Announcements

* HW 5 due Wednesday, November 16 at 8pm

* Quiz 10 is due Thursday, November 17 at 8pm

Lecture 21: Reinforcement Learning

CIS 4190/5190
Fall 2022

Three Kinds of Learning

* Supervised learning
* Given labeled examples (x,y), learn to predict y given x

* Unsupervised learning
* Given unlabeled examples x, uncover structure in x

* Reinforcement learning
* Learning from sequence of interactions with the environment

Sequential Decision Making

* Make a sequence of decisions to maximize a real-valued reward

* Examples
* Driving a car
* Making movie recommendations
* Treating a patient over time
* Navigating a webpage

Sequential Decision Making

* Machine learning almost always aims to inform decision making
* Only show user an image if it contains a pet
* Help a doctor make a treatment decision

* Reinforcement learning is about sequences of decisions

* Naive strategy: Predict future and optimize decisions accordingly
e But decisions affect forecasts
* |f we show the user too many cats, they might get bored of cats!

 Solution: Jointly perform prediction and optimization

What makes RL hard?

Ross & Bagnell 2011

What makes RL hard?

Ross & Bagnell 2011

What makes RL hard?

A

not in training set

goal

Ross & Bagnell 2011

What makes RL hard?

e Distribution shift is fundamental to the problem
* Repeat: Improve policy =2 distribution shifts = improve policy =2 ...

* This is with a human expert in the loop! Without the expert, we must start off
acting randomly

* Generally, using expert data where available is promising (called
“imitation learning”)

e Caveat: Limited by human performance (e.g., AlphaGo Zero significantly
outperforms AlphaGo, which was pretrained on expert games)

Reinforcement Learning Problem

* At eachstept € {1,...,T}:
* Observe state s; € S andreward r; € R
* Take actiona; = n(s;) € A

* Goal: Learn a policy 7: S — A that
maximizes discounted reward sum:

agent

environment

action a
N 4)

J

) _
tTrewardrt Tt |

state s;

St+1

Reinforcement Learning Problem

state: joint angles state: current stock
actions: motor torques actions: how much to purchase
dynamics: robot physics dynamics: demand at each store

reward: average speed reward: profit

Reinforcement Learning Successes

oogle DeepMind

Challenge Match
8-15March 2016

8 AlphaGo \Lee Sedol

Playing board games and videogames

Reinforcement Learning Successes

Number of passengers
To
From
a5t Name
First Name
Deal of the Day Addees
Gamrg workstaton AL 05 Asdrens
Gt £ hodary’
Futl rame
Password
. Password
Payment
Lot Nasr Remember me
................................ Crest Card Stay logged n
To Dedit Card Enter Capicha
Payment
From
Crocit Card
Debt Card First Name —
First Narme Iy
' [e

(a) Early training (b) Mid training (c) Late training (d) Test

Web navigation (e.g., book a flight)

Reinforcement Learning Successes

FINGER PIVOTING SLIDING FINGER GAITING

Robotics (e.g., Rubik’s cube manipulation)

Reinforcement Learning Successes

Bond broken-, ~Formed

& a Learning loop Actor H b
s=(x ¥y z)——— | s [AT |
X '
Control i
Learmer | — ;;icy — | Environmant | Control «—m{ Sensor Physical Powar
parameters | policy model parameters supply > s NS
e A] — = I l .
Vltaga commands Tormicate v S o ‘.
t - Forward 5 3
Py A I gsJ :)
f— famti} = Grad-Shatranoy .
butter Targets o Inputs: m =92, t < 132
3| Rewwd ey ‘ A Newral net: MLP = 3 x 256
Neural — Outputs: 8 = 19
network T

d Deployment L] TCV h Vessel cross section

m
) — » Isofux line
Targets t t policy X-point
S e n vacuum
Aeal-time Plasma
control voundary
50 system Vessel —*
€ 40 (Sor 8, 11 1) - Axis R, Z
> Plasma | .
= (81, @y, 15,) position
s 30 (y eorf N
a Sz, @z, I3, S e
g 20 A X-point ™ Batfle
© 3
3 . . Strike Legs
3 19 F . .. _points 2
% 9 E g / E : \/ Limiter
a = 16 Poloidal Onhmic Fast e
0 2 4 6 8 10 12 14 ” rfSI?girTn?g;t Xpencnce fisd coils © coils | cail
Tip height z (A)

Steering microscope to separate molecules Controlling magnetic fields to stabilize plasma (in simulation)

https://www.science.org/doi/10.1126/sciadv.abb6987 Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning

https://www.science.org/doi/10.1126/sciadv.abb6987

Reinforcement Learning Successes

* Power grids: Reinforcement learning for demand response
* A review of algorithms and modeling techniques, J. Vazquez-Canteli, Z. Nagy

* Recommender systems
* https://github.com/google-research/recsim

* Many potential applications
e https://arxiv.org/abs/1904.12901

https://arxiv.org/abs/1904.12901

Reinforcement Learning Problem

* At a high level, we need to specify the following:
 State space: What are the observations the agent may encounter?
* Action space: What are the actions the agent can take?
 Transitions/dynamics: How the state is updated when taking an action
* Rewards: What rewards the agent receives for taking an action in a state

* For most of today, assume state and action spaces are finite

Toy Example

* Grid map with solid/open cells

 State: An open grid cell

e Actions: Move North, East,
South, West B

Based on slide by Dan Klein

Toy Example

* Dynamics
* Move in chosen direction, but not
deterministically!

e Succeeds 80% of the time

* 10% of the time, end up 90° off 2 =
* 10% of the time, end up —90° off A .
* The agent stays put if it tries to

move into a solid cell or outside 1 2 3 4

the world

0.8
At terminal states, any action ends o1 o1
episode (or rollout)

Based on slide by Dan Klein

Toy Example

e Rewards

* At terminal state, agent receives
the specified reward

* For each timestep outside terminal
states, the agent pays a small cost,
e.g., a “reward” of —0.03

3
2 [£7]
1 START

1 2 3 4

0.8

0.1 0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 + 1

0.8
0.1%0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 + 1

Action= “N”
1

0.8
0.1%0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3

2

Action= “N"
Result = “N” 1
Reward =-0.03

+ 1
START
1 2 3 4

Based on slide by Dan Klein

Example Episode (Random Policy)

3 1

Action= “N"” 2 a . —
1 START

1 2 3 4

0.8
0.1%0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 %
Action="N" 2 [@ . =7
(stays still because blocked) Result="E"
Reward =-0.03
START
1 2 3 4

0.8
0.1

Based on slide by Dan Klein

Example Episode (Random Policy)

3 1
Action= “N"” 2 —
Result=“N"

Reward =-0.03

1 START
1 2 3 4

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “N"
Result="E"
Reward =-0.03

3

2

T

START

0.8

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “E”
Result="E"

Reward =-0.03
2

3 —>

1 START

Based on slide by Dan Klein

Example Episode (Random Policy)

Action= “E” |!|
3 — >
Result="E"
Reward =-0.03
2 -1
1 START

Based on slide by Dan Klein

Example Episode (Random Policy)

. t
Action= “N” f @
3 > >
Result="the end”
Reward = +1
2 -1

Based on slide by Dan Klein

Example Episode (Random Policy)

t t
* Our random trajectory happened 3 - -
to end in the right place!
i NE
* Optimal policy? No!
* Only succeeded by random chance !
1 START

Based on slide by Dan Klein

Optimal Policy

* Optimal policy: Following "
maximizes total reward received

* Discounted: Future rewards are
downweighted

 In expectation: On average across
randomness of environment and
actions

11

E

Based on slide by Dan Klein

Markov Decision Process (MDP)

* An MDP (S5,A,P,R,y) is defined by: +5
e Set of statess € S
 Set of actionsa € A

* Transition function P(s' | s,a) (also
called “dynamics” or the “model”)

e Reward function R(s,a,s’)
e Discount factory <1

* Also assume an initial state .
distribution D(s)

* Often omitted since optimal policy
does not depend on D

Image: https://towardsdatascience.com/reinforcement-learning-

demystified-markov-decision-processes-part-1-bf00dda41690

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Markov Decision Process (MDP)

* Goal: Maximize cumulative expected discounted reward:

n* = maxJ(m) where J(m)=E; E vyt
T
L t=0

Markov Decision Process (MDP)

* Planning: Given P and R, compute the optimal policy *
* Purely an optimization problem! No learning

* Reinforcement learning: Compute the optimal policy m* without
prior knowledge of P and R

Policy Value Function

* Policy Value Function: Expected reward if we start in s and use m:

VT(s) =]E(Zyt 1y | Sp = S)
t=0

* Bellman equation:

V(s) = z P(s"15,m()) - (R(s,m(s),5) + - V(s")
—

current value expectatlon current reward +
over next state discounted future reward

Optimal Value Function

e Optimal value function: Expected reward if we startin s and use "

Vi(s) =E zyt°rt|50 =S
t=0

 Bellman equation: Optimal policy selects action that maximizes
future expected reward from state s

V*(s) = max P(s’ |S,a)-(R(S,a,s’)+)/-V*(S’))
\) acA - W — U - /
current value S’ €5 expectation current reward +
over next state discounted future reward

Optimal Value Function

* Bellman equation:

V*(s) = rcrllez%z P(s'|s,a)- (R(S, as')+y- V*(S’))

s'es

* Do not need to know the optimal policy ™!

 Strategy: Compute V* and then use it to compute T~
e Caveat: Latter step requires knowing P

Policy Action-Value Function

* Policy Action-Value Function (or Q function): Expected reward if we
start in s, take action a, and then use m thereafter:

QTC(S’a) —]E(zyt 'rt | SO — S,ao — a>
t=0

* Bellman equation:

Q" (s,a) = z P(s'|s,a)- (R(S, a,s')+y- Q”(S’,n(s’)))

s'es

Optimal Action-Value Function

* Optimal Action-Value Function (or Q function): Expected reward if
we start in s, take action a, and then act optimally thereafter:

Q*(S,a) — IE(Z)/t 'Tt | SO —_ S,ao — a)
t=0

* Bellman equation:

Q*(s,a) = z P(s'|s,a) - (R(S, as')+y- gr,lgﬁQ*(s’,a’))

s'es

Relationship
* We have
V(s) = Q"(s,m(s))

* Similarly, we have

Vi(s) = max Q*(s,a)

Q Iteration

* We have

T (s) = max Q*(s,a)

 Strategy: Compute Q" and then use it to compute t*

Q Iteration

* Initialize Q;(s,a) « O forall s,a
* Fori € {1,2, ...} until convergence:

0ii(5,0) «) P(s'15,0) - (R(s,a,8) +7 - maxy(s',a))

s'es

r—

S{CIEI)
R
N
o D

o

™ N

1
“]
XO]
N o

o

™ N

1
—
]X]
o 9 O
+

o

™ N

1
—
]X]
o 9 O
+

D &

™ N

1
— O O
o
7 +

o

™ N

1
ﬂ]]
x O O

o

™ N

1
<
]]X
S
+ O A~

o

™ N

-
<

X
(@)

o O
+

D &

™ N

1
— O O
o
7 +

o B

™ N

1
~
S
)
—

v
>
©
<

Q:(s"a)|

E1EINE
S (0 O
D &

+ 0.1x[0+0.9x0.72]
+0.1x[0+0]
0.7848

0.8x[0+0.9x1]

o

™ N

1
—
]X]
o 9 O
+

0 0.9
i A

After 1000 iterations:

Qi+1(s,a) « E P(s'|s, a) [R(s, a,s') +y/maxQ;(s’, a’)
a
S’

Q Iteration

* Information propagates outward from terminal states

* Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value lteration

* Analogous to Q-Policy iteration but for computing the value function

* Initialize VV;(s) « O forall s
* Fori € {1,2, ...} until convergence:

Viii1(s) « max z P(s'Is,a) (R(s,as")+vy-Vi(s))

s'es

Example MDP

0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

s'es

+1

0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]
s’'es
Example MDP Vi V

ik 31 Ol O] O ([(+1] =] O

V,({(4,3)) < 1 V,((4,2)) « —1

Example MDP

0 0.9

/ /

Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

+1

Vs
O [O |0.72] +1
0 O [-1
O[O0 01O

Reinforcement Learning

e Q iteration can be used to compute the optimal Q function when P
and R are known

* How can we adapt it to the setting where these are unknown?

Model-Based Reinforcement Learning

e Step 1: Estimate P = P and R = R from samples
* What policy to use to gather data?
* Need to take action a in state s to obtain an observation of P(:| s,a)!
* More on this later

(1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) EX) (4,1) (4,2) (L)

(1,1),N 0.1 0.8 0 0.1 0 0 0 0 0 0 0 0
(1,1),E 0.1 0.1 0 0.8 0 0 0 0 0 0 0 0
(1,1),S 0.9 0 0 0.1 0 0 0 0 0 0 0 0

e Step 2: Compute optimal policy & ~ ©* for P and R

Model-Free Reinforcement Learning

* Can we learn ™ without explicitly learning P and R?

* Q Learning
e Can we extend Q lteration to the setting where P and R are unknown?

* Observation: Every time you take action a from state s, you obtain one
sample s’ ~ P(-] s,a) and observe R(s,a,s’)

* Use single sample instead of full P

Q Learning

* Can we learn ™ without explicitly learning P and R?

0ini(5,@) =) P(s"15,0)- (R(s,0,5) +7 - maxQi(s',a")

s'es

Q Learning

* Can we learn ™ without explicitly learning P and R?

Qi+1(s,a) « Eg p(.is, a) [R(S, a,s’) +y - maxQ(s’, a’)]

Q Learning

* Q Learning update:
Qi+1(5,@) = R(s5,0,5") + - maxQi(s',a’)
a €
 Q Iteration: Update for all (s, a, s’) at each step

* Q Learning: Update just for current (s, a), and approximate with the
state s’ we actually reached (i.e., a single sample s’ ~ P(:| s,a))

Q Learning

* Problem: Forget everything we learned before (i.e., Q;(s, a))

* Solution: Incremental update:

Qis1(s,a) = (1) - Qi(s,@) + - (R(s,a,8) +y - maxQi(s',a"))

0.1 0.9

Q(s,a) « Q(s,a) + a|R(s,a,s") + yn}la,le(s’, a) —Q(s, a))

3 o 0| 00]:072

\ 0 o ;

2 0 e 0~ [Z1] 3
1 2 3 4

Sample R + ymaxQ =
0+0.9x0.72 = 0.648 2

New Q =
0.09+0.1X(0.648-0.09)
= (0.1458

Policy for Gathering Data

* Strategy 1: Randomly explore all (s, a) pairs
* Not obvious how to do so!

e E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

 Strategy 2: Use current best policy
e Can get stuck in local minima

* E.g., we may never discover a shortcut if it
sticks to a known route to the goal

Policy for Gathering Data

* e-greedy:
* Play current best with probability 1 — € and randomly with probability €
e Can reduce € over time
* Works okay, but exploration is undirected

* Visitation counts:
* Maintain a count N (s, a) of number of times we tried action a in state s

. 1). . -
e Choose a* = arg max ey {Q(s, a) + m}, i.e., inflate less visited states

Summary

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

* Extensions
* Various strategies for exploring the state space during learning
* Next time: Handling large or continuous state spaces

Curse of Dimensionality

* How large is the state space?
e Gridworld: One for each of the n cells

« Pacman: State is (player, ghosty, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
« ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = fy (qb(s, a))
* Enables generalization to similar states

Neural Network () Function

* Examples: Distance to closest ghost, distance to closest dot, etc.

e Can also use neural networks to learn features (e.g., represent Pacman game
state as an image and feed to CNN)!

Q

Convolution Convolution Fully connected Fully connecte
v v v v

0,9 (Sr al)
0.6 (S, az)

Q O

S=TEEE N TR
o] E|/m i\
BE-coz -0 (o

‘O] O
o] B \a

ANRAARNAI
td B4 EX B2 B2 BN B3 B3 1~ €« >1E
BBREERERARRACRARN:

Deep Q Learning

* Learning: Gradient descent with the squared Bellman error loss:

2
((R<s, a,s) +y - maxQo(s',a)) Qo a>)

- _/
h'd

“Label” vy

Based on slide by Sergey Levine

Deep Q Learning

* Iteratively perform the following:
* Take an action a; and observe (s;, a;, Sj+1,1;)
* Y1+ y-maxQp(siyq,a’)
a' €A

+ ¢~ b —a 25 (Qo(sia) = y)?
* Note: Pretend like y; is constant when taking the gradient

* For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

* Problem
e Sequences of states are highly correlated
* Tend to overfit to current states and forget older states

//\
* Solution _Svaumse)
» Keep a replay buffer of observations (as a priority queue) _(S3,03,73,53) ~

* Gradient updates on samples from replay buffer instead
of current state w

Priority Queue

* Advantages
* Breaks correlations between consecutive samples
e Can take multiple gradient steps on each observation

Based on slide by Sergey Levine

Deep Q Learning with Replay Buffer

* Iteratively perform the following:
* Take an action a; and add observation (s;, a;, s;+1,1;) to replay buffer D

* Fork €{1,..,K}:

y Sample (Si,kl ai,ki Si+1,kr ri,k) from D
!
* Vige < Tik +Y - max Qo(sit10a’)

cpep—a-: %(QB(SL',R: aix) — Yi,k)z

(s,a,s',r)

EE—

e

C——
(s)

- >

replay buffer

!/

Q learning
(off-policy)

Based on slide by Sergey Levine

Target Q Network

* Problem
* Q network occurs in the label y;!

d O\ 2
cPp—p—a °E(Q9(sii a;))—r;+y- g}gﬁQQ(SHl:a))

* Thus, labels change as Q network changes

* Solution
* Use a separate target Q network for the occurrence in y;
* Only update target network occasionally

d 2
cpedp—a .E(Qe(si; a;) —ry+y-max Qg (s, a’))
\) a’ €A\ Y,

Y Y
Original Q Network Target Q Network

Based on slide by Sergey Levine

Deep Q Learning with Target Q Network

* Iteratively perform the following:
 Take an action a; and add observation (s;, a;, s;41,1;) to replay buffer D

* Fork €{1,..,K}:
* Sample (si,k, A k> Si+1,k,7'i,k) from D
* Yik <TiktV: 2}2,)4(QQ’(Si+1,k; a’)
d 2
* ¢ ¢ —a —(Qolsiwair) — Vix)
* Every N steps, 8’ < 6

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

