Announcements

- Limited office hours this week (see Ed Discussion)
- Quiz 11 is due Thursday, December 1 at 8pm
- HW 6 due Friday, December 2 at 8pm
 - 2 day extension

Bayesian Networks

- Nodes/vertices: Variables X_k
- Arcs/edges: Encode parameter structure
 - **Parameters:** Distribution of each X_i given its parents
 - $P(x_1, ..., x_n) = \prod_{i=1}^n P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$
- Graph structure establishes conditional independencies
 - Based on d-separation algorithm
 - Also encodes conditional independence given neighbors; see https://en.wikipedia.org/wiki/Moral_graph for details

Bayesian Networks

- Nodes/vertices: Variables X_k
- Arcs/edges: Encode parameter structure
 - **Parameters:** Distribution of each X_i given its parents
 - $P(x_1, ..., x_n) = \prod_{i=1}^n P(X_i = x_i \mid \text{parents}(X_i) = (x_{i_1}, ..., x_{i_k}))$
- Graph structure establishes conditional independencies
 - Based on d-separation algorithm
 - Also encodes conditional independence given neighbors; see https://en.wikipedia.org/wiki/Moral_graph for details

Example

P(L, B, R, T, D, M) =P(L)P(B) $P(R \mid L)$ $P(T \mid R, B)$ $P(D \mid R,T)$ $P(M \mid B, D)$

Example

P(L, B, R, T, D, M) =P(L)P(B) $P(R \mid L)$ $P(T \mid R, B)$ $P(D \mid R,T)$ $P(M \mid B, D)$

D-Separation

• Query: $X \perp Y \mid Z_1, \dots, Z_n$

D-Separation

- Causal chain
 - $A \to B \to C$
 - Active iff $B \notin \{Z_i\}$
- Common cause
 - $A \leftarrow B \rightarrow C$
 - Active iff $B \notin \{Z_i\}$
- Common effect
 - $A \rightarrow B \leftarrow C$
 - Active iff $B \in \{Z_i\}$ (or descendant $\in \{Z_i\}$)

D-Separation

- Query: $X \perp Y \mid Z_1, \dots, Z_n$
- for each (acyclic) path $X = A_0 A_1 \dots A_n A_{n+1} = Y$:
 - active ← **true**
 - for each triple $A_{i-1} A_i A_{i+1}$:
 - **if** triple is causal chain **and** $A_i \in \{Z_j\}$: active \leftarrow **false**
 - **if** triple is common cause **and** $A_i \in \{Z_j\}$: active \leftarrow **false**
 - **if** triple is causal effect **and** descendants $(A_i) \cap \{Z_j\} = \emptyset$: active \leftarrow **false**
 - if active: return false
- return true
- Intuition: Return false if there is a path where all triples are active

Marginal Inference

- Input:
 - Evidentiary variables: $E_1 = e_1, \dots, E_k = e_k$ (features)
 - Query variable: Q (label)
 - Hidden variables: H_1, \ldots, H_m (all remaining, "latent" variables)
- **Goal:** For each *q*, compute

$$P(Q = q | E_1 = e_1, \dots, E_k = e_k)$$

• Equivalently: Likelihood p(y | x)

Variable Elimination

- Step 0: Initial factors are $P(X_i | \text{parents}(X_i))$ for each node X_i
 - Immediately drop rows conditioned on evidentiary variables
- Step 1: For each H_i :
 - Step 1a: Join all factors containing H_i
 - Step 1b: Eliminate *H_i*
- **Output:** Join all remaining factors and normalize

• Minimize the NLL:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \sum_{j=1}^{d} \log P_{\theta} \left(X_{j} = x_{i,j} \mid \operatorname{parents}(X_{j}) = \left(x_{i,k_{1}}, \dots, x_{i,k_{j}} \right) \right)$$

- Can use gradient descent to optimize
 - There is a nice formula for the gradient

Simplest Example: Naïve Bayes

• Model:

$$P(Y, X_1 ..., X_n) = P(Y) \prod_{i=1}^n P(X_i | Y)$$

Inference in Naïve Bayes

• Step 1: For each $y \in D_Y$, compute joint probability distribution

$$P(y, x_1, ..., x_n) = P(y) \prod_{i=1}^n P(x_i | y)$$

• **Step 2:** Normalize distribution:

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{Z}$$

• Here,
$$Z = \sum_{y' \in D_Y} P(y') \prod_{i=1}^n P(x_i | y')$$

Naïve Bayes for Spam Detection

- Bag of words model
- Parameter sharing via "tied" distribution: For all *i*, *j*, constrain

$$P(X_i = x \mid Y) = P(X_j = x \mid Y)$$

• Encodes invariant structure in bag of words models

• Can show that parameters are counts:

$$P_{\theta}(x \mid y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} \mathbb{1}(y_{i} = y \land x_{i,j} = x)}{\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} \mathbb{1}(y_{i} = y)}$$

Naïve Bayes for Spam Detection

 $P(x \mid \text{spam})$

the	:	0.0156
to	:	0.0153
and	:	0.0115
of	:	0.0095
you	:	0.0093
а	:	0.0086
with	1:	0.0080
from	1:	0.0075
• • •		

$P(x \mid \text{not spam})$

the	:	0.0210
to	:	0.0133
of	:	0.0119
2002	2:	0.0110
with	1:	0.0108
fron	n:	0.0107
and	:	0.0105
a	:	0.0100

Reinforcement Learning

- Sequential decision-making
- Planning: Known transitions/rewards
 - Optimization
- Reinforcement learning: Unknown transitions/rewards
 - Learning + optimization

Q Iteration

- Initialize $Q_1(s, a) \leftarrow 0$ for all s, a
- For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

Q Learning

- Initialize $Q_1(s, a) \leftarrow 0$ for all s, a
- For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow (1-\alpha) \cdot Q_i(s,a) + \alpha \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)$$

Curse of Dimensionality

- How large is the state space?
 - Gridworld: One for each of the n cells
 - Pacman: State is (player, ghost₁, ..., ghost_k), so there are n^k states!
- **Problem:** Learning in one state does not tell us anything about the other states!
- Many states \rightarrow learn very slowly

State-Action Features

- Can we learn **across** state-action pairs?
- Yes, use features!
 - $\phi(s,a) \in \mathbb{R}^d$
 - Then, learn to predict $Q^*(s, a) \approx Q_{\theta}(s, a) = f_{\theta}(\phi(s, a))$
 - Enables generalization to similar states
- Examples: Distance to closest ghost, distance to closest dot, etc.

Neural Network Q Function

• Can also use neural networks to **learn** features (e.g., represent Pacman game state as an image and feed to CNN)!

• For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow (1-\alpha) \cdot Q_i(s,a) + \alpha \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

• For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow Q_i(s,a) - \alpha \cdot \left(Q_i(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)\right)$$

• For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow Q_i(s,a) - \alpha \cdot \left(Q_i(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)\right)$$

• Learning: Gradient descent with the squared Bellman error loss:

$$\left(\underbrace{Q_{\theta}(s,a)}_{q} - \underbrace{(R(s,a,s') + \gamma \cdot \max_{a'} Q_{\theta}(s',a'))}_{q}\right)^{2}$$

"Predicted Label" \hat{y} "Label" y

• For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow Q_i(s,a) - \alpha \cdot \left(Q_i(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)\right)$$

• Learning: Gradient descent with the squared Bellman error loss:

$$\theta_{i+1} \leftarrow \theta_i - \alpha \cdot \left(\frac{Q_{\theta_i}(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a'} Q_{\theta_i}(s',a') \right)}{1} \right) \nabla_{\theta} Q_{\theta_i}(s,a)$$
assume constant when

computing gradient

• For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow Q_i(s,a) - \alpha \cdot \left(Q_i(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right) \right)$$

• Learning: Gradient descent with the squared Bellman error loss:

$$\theta_{i+1} \leftarrow \theta_i - \alpha \cdot \left(\frac{Q_{\theta_i}(s,a) - \left(R(s,a,s') + \gamma \cdot \max_{a'} Q_{\theta_i}(s',a') \right)}{f} \right) \nabla_{\theta} Q_{\theta_i}(s,a)$$
assume constant when

computing gradient

• Iteratively perform the following:

• Take an action a_i and observe (s_i, a_i, s_{i+1}, r_i)

•
$$y_i \leftarrow r_i + \gamma \cdot \max_{\substack{a' \in A}} Q_\theta(s_{i+1}, a')$$

• $\theta \leftarrow \theta - \alpha \cdot \frac{d}{d\theta} (Q_\theta(s_i, a_i) - y_i)^2$

- Note: Pretend like y_i is constant when taking the gradient
- For finite state setting, recover incremental update if the "parameters" are the Q values for each state-action pair

Experience Replay Buffer

Problem

- Sequences of states are highly correlated
- Tend to overfit to current states and forget older states

Solution

- Keep a replay buffer of observations (as a priority queue)
- Gradient updates on samples from replay buffer instead of current state

Priority Queue

Advantages

- Breaks correlations between consecutive samples
- Can take multiple gradient steps on each observation

Deep Q Learning with Replay Buffer

• Iteratively perform the following:

- Take an action a_i and add observation (s_i, a_i, s_{i+1}, r_i) to replay buffer D
- For $k \in \{1, ..., K\}$:
 - Sample $(s_{i,k}, a_{i,k}, s_{i+1,k}, r_{i,k})$ from D
 - $y_{i,k} \leftarrow r_{i,k} + \gamma \cdot \max_{a' \in A} Q_{\theta}(s_{i+1,k}, a')$

•
$$\phi \leftarrow \phi - \alpha \cdot \frac{d}{d\theta} (Q_{\theta}(s_{i,k}, a_{i,k}) - y_{i,k})^2$$

Target Q Network

Problem

• Q network occurs in the label y_i!

•
$$\theta \leftarrow \theta - \alpha \cdot \frac{d}{d\theta} \left(Q_{\theta}(s_i, a_i) - r_i + \gamma \cdot \max_{a' \in A} Q_{\theta}(s_{i+1}, a') \right)^2$$

• Thus, labels change as Q network changes

Solution

- Use a separate **target Q network** for the occurrence in y_i
- Only update target network occasionally

•
$$\theta \leftarrow \theta - \alpha \cdot \frac{d}{d\theta} \left(\underbrace{Q_{\theta}(s_{i}, a_{i})}_{V} - r_{i} + \gamma \cdot \max_{a' \in A} \underbrace{Q_{\theta'}(s_{i+1}, a')}_{V} \right)^{2}$$

Original Q Network Target Q Network

Deep Q Learning with Target Q Network

• Iteratively perform the following:

- Take an action a_i and add observation (s_i, a_i, s_{i+1}, r_i) to replay buffer D
- For $k \in \{1, ..., K\}$:
 - Sample $(s_{i,k}, a_{i,k}, s_{i+1,k}, r_{i,k})$ from D
 - $y_{i,k} \leftarrow r_{i,k} + \gamma \cdot \max_{a' \in A} Q_{\theta'}(s_{i+1,k}, a')$

•
$$\theta \leftarrow \theta - \alpha \cdot \frac{d}{d\theta} (Q_{\theta}(s_{i,k}, a_{i,k}) - y_{i,k})^2$$

• Every N steps, $\theta' \leftarrow \theta$

Deep Q Learning for Atari Games

Image Sources:

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756 https://deepmind.com/blog/going-beyond-average-reinforcement-learning/ https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

Lecture 22: Recommender Systems

CIS 4190/5190 Fall 2022

Recommender Systems

- Media recommendations: Netflix, Youtube, etc.
- News feed: Google News, Facebook, Twitter, Reddit, etc.
- Search ads: Google, Bing, etc.
- **Products:** Amazon, ebay, Walmart, etc.
- **Dating:** okcupid, eharmony, coffee-meets-bagel, etc.

Recommender Systems

• Account for:

- 75% of movies watched on Netflix [1]
- 60% of YouTube video clicks [2]
- 35% of Amazon sales [3]

[1] McKinsey & Company (Oct 2013): <u>https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers</u> [Note: non-authoritative source; estimates only]

[2] J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys). doi.org/10.1145/1864708.1864770

[3] M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting. Proc. National Academy of Sciences 116(36).

Popularity-Based Recommendation

- Just recommend whatever is currently popular
- Simple and effective, always try as a baseline
- Can be combined with more sophisticated techniques

- Given:
 - Matrix $X_{i,k} = \begin{cases} \text{rating}_{i,k} & \text{if user}_i \text{ rated product}_k \\ N/A & \text{otherwise} \end{cases}$
 - Assume fixed set of n users and m products
 - Not given any information about the products!
- **Problem:** Predict what $X_{i,k}$ would be if it is observed
 - Not quite supervised or unsupervised learning!

General Strategy

- Step 1: Construct user-item ratings
- Step 2: Identify similar users
- Step 3: Predict unknown ratings

Step 1: Constructing User-Item Ratings

- Can use explicit ratings (e.g., Netflix)
- Can be implicitly inferred from user activity
 - User stops watching after 15 minutes
 - User repeatedly clicks on a video
- Feedback can vary in strength
 - Weak: User views a video
 - **Strong:** User writes a positive comment

			the office	MANDALORIAN	CRIMINALS	The Good Place		
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	•••
İ	Grace		5		1	5		
İ	Eric		4	5		5	3	•••
İ	Haren	5		5		3	4	•••
İ	Sai		2					•••
İ	Siyan	3	1		3		5	•••
İ	Nikhil				2	2		•••
İ	Felix	1		1		2		•••

- How to measure similarity?
 - Distance $d(X_i, X_j)$, where X_i is vector of ratings for user *i*
- Strategy 1: Euclidean distance $d(X_i, X_j) = ||X_i X_j||_2$
 - Ignore entries where either X_i or X_j is N/A
 - **Shortcoming:** Some users might give higher ratings everywhere!
- Similar issues with other distance metrics such as cosine similarity

• Strategy 2: Pearson correlation: $\rho = \frac{\sum_{k=1}^{m} (X_{i,k} - \bar{X}_i) (X_{j,k} - \bar{X}_j)}{\sqrt{\sum_{k=1}^{m} (X_{i,k} - \bar{X}_i)^2 \sum_{k=1}^{m} (X_{j,k} - \bar{X}_j)^2}}$

• Here,
$$\overline{X}_i = \frac{1}{m} \sum_{k=1}^m X_{i,k}$$

• Normalization by variance deals with differences in individual rating scales

Step 3: Predict Unknown Ratings

- Weighted averaging strategy
 - Compute weights $w_{i,j} = g\left(d(X_i, X_j)\right)$ based on the distances
 - Normalize the weights to obtain $\overline{w}_{i,j} = \frac{w_{i,j}}{\sum_{i=1}^{n} w_{i,j}}$
 - For user *i* rating item *k*, predict

$$X_{i,k} = \overline{X}_i + \sum_{j=1}^n \overline{w}_{i,j} \cdot \left(X_{j,k} - \overline{X}_j\right)$$

Step 3: Predict Unknown Ratings

Variations

- Instead of weights, choose a neighborhood (e.g., threshold based on similarity, top-k based on similarity, or use k-means clustering)
- Instead of subtracting the mean, normalize by standard deviation