Announcements

* HW 5 due Wednesday, November 16

* Quiz 10 is due Thursday, November 17 at 8pm



Lecture 20: Bayesian Networks

CIS 4190/5190
Fall 2022



Class So Far

* Supervised Learning
* Linear/logistic regression, MLE, decision trees, ensembles, neural networks
* Application to computer vision, NLP

* Unsupervised Learning
 PCA, K-Means, neural networks
* Application to NLP

* Today: Bayesian networks
* Very different viewpoint, but concepts are pervasive in ML research
* Probability as a unifying framework for machine learning



Design Decisions

* Model family
* Flexible architectures
* Implicit functions (inference)
* Very different from what we’ve seen so far!

* Optimization algorithm
e Typically straightforward



Models So Far

»

fp(x)

»




Bayesian Network Inference

»
»

“Inference Algorithm”




Logic & Al

e Efficient algorithm for logical reasoning was a major focus of early
research on artificial intelligence

* Logical inference problem
* Given a set of “facts”, is a given statement true or false?
* “Facts” can be formalized as a set of logical formulas

* Example:
* Facts: All men are mortal. Socrates is a man.
* Question: Is Socrates mortal?
* Answer: Yes!



Logic & Al

* Pure logic is very limited compared to human reasoning

* Example (McDermott 1987):
* Facts: There is an empty can of soda
* Question: Did someone drink soda?
* Answer: Probably!

* [ssues
* Consider the facts “only people drink soda”, “soda cans start out full”

* These facts often have many exceptions that can typically be ignored



Probabilistic Inference

 Solution: Probabilistic inference
* Input: Facts that hold with some probability, desired query
e Output: Probability of query holding

e Use simplified facts but account for the fact that they may be wrong



Probabilistic Inference

* Probabilistic models
* Probability distribution designed to describe how portion of the world works

P(Xl = X1, ...,Xn — Xn)

* Encode world as set of random variables and their relationships

* Always simplifications (e.g., may not account for every variable, or all
dependences between variables)

* Example: “Drinking can of soda” and “can being empty/full”



Probabilistic Inference

* Probabilistic inference: Compute distribution of unobserved variables
 Example: Explanation (i.e., observe empty soda can, infer someone drank it)
 Example: Prediction (i.e., observe soda can purchase, infer they will drink it)

* Problem: Probabilistic inference is computationally challenging!

 We won’t address the question of where the facts come from (huge literature
on inducing knowledge graphs that aims to solve this problem)



Bayesian Networks

* Bayesian networks (Pearl 1985) are a graph-based data structure for
representing probability distributions

* Expose structure in the form of dependences between variables that
can make probabilistic inference more tractable

* As with neural networks, you can design the model family!
* Widely used in computer vision and NLP prior to success of deep learning
* Incorporated into modern neural network architectures (e.g., VAEs)



Bayesian Networks

* Logic: Inference is checking if a fact can be deduced from given facts

e Bayesian network: Inference is evaluating the probability of a fact
given the probabilities of other facts



Random Variables

* A random variable represents a quantity we are uncertain about

e Random variable takes values in a domain
 We will focus on random variables with finite domains

* Examples:
* R = Isitraining? (R € {true, false}, which we may write as {+r, —r})
T =Isithotorcold? (T € {hot, cold})
« D = How long will it take to drive to work? (D € [0, o))



Probability Distributions

* Probability distribution: For random variable X, P(X = x) € [0,1] is
probability X has value x

* Recall: Probabilities satisfy P(X = x) = 0and ), P(X =x) =1

* Notation: When unambiguous, we drop the random variable

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),



Probability Distributions

* For finite domains, the distribution can be represented as a table

* Examples:
T P(T) w P(W)
hot 0.5 sun 0.6
cold 0.5 rain 0.1
fog 0.3
meteor 0.0




Joint Distributions

* Given random variables X4, ..., X;,, they have a joint distribution

P(Xl = X1, ...,Xn — Xn)

* As before, satisfy
* P(X{ =xq,..,X, =x,) =0
* Yy P& = X1, 0, X = %) = 1



Joint Distributions

* For finite domains, the distribution can be represented as a table

* Example:
T R P(T,R)
hot no rain 0.4
hot rain 0.1
cold no rain 0.2
cold rain 0.3




Desighing a Probabilistic Model

* Naive idea
* Write down the full joint distribution P (x4, ..., x;,)
* Perform inference using this distribution

* Problem: For n random variables with domain size |D| = d, the table
representing the joint distribution has d" entries!

* Learning and inference are both intractable!

* |s there structure we can exploit to improve tractability?
* Yes, conditional independence!



Independence

* Two random variables are independent (denoted X 1Y) if
Vx,y. P(x,y) = P(x)P(y)
* Here, P(x) = X, P(x,y) is the marginal distribution

* That is, the joint distribution factors into two simpler distributions



Independence

 Example (not independent):

T R P(T,R)
hot no rain 0.4
hot rain 0.1
cold no rain 0.2
cold rain 0.3




Independence

 Example (independent):

T R P(T,R)
hot no rain 0.3
hot rain 0.2
cold no rain 0.3
cold rain 0.2

T P(T)

hot 0.5

cold 0.5
X

R P(R)

no rain 0.6

rain 0.4




Independence

* Example: Coin flips

Xl P(Xl) Xn P(Xn)
heads 0.5 heads 0.5
tails 0.5 tails 0.5
X4 X, P(Xqy, ..., Xn)
heads heads 27"
2—1?,

} 2™ rows

Independence can lead to much more compact representations!



Conditional Probabilities

e Conditional probability:

P(x,y)
P(y)

P(x|y)=

* Product rule: P(x,y) = P(x | y)P(y)

* Chainrule: P(xq,...,x,,) = P(x{)P(x, | x1) - P(x,, | Xq) 0o, Xpy—1)



Conditional Probabilities

e Conditional probability:

P(x,y)
P(y)

P(x|y)=

* Product rule: P(x,y) = P(x | y)P(y)
 Chainrule: P(xq, ...,x,) = [li{ P(x; | x4, ey Xi—1)

* Note: Independence is equivalently Vx,y . P(y | x) = P(y)



Conditional Independence

* Independence conditioned on other random variables

* Example: P(rain, traffic, umbrella)
* “Having traffic” and “needing an umbrella” are not independent!
* But if we know there is rain, traffic does not depend on umbrella:

P (+traffic|+rain, +umbrella) = P(+traffic|+rain)

 Similarly for not having rain:

P (+traffic|—rain, +umbrella) = P (+traffic|—rain)



Conditional Independence
* Traffic is conditionally independent of umbrella given rain
P (traffic|rain, umbrella) = P(traffic|rain)

* The following statements are equivalent to the one above:
e P(umbrella|rain, traffic) = P(umbrella|rain)
 P(traffic,umbrellalrain) = P(traffic|rain)P (umbrella|rain)

 Traffic and umbrella are conditionally independent given rain



Conditional Independence

* X is conditionally independent of Y given 74, ..., Z,, if
VX,V,2{, ., Zn . P(x,y|24,...,2,) = P(x|2q, ..., 2,)P(y|24, ..., Z,)
* Equivalently:

VX,V,21, e, Zy » P(X|2q4,...,2,,y) = P(x|2q, ..., 2,)

* Denoted XLlY | Z4, ..., 72,



Desighing a Probabilistic Model

* Idea: Restrict to joint distributions with given independence relations
* Posit set of conditional independence relationships X; ILX; | {X}}

* Only learn joint distributions P (x4, ..., X,;) that satisfy these relationships

* Intuition: Conditional independences define “local” distributions that are
chained together to form “global” distribution

* This is the approach taken by Bayesian networks
* Note on terminology: Special kind of graphical model

* Rarely have exact independence, but useful modeling assumption



Bayesian Networks

* Represent conditional independences via a directed acyclic graph
* Nodes/vertices: Variables { (X, D;)} (and their domains)

* Arcs/edges: Encode parameter structure
* Parameters: Distribution of each X; given its parents



Example: Coin Flips

Xl P(Xl) Xn P(Xn)
heads 0.5 heads 0.5
tails 0.5 tails 0.5

no interactions = all random variables are independent



Example: Weather

Rain

<>




Parameters

* Conditional probabilities of node given parents:

Hi,xl,---,xki,x — P(Xl — X | Xil = X1, '"’Xik — xki)

* Here, x; € D; is in the domain of X;



Example: Weather

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

Rain

<>




Example: Weather

R P(R)
no rain 0.6 @ R T P(R,T)
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25 P(R,T)=P(T | R)P(R)
rain traffic 0.75




Example: Weather

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

<y

R

T

P(R,T)

no rain

no traffic

0.45

P(R,T) = P(T | R)P(R)




Example: Weather

R P(R)
no r.aln 0.6 @ R T P(R,T)
rain 0.4 > no rain no traffic 0.45
B T P(T | R) no rain traffic 0.15
no rain no traffic 0.75 —
no rain traffic 0.25 @
rain no traffic 0.25 P(R,T)=P(T | R)P(R)
rain traffic 0.75




Example: Weather

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

&0

R T P(R,T)
norain | no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1

P(R,T) = P(T | R)P(R)




Example: Weather

R T P(R,T)
norain | no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

<>

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

P(R,T) = P(T | R)P(R)




Example: Weather

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

Rain

<>

R T P(R,T)
norain | no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

P(R,T) = P(T | R)P(R)




Summary

* Bayesian network
* Nodes represent random variables
* Edges encode conditional independences

* For each node, parameters at that node encode probability distribution of
node conditioned on its parents

* Edge directions
e Determines parameters
» Often encode intuitive notion of causality (can be formalized)



Summary

* Any joint distribution satisfying the conditional independencies can
be expressed as product of P(Xi = x; | parents(X;) = (xl-l, ...,xik))

* We can compute the corresponding joint distribution using chain rule:

P(xl; ---;xn) :L ?=1P(Xl' — xi | (Xll "'Xi—l) — (xl) ---in—l))

I ?=1P(Xl- = x; | parents(X;) = (xil, ...,xik))

* First equality holds for any distribution by chain rule
* Second equality holds by assumption (assumes topological order)



Example: More Complex Traffic Model

* Variables:
* Low pressure (L)
e Rain (R)
 Traffic (T)
* Roof damage (D)
e Ballgame (B)
 Mood (M)




Example

P(L,B,R,T,D,M) =
P(L)

P(B)

P(RI|L)
P(T|R,B)
P(D|R,T)
P(M|B,D)




Example: Insurance

(hee)

(This CarCosD

i

https://www.bnlearn.com/bnrepository/discrete-medium.html#insurance



Queries on Bayesian Networks

* Which variables are conditionally independent?
* For any values of the parameters
* Called d-separation

* What is the most likely assignment, i.e., max P(xq, ..., Xx,)?
xl,...,Xn
e Called maximum a posteriori (MAP) inference

* What is the conditional distribution P(Xl- | Xi, = Xipn Xy, = xik)?
* Forany X;andany X; =x; ,..,X
e Called marginal inference

ik — ik



Queries on Bayesian Networks

* Which variables are conditionally independent?
* For any values of the parameters
* Called d-separation



D-Separation Strategy

* Step 1: Look at three special cases
* Causal chain
* Common cause
« Common effect

* Step 2: Piece them together



Causal Chain

e X oY o/ (PressuD

e Is X1LZ? Not necessarily

* E.g., Rain = Pressure and Traffic = Rain ( : >
Rain

e |IsXIUZ |Y? Yes
P(x,yz) _ PP(ylx)P(z]y)

-P(le,}’)=W_ PC)P(YIX) = Plzly) Graffi()




Common Cause

XY o2

e |Is X1LZ? Not necessarily

e E.g., Traffic = Rain and
Damage = Rain

e IsXUZ |Y? Yes
P(x,y,z)

* P(z|xy)= P r)

_ P@P(x|y)P(zly) _
= = PoP(xy) =P(z|y)

Traffic

Rain

Damage




Common Effect

X oY </

e IsX1IZ? Yes

* Proof left as exercise

e IsX1Z | Y? Not necessarily

 E.g.,, forY = X @ Z (XOR), then if
Y = False, then X = -7

* Example: Medical diagnosis

* Observation “activates” path

Ballgame

Mood

Damage



General Case

* Query: For a general Bayesian network, is X1Y | Z,, ..., Z;?

 Algorithm
* Look for paths from X to Y
 Segment A — B — C only “active” (from previous three cases, see next slide)

* If there are no paths from X to Y such that all segments are active,
then X1Y | Z4, ..., Zj

* Otherwise, conditional independence is not guaranteed



General Case

e Causal chain
e A->B->C
* Active iff B & {Z;}

 Common cause
e A~ B->C
* Active iff B & {Z;}

e Common effect
e A> B« (C
* Active iff B € {Z;} (or descendant € {Z;})

Active Triples

€ §

Inactive Triples

O-@-O0
o ®0
o



Example

* Query: Is LIIM?
*No,L->R->D-M @

* Query: Is LILB?
* Yes!
eL->R->T«<B
e L->R->D«T«B
eL->R->D-M<«<B

* Note: If we observe T, D, or M, breaks independence
* Noneof LUB |T,LL1B | D,and LI1B | M hold



Queries on Bayesian Networks

* What is the conditional distribution P(Xl- | Xi, = Xipn Xy, = xik)?
* Forany X;andany X; =x; ,..,X
e Called marginal inference

ik — ik



Marginal Inference

* Input:
* Evidentiary variables: E; = ey, ..., E};, = e}, (features)
e Query variable: Q (label)
* Hidden variables: Hy, ..., H,,, (all remaining, “latent” variables)

* Goal: For each g, compute
P(Q=qlE =ey...Ex = e)

* Equivalently: Likelihood p(y | x)



Enumerative Algorithm

* Step 1: Construct table for joint distribution P(q, h4, ...

* Step 2: Select rows consistent with evidence
* le., P(q,hq, ..., hpy, €1, ..., ) for some hq, ..., hy,

e Step 3: Sum out hidden variables and normalize:

1
P(Q=gqgleq..,er) = ~ z P(q,hq, ..., hy, €4, ..
hli""hh

* Normalizing constant Z = Zq,hl ,,,,, th(q, hi, ...,y €1, ..

) hm, el, TN ek)

) ek)



Step 1: Construct Joint Distribution

Rain

<>

R P(R)
no rain 0.6
rain 0.4
R T P(T | R)
no rain no traffic 0.75
no rain traffic 0.25
rain no traffic 0.25
rain traffic 0.75

»

R T P(R,T)
no rain | no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

P(R,T) = P(T | R)P(R)

Query: P(R | traffic)




Step 2: Select Rows

R T P(R,T)
norain | no traffic 0.45
no rain traffic 0.15

rain no traffic 0.1
rain traffic 0.3

Query: P(R | traffic)



Step 2: Select Rows

R T P(R,T)
no rain traffic 0.15
rain traffic 0.3

Query: P(R | traffic)



Step 3: Sum and Normalize

R T P(R,T)
. : 0.15 1
P(rain | traffic) = ==
no rain traffic 0.15 0_3+0.10§3 3 )
P(no rain | traffic) = =z
0.3+0.15 3
rain traffic 0.3

Query: P(R | traffic)



Enumerative Algorithm

* Constructing the joint distribution is very computationally expensive!
* NP hard in general, but we can do better in practice

* ldea: Marginalize hidden variables before the end



Factors and Operations

* Factor: A table encoding a distribution P(x1, ..., X3 | V1, e, V3 )
* In general, we denote factors by ¢(z4, ..., Z,,)

* Join: Given ¢ (xq, ..., X3, V1, ) Vi) and ¢ (x4, ..., X%, Z1, ..., Z,,) OUtPUL

¢(x1, ...,xk, V1, ...,ym, Z1, ...,Zn) — ¢(x1, ...,xk, yl' ...,ym)¢(x1, ...,xk, Z1, ""ZTL)

* Eliminate: Given ¢(x, y4, ..., V) output

GY1, e Vi) = 2 (X, Y1, ) Vi)



Enumerative Algorithm

* Step O: Initial factors are P( X; | parents(X;) ) for each node X;
* Immediately drop rows conditioned on evidentiary variables

e Step 1: Join all factors
e Step 2: Eliminate all hidden variables

 Output: Remaining factor is P(Q, eq, ..., €;), Which can be normalized



Example Query

P(R)

+r 0.1

-r 0.9
P(T | R)
+r +t | 0.8
+r -t 0.2
-r +t | 0.1
-r -t 0.9

P(L|T)
+t + 0.3
+t -| 0.7
-t + 0.1
-t -1 0.9

Query: P(L)



Step O: Initial Factors

P(R)

P(T | R)

+r

0.1

+r

+t

0.8

0.9

+r

0.2

+t

0.1

0.9

P(LIT)
+t + 0.3
+t -| 0.7
-t + 0.1
-t -| 0.9




Step 1: Join All Factors

P(R)

+r | 0.1

-r | 0.9 P(R,T)=P(T | R)P(R) P(R,T,L) =P(L|T)P(R,T)
+r | +t | 0.08 +r | +t | + | 0.024

P(T|R) +r | -t | 0.02 +r |+t -1 | 0.056

+r| +t |0.8 -r | +t | 0.09 +r | -t +1 | 0.002

+r| -t 0.2 -r| -t | 0.81 +r -t -1 | 0.018

ol +t10.1 -r +t + | 0.027

ol -t 109 -r +t -1 | 0.063

-r -t + | 0.081

P(L|T) P(LI|T) -r -t -1 | 0.729

+t | +l [0.3 +t | +1]0.3

+t | -l (0.7 +t | -1 10.7

-t | +1 |0.1 -t | +1 |0.1

-t | -1 0.9 -t | -1 0.9




Step 2: Eliminate Hidden Variables

P(R,T, L)
+r +t + 0.024
+r | +t | - | 0.056 P(T,L) =2+ P(R,T,L)

+r | -t | + |0.002 +t | +l | 0.051 P(L) = X P(T,L)
+r -t -1 | 0.018 +t | -l | 0.119 + [ 0.134

-r +t + | 0.027 -t | +] | 0.083 -1 10.886
-r +t -1 | 0.063 -t | -l | 0.747

-r -t + | 0.081
-r -t | 0.729




Variable Elimination Strategy

P(R)
+r | 0.1
-+ 109 P(R,T)=P(TIR)P(R)
+r | +t | 0.08 P(T) =),P(R,T)
P(T | R) +r | -t | 0.02 +t | 0.17 P(T,L) = P(L | T)P(T)

+r| +t 0.8 -r | +t | 0.09 -t | 0.83

. P(L) = %t P(L,T)
+r | -t |0.2 r]-t]081
-r | +t |0.1

»

+t | +l | 0.051
+t | - | 0.119 + 10134
-t | +1 | 0.083 -1 0.866
-r | -t |0.9 -t

-l | 0.747
P(LIT) P(LIT) P(LIT)
+t | +1 [0.3 +t | +1 [0.3 +t | +1 [0.3
+t | -1 |0.7 +t | -l |0.7 +t | -l |0.7
-t | +] [|0.1 -t | +] |0.1 -t | +] |0.1
-t | -1 0.9 -t | -l 0.9 -t | -l 0.9




Variable Elimination Strategy

»»i»@»@



What about evidence?

* When there are evidentiary variables, select those rows first

P(R) P(T | R) P(L|T)
+r 0.1 +r | +t [ 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t | 0.7

-r +# | 0.1 -t + 0.1
-r -t | 0.9 -t -| 0.9

P(+7) P(T | +r) P(L|T)
+r 0.1 +r | +t [ 0.8 +t + 0.3
+r -t | 0.2 +t -| 0.7
t + 0.1
t I 0.9

Query: P(L | +r)



What about evidence?

* At the end, obtain an unnormalized distribution, which we normalize

P(+r,L)
+r | 4+l | 0.026
+r | -l | 0.074

)

P(L | +r)
+| | 0.26
-1 | 0.74

Query: P(L | +r)



Alternative View

P(O) =) P(£1E)P(IP(EIT) P(6)= ) P(£1t) ) PIIP(tIT)
t r \ ~ t r o\~ -
joinonr joinonr
g _J A\ J
" "
joinont eliminate r
|\ ) - J
" "
eliminate r joinon t
(g J A J
" "
eliminate t eliminate t

Enumeration Variable Elimination



General Variable Elimination Strategy

* Step O: Initial factors are P( X; | parents(X;) ) for each node X;
* Immediately drop rows conditioned on evidentiary variables

* Step 1: For each H;:
 Step 1a: Join all factors containing H;
* Step 1b: Eliminate H;

e Output: Join all remaining factors and normalize



Variable Elimination Order

¢ Query: P(Xn | }71; ---;:Vn)

 Eliminating Z first results in
factor of size 2™+1

* Eliminating X4, ..., X;,_ first
results in factors of size 2




Variable Elimination Order

* Order in which hidden variables are eliminated can greatly affect
performance (e.g., exponential vs. constant)

* May not exist an efficient ordering (problem is NP hard in general)

* Computing optimal ordering is also NP hard



Learning Bayesian Networks

* Supervised learning
* Features x are evidentiary variables
* Label y is query variable
e Parameters are the conditional probabilities
* Marginal inference evaluates likelihood p(y | x)

* How to learn the parameters?



Maximum Likelihood Learning

e Minimize the NLL:

n d
6 = argeminzzlong (Xj = X} j | parents(Xj) = (xl-,kl, ...,xi,kj))

i=1j=1

* Can use gradient descent to optimize
* There is a nice formula for the gradient



Simplest Example: Naive Bayes

 Model:
n
P(Y, X, ... X,) = P(Y) 1_[ P(X,|Y)
=1

* If Y has domain Dy and X; has domain Dy,
then n - |Dy| - |Dy| parameters




Inference in Naive Bayes

* Step 1: For each y € Dy, compute joint probability distribution
n
PO,y ) = PO | [ PCxi 1)
i=1

* Step 2: Normalize distribution:

P(y,xq{, ..., X;,)
YA

Py | xq)u,x,) =

* Here, Z = Zy,EDyP(y’,xl, ey Xp)



Naive Bayes for Spam Detection

* Bag of words model

* Parameter sharing via “tied” distribution: For all i, j, constrain

P(X;=x|Y)=PX;=x1Y

* Encodes invariant structure in bag of words models



Naive Bayes for Spam Detection

P(y) P(x | spam) P(x | not spam)
not spam: 0.66 the : 0.0156 the : 0.0210
spam: 0.33 to : 0.0153 to : 0.0133
and : 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a 0.0100




Maximum Likelihood Learning

* Minimize the NLL for Naive Bayes for text:

n

6

d
0 = arg minZ< log Pg (y;) +1082P9(xi,j | yi)
=1

=1

* Can show that parameters are counts:

Po(x |y) =25

(

\

J

\

~"

Y,

Zj‘l=1 1(3’i =YV AXj = x)

?=1 Z?:l 1(3’1’ — y)



Maximum Likelihood Learning

e Can overfit
* |f a word never occurs in the training dataset, probabilities are all undefined

* Regularization via Laplace smoothing
* Assume each word occurs k extra times in the dataset (increase counts by k)

k+ 3, 2 1y = y Axyj = x)
k-d+ Y, 2% 10 = )

Po(x|y)=

e Can be interpreted as a prior on @ (in particular, the Dirichlet prior)



Example: Works Well

Recipients
Send me the money right away

2?7?7777

------------------



Example: Works Poorly

| wanted to love XXXXX, but | couldn't.

| wanted to love XXXXX, and | did!|



Reasoning Through Time

* One strength of the framework is for modeling time varying processes
e E.g., use (partial) measurements of factors to estimate future crop yield

Mildew (0) Mildew (n)
| G. LAT (0) |—»| LAI(0) | LAI (n)
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http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=01495B0A3249E426AD4C55FA02C14200?d0i=10.1.1.30.9931&rep=rep1&type=pdf



Hidden Markov Model

* Speech recognition, machine translation, object tracking

We want a model of sequences y and observations x
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P(X1...Tn,Y1...Yn) = a¢(STOP|y,) H (Yilyi—1)e(zilyi)

where y,=S7TARTand we call q(y; | y;-1) the transition
distribution and e(x; | y;) the (or observation)
distribution.



