
 - Query variable: Q (label)
 - Hidden variables: $H_1, ..., H_m$ (all remaining, "latent" variables)
- **Goal:** For each *q*, compute

$$P(Q = q | E_1 = e_1, ..., E_k = e_k)$$

• Equivalently: Likelihood p(y | x)

Enumerative Algorithm

- Step 1: Construct table for joint distribution $P(q, h_1, ..., h_m, e_1, ..., e_k)$
- Step 2: Select rows consistent with evidence
 - I.e., $P(q, h_1, \dots, h_m, e_1, \dots, e_k)$ for some h_1, \dots, h_m
- Step 3: Sum out hidden variables and normalize:

$$P(Q = q \mid e_1, \dots, e_k) = \frac{1}{Z} \sum_{h_1, \dots, h_k} P(q, h_1, \dots, h_m, e_1, \dots, e_k)$$

• Normalizing constant $Z = \sum_{q,h_1,\dots,h_h} P(q,h_1,\dots,h_m,e_1,\dots,e_k)$

Step 1: Construct Joint Distribution

Query: $P(R \mid \text{traffic})$

Step 2: Select Rows

R	Т	P(R,T)
no rain	no traffic	0.45
no rain	traffic	0.15
rain	no traffic	0.1
rain	traffic	0.3

Query: $P(R \mid \text{traffic})$

Step 2: Select Rows

R	Т	P(R,T)
no rain	no traffic	0.45
no rain	traffic	0.15
rain	no traffic	0.1
rain	traffic	0.3

Query: $P(R \mid traffic)$

Step 3: Sum and Normalize

R	Т	P(R,T)
no rain	no traffic	0.45
no rain	traffic	0.15
rain	no traffic	0.1
rain	traffic	0.3

$$P(\text{rain} \mid \text{traffic}) = \frac{0.15}{0.3 + 0.15} = \frac{1}{3}$$
$$P(\text{no rain} \mid \text{traffic}) = \frac{0.3}{0.3 + 0.15} = \frac{2}{3}$$

Query: $P(R \mid traffic)$

Enumerative Algorithm

- Constructing the joint distribution is very computationally expensive!
- NP hard in general, but we can do better in practice
- Idea: Marginalize hidden variables before the end

Factors and Operations

- Factor: A table encoding a distribution P(x₁,...,x_k | y₁,...,y_h)
 In general, we denote factors by φ(z₁,...,z_m)
- Join: Given $\phi(x_1, ..., x_k, y_1, ..., y_m)$ and $\phi(x_1, ..., x_k, z_1, ..., z_n)$ output

 $\phi(x_1, \dots, x_k, y_1, \dots, y_m, z_1, \dots, z_n) = \phi(x_1, \dots, x_k, y_1, \dots, y_m)\phi(x_1, \dots, x_k, z_1, \dots, z_n)$

• Eliminate: Given $\phi(x, y_1, ..., y_k)$ output

$$\phi(y_1, \dots, y_k) = \sum_x \phi(x, y_1, \dots, y_k)$$

Enumerative Algorithm

- Step 0: Initial factors are $P(X_i | parents(X_i))$ for each node X_i
 - Immediately drop rows conditioned on evidentiary variables
- Step 1: Join all factors
- Step 2: Eliminate all hidden variables
- **Output:** Remaining factor is $P(Q, e_1, ..., e_k)$, which can be normalized

Example Query

Query: P(L)

Step 0: Initial Factors

$P(T \mid R)$				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

$P(L \mid T)$				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

Step 1: Join All Factors

0.7

0.1

0.9

-|

+|

-|

+t

-t

-t

0.7

0.1

0.9

-|

+|

-

+t

-t

-t '

Step 2: Eliminate Hidden Variables

Variable Elimination Strategy

Variable Elimination Strategy

What about evidence?

• When there are evidentiary variables, select those rows first

P(R)		
+r	0.1	
-r	0.9	

$P(T \mid R)$		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

<i>P</i> ($(L \mid$	T)
.+	. 1	0.2

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

<i>P</i> (P(+r)		$P(T \mid +r)$		P	$(L \mid Z)$	Г)	
+r	0.1		+r	+t	0.8	+t	+	0.3
-		-		-t		+t		0.7

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Query: P(L | +r)

What about evidence?

• At the end, obtain an unnormalized distribution, which we normalize

P(+r,L)		
+r	+	0.026
+r	-	0.074

Query: P(L | +r)

Alternative View

Enumeration

Variable Elimination

General Variable Elimination Strategy

- Step 0: Initial factors are $P(X_i | \text{parents}(X_i))$ for each node X_i
 - Immediately drop rows conditioned on evidentiary variables
- Step 1: For each H_i :
 - Step 1a: Join all factors containing H_i
 - Step 1b: Eliminate *H_i*
- **Output:** Join all remaining factors and normalize

Variable Elimination Order

- Query: $P(X_n | y_1, ..., y_n)$
- Eliminating Z first results in factor of size 2^{n+1}
- Eliminating X_1, \ldots, X_{n-1} first results in factors of size 2

Variable Elimination Order

- Order in which hidden variables are eliminated can greatly affect performance (e.g., exponential vs. constant)
- May not exist an efficient ordering (problem is NP hard in general)
- Computing optimal ordering is also NP hard

Learning Bayesian Networks

Supervised learning

- Features *x* are evidentiary variables
- Label y is query variable
- Parameters are the conditional probabilities
- Marginal inference evaluates likelihood p(y | x)
- How to learn the parameters?

Maximum Likelihood Learning

• Minimize the NLL:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \sum_{j=1}^{d} \log P_{\theta} \left(X_{j} = x_{i,j} \mid \operatorname{parents}(X_{j}) = \left(x_{i,k_{1}}, \dots, x_{i,k_{j}} \right) \right)$$

- Can use gradient descent to optimize
 - There is a nice formula for the gradient

Simplest Example: Naïve Bayes

• Model:

$$P(Y, X_1 ..., X_n) = P(Y) \prod_{i=1}^n P(X_i | Y)$$

• If Y has domain D_Y and X_i has domain D_X , then $n \cdot |D_X| \cdot |D_Y|$ parameters

Inference in Naïve Bayes

• Step 1: For each $y \in D_Y$, compute joint probability distribution

$$P(y, x_1, ..., x_n) = P(y) \prod_{i=1}^n P(x_i | y)$$

• **Step 2:** Normalize distribution:

$$P(y \mid x_1, ..., x_n) = \frac{P(y, x_1, ..., x_n)}{Z}$$

• Here,
$$Z = \sum_{y' \in D_Y} P(y', x_1, ..., x_n)$$

Naïve Bayes for Spam Detection

- Bag of words model
- Parameter sharing via "tied" distribution: For all *i*, *j*, constrain

$$P(X_i = x \mid Y) = P(X_j = x \mid Y)$$

• Encodes invariant structure in bag of words models

Naïve Bayes for Spam Detection

 $P(x \mid \text{spam})$

the	:	0.0156
to	:	0.0153
and	:	0.0115
of	:	0.0095
you	:	0.0093
а	:	0.0086
with	1:	0.0080
from	1:	0.0075
• • •		

$P(x \mid \text{not spam})$

the :	0.0210
to :	0.0133
of :	0.0119
2002:	0.0110
with:	0.0108
from:	0.0107
and :	0.0105
a :	0.0100

Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \left\{ \log P_{\theta}(y_i) + \log \sum_{j=1}^{d} P_{\theta}(x_{i,j} \mid y_i) \right\}$$

• Can show that parameters are counts:

$$P_{\theta}(x \mid y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{d} \mathbb{1} (y_{i} = y \land x_{i,j} = x)}{\sum_{i=1}^{n} \sum_{j=1}^{d} \mathbb{1} (y_{i} = y)}$$

Maximum Likelihood Learning

- Can overfit
 - If a word never occurs in the training dataset, probabilities are all undefined
- Regularization via Laplace smoothing
 - Assume each word occurs k extra times in the dataset (increase counts by k)

$$P_{\theta}(x \mid y) = \frac{k + \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbb{1}(y_i = y \land x_{i,j} = x)}{k \cdot d + \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbb{1}(y_i = y)}$$

• Can be interpreted as a prior on θ (in particular, the Dirichlet prior)

Example: Works Well

Recipients

Send me the money right away

?????,

???????? ! ???? ?????, wire the money! ???????

????? ??????

Prince ?????

Example: Works Poorly

I wanted to love XXXXX, but I couldn't.

I wanted to love XXXXX, and I did!

Reasoning Through Time

- One strength of the framework is for modeling time varying processes
 - E.g., use (partial) measurements of factors to estimate future crop yield

Hidden Markov Model

• Speech recognition, machine translation, object tracking

We want a model of sequences y and observations x

where $y_0 = START$ and we call $q(y_i | y_{i-1})$ the transition distribution and $e(x_i | y_i)$ the emission (or observation) distribution.