Announcements

* Limited office hours this week (see Ed Discussion)
* Quiz 11 is due Thursday, December 1 at 8pm

* HW 6 due Friday, December 2 at 8pm

e 2 day extension

Bayesian Networks

* Nodes/vertices: Variables X},

* Arcs/edges: Encode parameter structure
* Parameters: Distribution of each X; given its parents

* P(xy, ., xp) = [Timy P(X; = x; | parents(X;) = (xi,, -, x3,))

* Graph structure establishes conditional independencies

* Based on d-separation algorithm

* Also encodes conditional independence given neighbors; see
https://en.wikipedia.org/wiki/Moral graph for details

https://en.wikipedia.org/wiki/Moral_graph

Bayesian Networks

* Nodes/vertices: Variables X},

* Arcs/edges: Encode parameter structure
* Parameters: Distribution of each X;j given its parents

 P(xq, ..., xn) = [T7e1 P(X; = x; | parents(X;) = (xil’ ""xik))

* Graph structure establishes conditional independencies

* Based on d-separation algorithm

* Also encodes conditional independence given neighbors; see
https://en.wikipedia.org/wiki/Moral graph for details

https://en.wikipedia.org/wiki/Moral_graph

Example

P(L,B,R,T,D,M) =
P(L)

P(B)

P(RI|L)
P(T|R,B)
P(D|R,T)
P(M|B,D)

Example

P(L,B,R,T,D,M) =
P(L)

P(B)

P(RI|L)
P(T|R,B)
P(D|R,T)
P(M|B,D)

D-Separation

* Query: XUY | Z4,...,Z,

D-Separation

e Causal chain
e A->B->C
* Active iff B & {Z;}

 Common cause
e A~ B->C
* Active iff B & {Z;}

e Common effect
e A> B« (C
* Active iff B € {Z;} (or descendant € {Z;})

Active Triples

€ §

Inactive Triples

O-@-O0
o ®0
o

D-Separation

* Query: XUY | Z4,...,Z,

* for each (acyclic)path X = A4, — A4y —-— A, — A, .1 =7Y:
* active « true
* foreachtriple A;_1 — A4; — A;q:
* if triple is causal chain and 4; € {Zj}: active < false
* if triple is common cause and 4; € {Zj}: active < false
« if triple is causal effect and descendants(4;) N {Zj} = @: active « false

e if active: return false
* return true

* Intuition: Return false if there is a path where all triples are active

Marginal Inference

* Input:
* Evidentiary variables: E; = ey, ..., E};, = e}, (features)
e Query variable: Q (label)
* Hidden variables: Hy, ..., H,,, (all remaining, “latent” variables)

* Goal: For each g, compute
P(Q=qlE =ey...Ex = e)

* Equivalently: Likelihood p(y | x)

Variable Elimination

* Step O: Initial factors are P(X; | parents(X;)) for each node X;
* Immediately drop rows conditioned on evidentiary variables

* Step 1: For each H;:

 Step 1a: Join all factors containing H;
* Step 1b: Eliminate H;

e Output: Join all remaining factors and normalize

Maximum Likelihood Learning

e Minimize the NLL:

n d
6 = argeminzzlong (Xj = X} j | parents(Xj) = (xl-,kl, ...,xi,kj))

i=1j=1

* Can use gradient descent to optimize
* There is a nice formula for the gradient

Simplest Example: Naive Bayes

* Model:

P(Y, X, ... X,) = P(Y) 1_[P(X,|Y)

Inference in Naive Bayes

* Step 1: For each y € Dy, compute joint probability distribution
n
PO,y) = PO | [PCxi 1)
i=1

* Step 2: Normalize distribution:

P(y) H?=1P(xi | y)
YA

Pyl xq)u,x,) =

* Here, Z = nyepyp(y') [[i=: PCxi 1 y")

Naive Bayes for Spam Detection

* Bag of words model

* Parameter sharing via “tied” distribution: For all i, j, constrain

P(X;=x|Y)=P(X;=x|Y)

* Encodes invariant structure in bag of words models

Maximum Likelihood Learning

number of words in example i

* Minimize the NLL for Naive Bayes for text: /
n (

d;
0 = argemin2< log Py (y;) + logng(xi,j | yi)
i=1 \ Jj=1

\

~"

Y,

* Can show that parameters are counts:

di
di

Po(x|y) =

Maximum Likelihood Learning

number of words in example i

* Minimize the NLL for Naive Bayes for text: /

n d;)

6 = arg minZ< log Pg(y;) + logz Pg(xi,j | vi) ¢

0 =1 \ j=1 y,
number of times the word x
* Can show that parameters are counts: occurs in e?p'es labeled y

d.
D=1ty 1y =y Axij =x)
Po(x|y) =

di
?=1Zj=1 1(Yl — y)

Maximum Likelihood Learning

number of words in example i

* Minimize the NLL for Naive Bayes for text: /

n (d; A

6 = arg minZ< log Pg(y;) + logz Pg(xi,j | yl-) .

0 =1 \ j=1 y
number of times the word x
* Can show that parameters are counts: occurs in e?p'es labeled y

d.
Z?:l Zjél 1(3’1’ =Y /\xi,j - X)
Po(x|y) =

d;
?:121':1 1()’1 — y)

number of words in
examples labeled y

Naive Bayes for Spam Detection

P(y) P(x | spam) P(x | not spam)
not spam: 0.66 the : 0.0156 the : 0.0210
spam: 0.33 to : 0.0153 to : 0.0133
and : 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
you : 0.0093 with: 0.0108
a : 0.0086 from: 0.0107
with: 0.0080 and : 0.0105
from: 0.0075 a 0.0100

Reinforcement Learning

* Sequential decision-making

* Planning: Known transitions/rewards
* Optimization

* Reinforcement learning: Unknown transitions/rewards
* Learning + optimization

Q Iteration

* Initialize Q;(s,a) « O forall s,a
* Fori € {1,2, ...} until convergence:

0iri(5,0) «) P(s'15,0) - (R(s,0,5) +7 - maxQy(s',a))

s'es

Q Learning

* Initialize Q;(s,a) « O forall s,a
* Fori € {1,2, ...} until convergence:

Qisi(s,a) = (1) - Qi(s,@) + - (R(s,a,8) +y - maxQi(s',a"))

Curse of Dimensionality

* How large is the state space?
e Gridworld: One for each of the n cells

« Pacman: State is (player, ghosty, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
« ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = fy (qb(s, a))
* Enables generalization to similar states

* Examples: Distance to closest ghost, distance to closest dot, etc.

Neural Network () Function

e Can also use neural networks to learn features (e.g., represent
Pacman game state as an image and feed to CNN)!

a
=4
<
8
‘3
>
@
Q
4
®
Q

Convolution Convolution Fully connected
w v v

QG,(p (S, al)
Qe,qb (S, aZ)

&

ANAAARAONR ‘é
e B B3 EX EX EX B2 B3 » &« N2 > 1B
CLEEEELREL L

Deep Q Learning

* Fori € {1,2, ... } until convergence:

Qiv1(s,a) = (1= @) - Qi(s, @) +a - (R(s,a,8) +y - maxQi(s',a"))

Based on slide by Sergey Levine

Deep Q Learning

* Fori € {1,2, ...} until convergence:

Qi+1(s,a) « Qi(s,a) — a - (Qz(s, a) — (R(S, as')+y- max Q; (s, a’))>

Based on slide by Sergey Levine

Deep Q Learning

* Fori € {1,2, ...} until convergence:

Qira(5,0) < Qils,@) —a- (@-(s, @)~ (R(s,a,s) +y - max Q(s’ a')))

* Learning: Gradient descent with the squared Bellman error loss:

(Qg(s, a) — (R(S, a,s') +vy-maxQq(s’, a’)))2
H(_/ - Ya J

“Predicted Label” ¥ “Label” y

Based on slide by Sergey Levine

Deep Q Learning

* Fori € {1,2, ...} until convergence:

Qira(5,0) < Qils,@) —a- (@-(s, @)~ (R(s,a,s) +y - max Q(s’ a')))

* Learning: Gradient descent with the squared Bellman error loss:

iy« 6 —a- (Qei(s, @)= (R(s,a,5") + - max Qp, (5" a'))) Vs Qp,(s, @)

/

assume constant when
computing gradient

Based on slide by Sergey Levine

Deep Q Learning

* Fori € {1,2, ...} until convergence:

Qi+1(51 Cl) «— Qi(sr a) —a- (Qi(sr a) — (R(S) a)S’) + Y- g}gil(Qi(sli a’)))

* Learning: Gradient descent with the squared Bellman error loss:

Oiv1 <0 —a- (Qei(s, a) — (R(S, a,s’) +y - maxQg,(s’, a'))> Ve Qp,(s, a)

/

assume constant when
computing gradient

Based on slide by Sergey Levine

Deep Q Learning

* Iteratively perform the following:
* Take an action a; and observe (s;, a;, Sj+1,1;)
* Y1+ y-maxQp(siyq,a’)
a' €A

d
* 0«0 —a —(Qolsi,a) —y)
* Note: Pretend like y; is constant when taking the gradient

* For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

* Problem
e Sequences of states are highly correlated
* Tend to overfit to current states and forget older states

//\
* Solution _Svaumse)
» Keep a replay buffer of observations (as a priority queue) _(S3,03,73,53) ~

* Gradient updates on samples from replay buffer instead
of current state w

Priority Queue

* Advantages
* Breaks correlations between consecutive samples
e Can take multiple gradient steps on each observation

Based on slide by Sergey Levine

Deep Q Learning with Replay Buffer

* Iteratively perform the following:
* Take an action a; and add observation (s;, a;, s;+1,1;) to replay buffer D

* Fork €{1,..,K}:

y Sample (Si,kl ai,ki Si+1,kr ri,k) from D
!
* Vige < Tik +Y - max Qo(sit10a’)

cpep—a-: %(QB(SL',R: aix) — Yi,k)z

(s,a,s',r)

EE—

e

C——
(s)

- >

replay buffer

!/

Q learning
(off-policy)

Based on slide by Sergey Levine

Target Q Network

* Problem
* Q network occurs in the label y;!

2

<0 —a- _(QQ(SU a;) —r; +y - max Q9(5i+1:a,))
a’'eA

* Thus, labels change as Q network changes

* Solution
* Use a separate target Q network for the occurrence in y;
* Only update target network occasionally

2
cf<0—a- _(QQ(SU l) T + Yy - n}aXQQ’(Si+1' a’))
a EA\)

Y Y
Original Q Network Target Q Network

Based on slide by Sergey Levine

Deep Q Learning with Target Q Network

* Iteratively perform the following:
 Take an action a; and add observation (s;, a;, s;41,1;) to replay buffer D

* Fork €{1,..,K}:
* Sample (si,k, A k> Si+1,k,7'i,k) from D
* Vi < T TV max Qg (Sia k@)
d 2
c0<0—-a- E(Qe (S @ik) = Vik)
* Every N steps, 8’ < 6

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Lecture 22: Recommender Systems

CIS 4190/5190
Fall 2022

Recommender Systems

 Media recommendations: Netflix, Youtube, etc.

* News feed: Google News, Facebook, Twitter, Reddit, etc.
* Search ads: Google, Bing, etc.

* Products: Amazon, ebay, Walmart, etc.

* Dating: okcupid, eharmony, coffee-meets-bagel, etc.

Recommender Systems

e Account for:
* 75% of movies watched on Netflix [1]
* 60% of YouTube video clicks [2]
* 35% of Amazon sales [3]

[1] McKinsey & Company (Oct 2013): https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers [Note: non-authoritative
source; estimates only]

[2] J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys).
doi.org/10.1145/1864708.1864770

[3] M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting.
Proc. National Academy of Sciences 116(36).

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Popularity-Based Recommendation

* Just recommend whatever is currently popular
e Simple and effective, always try as a baseline

* Can be combined with more sophisticated techniques

Collaborative Filtering

)
/|
(B %

“The Good Place

MANDALORIAN

)
L
L
L
)

User 1 User 2

Collaborative Filtering

)
/|
(B %

“The Good Place

MANDALORIAN

|)
|)
]
)

User 1 User 2

Collaborative Filtering

* Given:

rating; . if user; rated product,,
N/A otherwise

* Assume fixed set of n users and m products

* Not given any information about the products!

* Matrix X; = {

* Problem: Predict what X; ;, would be if it is observed
* Not quite supervised or unsupervised learning!

Collaborative Filtering

Missing
entries!

Gossip The Criminal The Good Grey’s
Girl Office Mandalorian Minds Place Anatomy

Grace

Eric

1

Haren 5
Sai 1
i Siyan 3
2

1

Nikhil
' Felix

R lwW|r, [N 0D
N N N N T,
VN W D[RR
N (N | D |w| w| wu
NN U U Ww

Collaborative Filtering

Missing
entries!

Gossip The Criminal The Good
Girl Office Mandalorian Minds Place

¥ | Grace 5 1 5

V| Eric 4 5 5

¥ | Haren 5 5 3 4
Sai 2

¥ | Siyan 3 1 3 5
Nikhil 2 2

V| Felix 1 1 2

General Strategy

* Step 1: Construct user-item ratings
 Step 2: Identify similar users

* Step 3: Predict unknown ratings

Step 1: Constructing User-ltem Ratings

* Can use explicit ratings (e.g., Netflix)

e Can be implicitly inferred from user activity
* User stops watching after 15 minutes
* User repeatedly clicks on a video

* Feedback can vary in strength
* Weak: User views a video
* Strong: User writes a positive comment

Step 2: Identitying Similar Users

AENcacy=n za . =5 =z
‘a=HCaca=nzam—Cca nzn|
B 5 ? I
=2l
X o) E]

¥

Gossip The Criminal The Good
Girl Office Mandalorian Minds Place

¥ | Grace 5 1 5

V| Eric 4 5 5

¥ | Haren 5 5 3 4
Sai 2

¥ | Siyan 3 1 3 5
Nikhil 2 2

V| Felix 1 1 2

Step 2: Identitying Similar Users

AENcacy=n za . =5 =z
‘a=HCaca=nzam—Cca nzn|
B 5 ? I
=2l
X o) E]

¥

(IR
A
AR WAL

MANDALORIAN
The Criminal The Good
Office Mandalorian Minds Place

¥ | Grace 5 1 5 .
¥ | Eric 4 5 5 3 e S
¥ | Haren 5 5 3 4

Sai 2
¥ | Siyan 3 1 3 5

Nikhil 2 2
V| Felix 1 1 2

Step 2: Identitying Similar Users

afle =ille miile

AT Cacy=nznm—CH =Rz
‘a=HCaca=nzam—Cca sBzal
EMacncal I ? |
=8
X lEa T E]

¥

TN
A
AR WAL

MANDALORIAN
The Criminal The Good
Office Mandalorian Minds Place

Grace 5 1 5 \

Eric 4 5 5 3 ... | not similar
Haren 5 5 3 4

Sai 2

Siyan 3 1 3 5

Nikhil 2 2

Felix 1 1 2

Step 2: Identitying Similar Users

* How to measure similarity?

* Distance d(Xi,Xj), where X; is vector of ratings for user i

* Strategy 1: Euclidean distance d(Xl-,Xj) = HXl- — Xf”z
* Ignore entries where either X; or X; is N/A
e Shortcoming: Some users might give higher ratings everywhere!

 Similar issues with other distance metrics such as cosine similarity

Step 2: Identitying Similar Users

Yhe1(Xik—Xi)(Xjk—X;)

T (e 20)° B (e)

* Strategy 2: Pearson correlation: p =

—_ 1 m
* Here, X; = — k:1Xi,k

* Normalization by variance deals with differences in individual rating scales

o, ® o\0

//‘ o p=0 \\

o ® ®
Xi|l @ 7 X; ¥ Xl o X; \@
‘e / ¢
/7 N ® .
0<p<1 o =1 ° —1<p<0

Step 3: Predict Unknown Ratings

* Weighted averaging strategy
* Compute weightsw; ; = g (d(Xi,Xj) based on the distances

Wi,j

* Normalize the weights to obtain w; ; = =
j=1

* For user i rating item k, predict

n
Xig =X + z Wi j - (Xje — Xj)
=1

Step 3: Predict Unknown Ratings

e Variations

* Instead of weights, choose a neighborhood (e.g., threshold based on
similarity, top-k based on similarity, or use k-means clustering)

* Instead of subtracting the mean, normalize by standard deviation

