Announcements

- Limited office hours this week (see Ed Discussion)
- Quiz 11 is due Thursday, December 1 at 8pm
- HW 6 due Friday, December 2 at 8pm
- 2 day extension

Bayesian Networks

- Nodes/vertices: Variables X_{k}
- Arcs/edges: Encode parameter structure
- Parameters: Distribution of each X_{i} given its parents
- $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)\right)$
- Graph structure establishes conditional independencies
- Based on d-separation algorithm
- Also encodes conditional independence given neighbors; see https://en.wikipedia.org/wiki/Moral graph for details

Bayesian Networks

- Nodes/vertices: Variables X_{k}
- Arcs/edges: Encode parameter structure
- Parameters: Distribution of each X_{i} given its parents
- $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i} \mid \operatorname{parents}\left(X_{i}\right)=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)\right)$
- Graph structure establishes conditional independencies
- Based on d-separation algorithm
- Also encodes conditional independence given neighbors; see https://en.wikipedia.org/wiki/Moral graph for details

Example

$$
\begin{aligned}
& P(L, B, R, T, D, M)= \\
& P(L) \\
& P(B) \\
& P(R \mid L) \\
& P(T \mid R, B) \\
& P(D \mid R, T) \\
& P(M \mid B, D)
\end{aligned}
$$

Example

$$
\begin{aligned}
& P(L, B, R, T, D, M)= \\
& P(L) \\
& P(B) \\
& P(R \mid L) \\
& P(T \mid R, B) \\
& P(D \mid R, T) \\
& P(M \mid B, D)
\end{aligned}
$$

D-Separation

- Query: $X \Perp Y \mid Z_{1}, \ldots, Z_{n}$

D-Separation

- Causal chain
- $A \rightarrow B \rightarrow C$
- Active iff $B \notin\left\{Z_{i}\right\}$
- Common cause
- $A \leftarrow B \rightarrow C$
- Active iff $B \notin\left\{Z_{i}\right\}$
- Common effect
- $A \rightarrow B \leftarrow C$
- Active iff $B \in\left\{Z_{i}\right\}$ (or descendant $\in\left\{Z_{i}\right\}$)

D-Separation

- Query: $X \Perp Y \mid Z_{1}, \ldots, Z_{n}$
- for each (acyclic) path $X=A_{0}-A_{1}-\cdots-A_{n}-A_{n+1}=Y$:
- active \leftarrow true
- for each triple $A_{i-1}-A_{i}-A_{i+1}$:
- if triple is causal chain and $A_{i} \in\left\{Z_{j}\right\}$: active \leftarrow false
- if triple is common cause and $A_{i} \in\left\{Z_{j}\right\}$: active \leftarrow false
- if triple is causal effect and descendants $\left(A_{i}\right) \cap\left\{Z_{j}\right\}=\varnothing$: active \leftarrow false
- if active: return false
- return true
- Intuition: Return false if there is a path where all triples are active

Marginal Inference

- Input:
- Evidentiary variables: $E_{1}=e_{1}, \ldots, E_{k}=e_{k}$ (features)
- Query variable: Q (label)
- Hidden variables: H_{1}, \ldots, H_{m} (all remaining, "latent" variables)
- Goal: For each q, compute

$$
P\left(Q=q \mid E_{1}=e_{1}, \ldots, E_{k}=e_{k}\right)
$$

- Equivalently: Likelihood $p(y \mid x)$

Variable Elimination

- Step 0: Initial factors are $P\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ for each node X_{i}
- Immediately drop rows conditioned on evidentiary variables
- Step 1: For each H_{i} :
- Step 1a: Join all factors containing H_{i}
- Step 1b: Eliminate H_{i}
- Output: Join all remaining factors and normalize

Maximum Likelihood Learning

- Minimize the NLL:

$$
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{n} \sum_{j=1}^{d} \log P_{\theta}\left(X_{j}=x_{i, j} \mid \operatorname{parents}\left(X_{j}\right)=\left(x_{i, k_{1}}, \ldots, x_{i, k_{j}}\right)\right)
$$

- Can use gradient descent to optimize
- There is a nice formula for the gradient

Simplest Example: Naïve Bayes

- Model:

$$
P\left(Y, X_{1} \ldots, X_{n}\right)=P(Y) \prod_{i=1}^{n} P\left(X_{i} \mid Y\right)
$$

Inference in Naïve Bayes

- Step 1: For each $y \in D_{Y}$, compute joint probability distribution

$$
P\left(y, x_{1}, \ldots, x_{n}\right)=P(y) \prod_{i=1}^{n} P\left(x_{i} \mid y\right)
$$

- Step 2: Normalize distribution:

$$
P\left(y \mid x_{1}, \ldots, x_{n}\right)=\frac{P(y) \prod_{i=1}^{n} P\left(x_{i} \mid y\right)}{Z}
$$

- Here, $Z=\sum_{y^{\prime} \in D_{Y}} P\left(y^{\prime}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y^{\prime}\right)$

Naïve Bayes for Spam Detection

- Bag of words model
- Parameter sharing via "tied" distribution: For all i, j, constrain

$$
P\left(X_{i}=x \mid Y\right)=P\left(X_{j}=x \mid Y\right)
$$

- Encodes invariant structure in bag of words models

Maximum Likelihood Learning

- Minimize the NLL for Naïve Bayes for text:
number of words in example i

$$
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{n}\left\{\log P_{\theta}\left(y_{i}\right)+\log \sum_{j=1}^{d_{i}} P_{\theta}\left(x_{i, j} \mid y_{i}\right)\right\}
$$

- Can show that parameters are counts:

$$
P_{\theta}(x \mid y)=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} 1\left(y_{i}=y \wedge x_{i, j}=x\right)}{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} 1\left(y_{i}=y\right)}
$$

Maximum Likelihood Learning

- Minimize the NLL for Naïve Bayes for text:
number of words in example i

$$
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{n}\left\{\log P_{\theta}\left(y_{i}\right)+\log \sum_{j=1}^{d_{i}} P_{\theta}\left(x_{i, j} \mid y_{i}\right)\right\}
$$

- Can show that parameters are counts: number of times the word x

$$
P_{\theta}(x \mid y)=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} 1\left(y_{i}=y \wedge x_{i, j} \stackrel{\swarrow}{=} x\right)}{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} 1\left(y_{i}=y\right)}
$$

Maximum Likelihood Learning

- Minimize the NLL for Naïve Bayes for text:
number of words in example i

$$
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{n}\left\{\log P_{\theta}\left(y_{i}\right)+\log \sum_{j=1}^{d_{i}} P_{\theta}\left(x_{i, j} \mid y_{i}\right)\right\}
$$

- Can show that parameters are counts: number of times the word x

$$
P_{\theta}(x \mid y)=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} 1\left(y_{i}=y \wedge x_{i, j}=x\right)}{\sum_{i=1}^{n} \sum_{j=1}^{d_{j}^{d}} 1\left(y_{i}=y\right)}
$$

Naïve Bayes for Spam Detection

$P(x \mid$ spam $)$

the $:$	0.0156
to $:$	0.0153
and $:$	0.0115
of $:$	0.0095
you $:$	0.0093
a $:$	0.0086
with:	0.0080
from:	0.0075
..	

$P(x \mid$ not spam $)$

the $:$	0.0210
to $:$	0.0133
of $:$	0.0119
2002:	0.0110
with:	0.0108
from:	0.0107
and $:$	0.0105
a $:$	0.0100
..	

Reinforcement Learning

- Sequential decision-making
- Planning: Known transitions/rewards
- Optimization
- Reinforcement learning: Unknown transitions/rewards
- Learning + optimization

Q Iteration

- Initialize $Q_{1}(s, a) \leftarrow 0$ for all s, a
- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Q Learning

- Initialize $Q_{1}(s, a) \leftarrow 0$ for all s, a
- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow(1-\alpha) \cdot Q_{i}(s, a)+\alpha \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Curse of Dimensionality

- How large is the state space?
- Gridworld: One for each of the n cells
- Pacman: State is (player, ghost $_{1}, \ldots$, ghost $_{k}$), so there are n^{k} states!
- Problem: Learning in one state does not tell us anything about the other states!
- Many states \rightarrow learn very slowly

State-Action Features

- Can we learn across state-action pairs?
- Yes, use features!
- $\phi(s, a) \in \mathbb{R}^{d}$
- Then, learn to predict $Q^{*}(s, a) \approx Q_{\theta}(s, a)=f_{\theta}(\phi(s, a))$
- Enables generalization to similar states
- Examples: Distance to closest ghost, distance to closest dot, etc.

Neural Network Q Function

- Can also use neural networks to learn features (e.g., represent Pacman game state as an image and feed to CNN)!

Deep Q Learning

- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow(1-\alpha) \cdot Q_{i}(s, a)+\alpha \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Deep Q Learning

- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow Q_{i}(s, a)-\alpha \cdot\left(Q_{i}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)\right)
$$

Deep Q Learning

- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow Q_{i}(s, a)-\alpha \cdot\left(Q_{i}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)\right)
$$

- Learning: Gradient descent with the squared Bellman error loss:

$$
(\underbrace{Q_{\theta}(s, a)}_{\text {"Predicted Label" } \hat{y}}-(\underbrace{R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime}} Q_{\theta}\left(s^{\prime}, a^{\prime}\right)}_{\text {"Label" } \boldsymbol{y}}))^{2}
$$

Deep Q Learning

- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow Q_{i}(s, a)-\alpha \cdot\left(Q_{i}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)\right)
$$

- Learning: Gradient descent with the squared Bellman error loss:

$$
\theta_{i+1} \leftarrow \theta_{i}-\alpha \cdot\left(Q_{\theta_{i}}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime}} Q_{\theta_{i}}\left(s^{\prime}, a^{\prime}\right)\right)\right) \nabla_{\theta} Q_{\theta_{i}}(s, a)
$$

assume constant when

Deep Q Learning

- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow Q_{i}(s, a)-\alpha \cdot\left(Q_{i}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)\right)
$$

- Learning: Gradient descent with the squared Bellman error loss:

$$
\theta_{i+1} \leftarrow \theta_{i}-\alpha \cdot\left(Q_{\theta_{i}}(s, a)-\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime}} Q_{\theta_{i}}\left(s^{\prime}, a^{\prime}\right)\right)\right) \nabla_{\theta} Q_{\theta_{i}}(s, a)
$$

assume constant when

Deep Q Learning

- Iteratively perform the following:
- Take an action a_{i} and observe ($s_{i}, a_{i}, s_{i+1}, r_{i}$)
- $y_{i} \leftarrow r_{i}+\gamma \cdot \max _{a^{\prime} \in A} Q_{\theta}\left(s_{i+1}, a^{\prime}\right)$
- $\theta \leftarrow \theta-\alpha \cdot \frac{d}{d \theta}\left(Q_{\theta}\left(s_{i}, a_{i}\right)-y_{i}\right)^{2}$
- Note: Pretend like y_{i} is constant when taking the gradient
- For finite state setting, recover incremental update if the "parameters" are the Q values for each state-action pair

Experience Replay Buffer

- Problem
- Sequences of states are highly correlated
- Tend to overfit to current states and forget older states
- Solution
- Keep a replay buffer of observations (as a priority queue)
- Gradient updates on samples from replay buffer instead of current state

Replay Buffer
$\left\langle s_{1}, a_{1}, r_{1}, s_{2}\right\rangle$
$\left\langle s_{2}, a_{2}, r_{2}, s_{3}\right\rangle$
$\left\langle s_{j}, a_{j}, r_{j}, s_{j+1}\right\rangle$
Priority Queue

- Advantages
- Breaks correlations between consecutive samples
- Can take multiple gradient steps on each observation

Deep Q Learning with Replay Buffer

- Iteratively perform the following:
- Take an action a_{i} and add observation ($s_{i}, a_{i}, s_{i+1}, r_{i}$) to replay buffer D
- For $k \in\{1, \ldots, K\}$:
- Sample $\left(s_{i, k}, a_{i, k}, s_{i+1, k}, r_{i, k}\right)$ from D
- $y_{i, k} \leftarrow r_{i, k}+\gamma \cdot \max _{a^{\prime} \in A} Q_{\theta}\left(s_{i+1, k}, a^{\prime}\right)$
- $\phi \leftarrow \phi-\alpha \cdot \frac{d}{d \theta}\left(Q_{\theta}\left(s_{i, k}, a_{i, k}\right)-y_{i, k}\right)^{2}$

Target Q Network

- Problem
- Q network occurs in the label y_{i} !
- $\theta \leftarrow \theta-\alpha \cdot \frac{d}{d \theta}\left(Q_{\theta}\left(s_{i}, a_{i}\right)-r_{i}+\gamma \cdot \max _{a^{\prime} \in A} Q_{\theta}\left(s_{i+1}, a^{\prime}\right)\right)^{2}$
- Thus, labels change as Q network changes
- Solution
- Use a separate target \mathbf{Q} network for the occurrence in y_{i}
- Only update target network occasionally
- $\theta \leftarrow \theta-\alpha \cdot \frac{d}{d \theta}(\underbrace{Q_{\theta}\left(s_{i}, a_{i}\right)}-r_{i}+\gamma \cdot \max _{a^{\prime} \in A} \underbrace{Q_{\theta^{\prime}}\left(s_{i+1}, a^{\prime}\right)})^{2}$

Deep Q Learning with Target Q Network

- Iteratively perform the following:
- Take an action a_{i} and add observation ($s_{i}, a_{i}, s_{i+1}, r_{i}$) to replay buffer D
- For $k \in\{1, \ldots, K\}$:
- Sample ($\left.s_{i, k}, a_{i, k}, s_{i+1, k}, r_{i, k}\right)$ from D
- $y_{i, k} \leftarrow r_{i, k}+\gamma \cdot \max _{a^{\prime} \in A} Q_{\theta^{\prime}}\left(s_{i+1, k}, a^{\prime}\right)$
- $\theta \leftarrow \theta-\alpha \cdot \frac{d}{d \theta}\left(Q_{\theta}\left(s_{i, k}, a_{i, k}\right)-y_{i, k}\right)^{2}$
- Every N steps, $\theta^{\prime} \leftarrow \theta$

Deep Q Learning for Atari Games

Lecture 22: Recommender Systems

CIS 4190/5190

Fall 2022

Recommender Systems

- Media recommendations: Netflix, Youtube, etc.
- News feed: Google News, Facebook, Twitter, Reddit, etc.
- Search ads: Google, Bing, etc.
- Products: Amazon, ebay, Walmart, etc.
- Dating: okcupid, eharmony, coffee-meets-bagel, etc.

Recommender Systems

- Account for:

- 75\% of movies watched on Netflix [1]
- 60% of YouTube video clicks [2]
- 35\% of Amazon sales [3]
[1] McKinsey \& Company (Oct 2013): https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers [Note: non-authoritative source; estimates only]
[2] J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys). doi.org/10.1145/1864708.1864770
[3] M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting Proc. National Academy of Sciences 116(36).

Popularity-Based Recommendation

- Just recommend whatever is currently popular
- Simple and effective, always try as a baseline
- Can be combined with more sophisticated techniques

Collaborative Filtering

Collaborative Filtering

Collaborative Filtering

- Given:

- Matrix $X_{i, k}=\left\{\begin{array}{cc}\text { rating }_{i, k} & \text { if } \text { user }_{i} \text { rated product } \\ \text { N/A } & \text { otherwise }\end{array}\right.$
- Assume fixed set of n users and m products
- Not given any information about the products!
- Problem: Predict what $X_{i, k}$ would be if it is observed
- Not quite supervised or unsupervised learning!

Collaborative Filtering

Collaborative Filtering

General Strategy

- Step 1: Construct user-item ratings
- Step 2: Identify similar users
- Step 3: Predict unknown ratings

Step 1: Constructing User-Item Ratings

- Can use explicit ratings (e.g., Netflix)
- Can be implicitly inferred from user activity
- User stops watching after 15 minutes
- User repeatedly clicks on a video
- Feedback can vary in strength
- Weak: User views a video
- Strong: User writes a positive comment

Step 2: Identifying Similar Users

		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	...
1	Grace		5		1	5		...
1	Eric		4	5		5	3	...
1	Haren	5		5		3	4	...
1	Sai		2					...
1	Siyan	3	1		3		5	\ldots
1	Nikhil				2	2		...
1	Felix	1		1		2		\ldots

Step 2: Identifying Similar Users

		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	...
1	Grace		5		1	5		...
1	Eric		4	5		5	3	...
1	Haren	5		5		3	4	...
1	Sai		2					...
1	Siyan	3	1		3		5	...
1	Nikhil				2	2		...
1	Felix	1		1		2		\ldots

Step 2: Identifying Similar Users

		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	...
1	Grace		5		1	5		...
1	Eric		4	5		5	3	...
1	Haren	5		5		3	4	...
1	Sai		2					...
1	Siyan	3	1		3		5	\ldots
t	Nikhil				2	2		...
	Felix	1		1		2		...

Step 2: Identifying Similar Users

- How to measure similarity?
- Distance $d\left(X_{i}, X_{j}\right)$, where X_{i} is vector of ratings for user i
- Strategy 1: Euclidean distance $d\left(X_{i}, X_{j}\right)=\left\|X_{i}-X_{j}\right\|_{2}$
- Ignore entries where either X_{i} or X_{j} is N/A
- Shortcoming: Some users might give higher ratings everywhere!
- Similar issues with other distance metrics such as cosine similarity

Step 2: Identifying Similar Users

- Strategy 2: Pearson correlation: $\rho=\frac{\sum_{k=1}^{m}\left(X_{i, k}-\bar{X}_{i}\right)\left(X_{j, k}-\bar{X}_{j}\right)}{\sqrt{\sum_{k=1}^{m}\left(X_{i, k}-\bar{X}_{i}\right)^{2} \sum_{k=1}^{m}\left(X_{j, k}-\bar{X}_{j}\right)^{2}}}$
- Here, $\bar{X}_{i}=\frac{1}{m} \sum_{k=1}^{m} X_{i, k}$
- Normalization by variance deals with differences in individual rating scales

Step 3: Predict Unknown Ratings

- Weighted averaging strategy
- Compute weights $w_{i, j}=g\left(d\left(X_{i}, X_{j}\right)\right)$ based on the distances
- Normalize the weights to obtain $\bar{w}_{i, j}=\frac{w_{i, j}}{\sum_{j=1}^{n} w_{i, j}}$
- For user i rating item k, predict

$$
X_{i, k}=\bar{X}_{i}+\sum_{j=1}^{n} \bar{w}_{i, j} \cdot\left(X_{j, k}-\bar{X}_{j}\right)
$$

Step 3: Predict Unknown Ratings

- Variations
- Instead of weights, choose a neighborhood (e.g., threshold based on similarity, top-k based on similarity, or use k-means clustering)
- Instead of subtracting the mean, normalize by standard deviation

