Announcements

* HW 5 due Wednesday, November 16 at 8pm

* Quiz 10 is due Thursday, November 17 at 8pm



Lecture 21: Reinforcement Learning

CIS 4190/5190
Fall 2022



Three Kinds of Learning

* Supervised learning
* Given labeled examples (x,y), learn to predict y given x

* Unsupervised learning
* Given unlabeled examples x, uncover structure in x

* Reinforcement learning
* Learning from sequence of interactions with the environment



Sequential Decision Making

* Make a sequence of decisions to maximize a real-valued reward

* Examples
* Driving a car
* Making movie recommendations
* Treating a patient over time
* Navigating a webpage



Sequential Decision Making

* Machine learning almost always aims to inform decision making
* Only show user an image if it contains a pet
* Help a doctor make a treatment decision

* Reinforcement learning is about sequences of decisions

* Naive strategy: Predict future and optimize decisions accordingly
e But decisions affect forecasts
* |f we show the user too many cats, they might get bored of cats!

 Solution: Jointly perform prediction and optimization



What makes RL hard?

Ross & Bagnell 2011



What makes RL hard?

Ross & Bagnell 2011



What makes RL hard?

A

not in training set

goal

Ross & Bagnell 2011



What makes RL hard?

e Distribution shift is fundamental to the problem
* Repeat: Improve policy =2 distribution shifts = improve policy =2 ...

* This is with a human expert in the loop! Without the expert, we must start off
acting randomly

* Generally, using expert data where available is promising (called
“imitation learning”)

e Caveat: Limited by human performance (e.g., AlphaGo Zero significantly
outperforms AlphaGo, which was pretrained on expert games)



Reinforcement Learning Problem

* At eachstept € {1,...,T}:
* Observe state s; € S andreward r; € R
* Take actiona; = n(s;) € A

* Goal: Learn a policy 7: S — A that
maximizes discounted reward sum:

agent

environment

action a
N 4 )

J

) \_
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Reinforcement Learning Problem

state: joint angles state: current stock
actions: motor torques actions: how much to purchase
dynamics: robot physics dynamics: demand at each store

reward: average speed reward: profit



Reinforcement Learning Successes

oogle DeepMind

Challenge Match
8-15March 2016

8 AlphaGo  \Lee Sedol

Playing board games and videogames



Reinforcement Learning Successes
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Reinforcement Learning Successes

FINGER PIVOTING SLIDING FINGER GAITING

Robotics (e.g., Rubik’s cube manipulation)



Reinforcement Learning Successes
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Steering microscope to separate molecules Controlling magnetic fields to stabilize plasma (in simulation)

https://www.science.org/doi/10.1126/sciadv.abb6987 Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning



https://www.science.org/doi/10.1126/sciadv.abb6987

Reinforcement Learning Successes

* Power grids: Reinforcement learning for demand response
* A review of algorithms and modeling techniques, J. Vazquez-Canteli, Z. Nagy

* Recommender systems
* https://github.com/google-research/recsim

* Many potential applications
e https://arxiv.org/abs/1904.12901



https://arxiv.org/abs/1904.12901

Reinforcement Learning Problem

* At a high level, we need to specify the following:
 State space: What are the observations the agent may encounter?
* Action space: What are the actions the agent can take?
 Transitions/dynamics: How the state is updated when taking an action
* Rewards: What rewards the agent receives for taking an action in a state

* For most of today, assume state and action spaces are finite



Toy Example

* Grid map with solid/open cells

 State: An open grid cell

e Actions: Move North, East,
South, West B

Based on slide by Dan Klein



Toy Example

* Dynamics
* Move in chosen direction, but not
deterministically!

e Succeeds 80% of the time

* 10% of the time, end up 90° off 2 =
* 10% of the time, end up —90° off A .
* The agent stays put if it tries to

move into a solid cell or outside 1 2 3 4

the world

0.8
At terminal states, any action ends o1 o1
episode (or rollout)

Based on slide by Dan Klein



Toy Example

e Rewards

* At terminal state, agent receives
the specified reward

* For each timestep outside terminal
states, the agent pays a small cost,
e.g., a “reward” of —0.03

3
2 [£7]
1 START

1 2 3 4

0.8

0.1 0.1

Based on slide by Dan Klein



Example Episode (Random Policy)

3 + 1

0.8
0.1%0.1

Based on slide by Dan Klein




Example Episode (Random Policy)

3 + 1

Action= “N”
1

0.8
0.1%0.1

Based on slide by Dan Klein




Example Episode (Random Policy)

3

2

Action= “N"
Result = “N” 1
Reward =-0.03

+ 1
START
1 2 3 4

Based on slide by Dan Klein



Example Episode (Random Policy)

3 1

Action= “N"” 2 a . —
1 START

1 2 3 4

0.8
0.1%0.1

Based on slide by Dan Klein




Example Episode (Random Policy)

3 %
Action="N" 2 [ @ . =7
(stays still because blocked) Result="E"
Reward =-0.03
START
1 2 3 4

0.8
0.1

Based on slide by Dan Klein




Example Episode (Random Policy)

3 1
Action= “N"” 2 —
Result=“N"

Reward =-0.03

1 START
1 2 3 4

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “N"
Result="E"
Reward =-0.03
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2
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Based on slide by Dan Klein




Example Episode (Random Policy)

Action= “E”
Result="E"

Reward =-0.03
2

3 —>

1 START

Based on slide by Dan Klein



Example Episode (Random Policy)

Action= “E” |!|
3 — >
Result="E"
Reward =-0.03
2 -1
1 START

Based on slide by Dan Klein



Example Episode (Random Policy)

. t
Action= “N” f @
3 > >
Result="the end”
Reward = +1
2 -1

Based on slide by Dan Klein



Example Episode (Random Policy)

t t
* Our random trajectory happened 3 - -
to end in the right place!
i NE
* Optimal policy? No!
* Only succeeded by random chance !
1 START

Based on slide by Dan Klein



Optimal Policy

* Optimal policy: Following "
maximizes total reward received

* Discounted: Future rewards are
downweighted

 In expectation: On average across
randomness of environment and
actions

11

E

Based on slide by Dan Klein



Markov Decision Process (MDP)

* An MDP (S5,A,P,R,y) is defined by: +5
e Set of statess € S
 Set of actionsa € A

* Transition function P(s' | s,a) (also
called “dynamics” or the “model”)

e Reward function R(s,a,s’)
e Discount factory <1

* Also assume an initial state .
distribution D(s)

* Often omitted since optimal policy
does not depend on D

Image: https://towardsdatascience.com/reinforcement-learning-

demystified-markov-decision-processes-part-1-bf00dda41690



https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Markov Decision Process (MDP)

* Goal: Maximize cumulative expected discounted reward:

n* = maxJ(m) where J(m)=E; E vyt
T
L t=0




Markov Decision Process (MDP)

* Planning: Given P and R, compute the optimal policy *
* Purely an optimization problem! No learning

* Reinforcement learning: Compute the optimal policy m* without
prior knowledge of P and R



Policy Value Function

* Policy Value Function: Expected reward if we start in s and use m:

VT(s) = ]E(Zyt 1y | Sp = S)
t=0

* Bellman equation:

V(s) = z P(s"15,m()) - (R(s,m(s),5) + - V(s")
—

current value expectatlon current reward +
over next state discounted future reward




Optimal Value Function

e Optimal value function: Expected reward if we startin s and use "

Vi(s) =E zyt°rt|50 =S
t=0

 Bellman equation: Optimal policy selects action that maximizes
future expected reward from state s

V*(s) = max P(s’ |S,a)-(R(S,a,s’)+)/-V*(S’))
\ ) acA - W — U - /
current value S’ €5 expectation current reward +
over next state discounted future reward




Optimal Value Function

* Bellman equation:

V*(s) = rcrllez%z P(s'|s,a)- (R(S, as')+y- V*(S’))

s'es

* Do not need to know the optimal policy ™!

 Strategy: Compute V* and then use it to compute T~
e Caveat: Latter step requires knowing P



Policy Action-Value Function

* Policy Action-Value Function (or Q function): Expected reward if we
start in s, take action a, and then use m thereafter:

QTC(S’a) — ]E(zyt 'rt | SO — S,ao — a>
t=0

* Bellman equation:

Q" (s,a) = z P(s'|s,a)- (R(S, a,s')+y- Q”(S’,n(s’)))

s'es



Optimal Action-Value Function

* Optimal Action-Value Function (or Q function): Expected reward if
we start in s, take action a, and then act optimally thereafter:

Q*(S,a) — IE(Z)/t 'Tt | SO —_ S,ao — a)
t=0

* Bellman equation:

Q*(s,a) = z P(s'|s,a) - (R(S, as')+y- gr,lgﬁQ*(s’,a’ ))

s'es



Relationship
* We have
V(s) = Q"(s,m(s))

* Similarly, we have

Vi(s) = max Q*(s,a)



Q Iteration

* We have

T (s) = max Q*(s,a)

 Strategy: Compute Q" and then use it to compute t*



Q Iteration

* Initialize Q;(s,a) « O forall s,a
* Fori € {1,2, ...} until convergence:

0ii(5,0) « ) P(s'15,0) - (R(s,a,8) +7 - maxy(s',a))

s'es
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0 0.9
i A

After 1000 iterations:

Qi+1(s,a) « E P(s'|s, a) [R(s, a,s') +y/maxQ;(s’, a’)
a
S’




Q Iteration

* Information propagates outward from terminal states

* Eventually all state-action pairs converge to correct Q-value estimates



Aside: Value lteration

* Analogous to Q-Policy iteration but for computing the value function

* Initialize VV;(s) « O forall s
* Fori € {1,2, ...} until convergence:

Viii1(s) « max z P(s'Is,a) (R(s,as")+vy-Vi(s))

s'es



Example MDP

0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

s'es

+1




0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]
s’'es
Example MDP Vi V

ik 31 Ol O] O ([(+1] =] O

V,({(4,3)) < 1 V,((4,2)) « —1



Example MDP

0 0.9

/ /

Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

+1

Vs
O [ O |0.72] +1
0 O [ -1
O[O0 01O




Reinforcement Learning

e Q iteration can be used to compute the optimal Q function when P
and R are known

* How can we adapt it to the setting where these are unknown?



Model-Based Reinforcement Learning

e Step 1: Estimate P = P and R = R from samples
* What policy to use to gather data?
* Need to take action a in state s to obtain an observation of P(:| s,a)!
* More on this later

(1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) EX) (4,1) (4,2) (L)

(1,1),N 0.1 0.8 0 0.1 0 0 0 0 0 0 0 0
(1,1),E 0.1 0.1 0 0.8 0 0 0 0 0 0 0 0
(1,1),S 0.9 0 0 0.1 0 0 0 0 0 0 0 0

e Step 2: Compute optimal policy & ~ ©* for P and R



Model-Free Reinforcement Learning

* Can we learn ™ without explicitly learning P and R?

* Q Learning
e Can we extend Q lteration to the setting where P and R are unknown?

* Observation: Every time you take action a from state s, you obtain one
sample s’ ~ P(-] s,a) and observe R(s,a,s’)

* Use single sample instead of full P



Q Learning

* Can we learn ™ without explicitly learning P and R?

0ini(5,@) = ) P(s"15,0)- (R(s,0,5) +7 - maxQi(s',a")

s'es



Q Learning

* Can we learn ™ without explicitly learning P and R?

Qi+1(s,a) « Eg p(.is, a) [R(S, a,s’) +y - maxQ(s’, a’)]



Q Learning

* Q Learning update:
Qi+1(5,@) = R(s5,0,5") + - maxQi(s',a’)
a €
 Q Iteration: Update for all (s, a, s’) at each step

* Q Learning: Update just for current (s, a), and approximate with the
state s’ we actually reached (i.e., a single sample s’ ~ P(:| s,a))



Q Learning

* Problem: Forget everything we learned before (i.e., Q;(s, a))

* Solution: Incremental update:

Qis1(s,a) = (1) - Qi(s,@) + - (R(s,a,8) +y - maxQi(s',a"))



0.1 0.9

Q(s,a) « Q(s,a) + a|R(s,a,s") + yn}la,le(s’, a) —Q(s, a))

3 o 0| 00]:072

\ 0 o ;

2 0 e 0~ [Z1] 3
1 2 3 4

Sample R + ymaxQ =
0+0.9x0.72 = 0.648 2

New Q =
0.09+0.1X(0.648-0.09)
= (0.1458







Policy for Gathering Data

* Strategy 1: Randomly explore all (s, a) pairs
* Not obvious how to do so!

e E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

 Strategy 2: Use current best policy
e Can get stuck in local minima

* E.g., we may never discover a shortcut if it
sticks to a known route to the goal




Policy for Gathering Data

* e-greedy:
* Play current best with probability 1 — € and randomly with probability €
e Can reduce € over time
* Works okay, but exploration is undirected

* Visitation counts:
* Maintain a count N (s, a) of number of times we tried action a in state s

. 1 ). . -
e Choose a* = arg max ey {Q(s, a) + m}, i.e., inflate less visited states



Summary

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

* Extensions
* Various strategies for exploring the state space during learning
* Next time: Handling large or continuous state spaces



Curse of Dimensionality

* How large is the state space?
e Gridworld: One for each of the n cells

« Pacman: State is (player, ghosty, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly




State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
« ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = fy (qb(s, a))
* Enables generalization to similar states



Neural Network () Function

* Examples: Distance to closest ghost, distance to closest dot, etc.

e Can also use neural networks to learn features (e.g., represent Pacman game
state as an image and feed to CNN)!

Q
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Deep Q Learning

* Learning: Gradient descent with the squared Bellman error loss:

2
((R<s, a,s) +y - maxQo(s',a)) Qo a>)

- _/
h'd

“Label” vy

Based on slide by Sergey Levine



Deep Q Learning

* Iteratively perform the following:
* Take an action a; and observe (s;, a;, Sj+1,1;)
* Y1+ y-maxQp(siyq,a’)
a' €A

+ ¢~ b —a 25 (Qo(sia) = y)?
* Note: Pretend like y; is constant when taking the gradient

* For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine



Experience Replay Buffer

* Problem
e Sequences of states are highly correlated
* Tend to overfit to current states and forget older states

//\
* Solution _Svaumse)
» Keep a replay buffer of observations (as a priority queue) _(S3,03,73,53) ~

* Gradient updates on samples from replay buffer instead
of current state w

Priority Queue

* Advantages
* Breaks correlations between consecutive samples
e Can take multiple gradient steps on each observation

Based on slide by Sergey Levine



Deep Q Learning with Replay Buffer

* Iteratively perform the following:
* Take an action a; and add observation (s;, a;, s;+1,1;) to replay buffer D

* Fork €{1,..,K}:

y Sample (Si,kl ai,ki Si+1,kr ri,k) from D
!
* Vige < Tik +Y - max Qo(sit10a’)

cpep—a-: %(QB(SL',R: aix) — Yi,k)z

(s,a,s',r)

EE—

e

C——
(s)

- >

replay buffer

!/

Q learning
(off-policy)

Based on slide by Sergey Levine



Target Q Network

* Problem
* Q network occurs in the label y;!

d O\ 2
cPp—p—a °E(Q9(sii a;))—r;+y- g}gﬁQQ(SHl:a ))

* Thus, labels change as Q network changes

* Solution
* Use a separate target Q network for the occurrence in y;
* Only update target network occasionally

d 2
cpedp—a .E(Qe(si; a;) —ry+y-max Qg (s, a’))
\ ) a’ €A\ Y,

Y Y
Original Q Network Target Q Network

Based on slide by Sergey Levine



Deep Q Learning with Target Q Network

* Iteratively perform the following:
 Take an action a; and add observation (s;, a;, s;41,1;) to replay buffer D

* Fork €{1,..,K}:
* Sample (si,k, A k> Si+1,k,7'i,k) from D
* Yik <TiktV: 2}2,)4( QQ’(Si+1,k; a’)
d 2
* ¢ ¢ —a —(Qolsiwair) — Vix)
* Every N steps, 8’ < 6

Based on slide by Sergey Levine



Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/



https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

