
Announcements

• Limited office hours this week (see Ed Discussion)

• Quiz 11 is due Thursday, December 1 at 8pm

• HW 6 due Friday, December 2 at 8pm
• 2 day extension

Bayesian Networks

• Nodes/vertices: Variables 𝑋!

• Arcs/edges: Encode parameter structure
• Parameters: Distribution of each 𝑋! given its parents
• 𝑃 𝑥", … , 𝑥# = ∏!$"

𝑃 𝑋! = 𝑥! parents 𝑋! = 𝑥!! , … , 𝑥!"

• Graph structure establishes conditional independencies
• Based on d-separation algorithm
• Also encodes conditional independence given neighbors; see

https://en.wikipedia.org/wiki/Moral_graph for details

https://en.wikipedia.org/wiki/Moral_graph

Bayesian Networks

• Nodes/vertices: Variables 𝑋!

• Arcs/edges: Encode parameter structure
• Parameters: Distribution of each 𝑋! given its parents
• 𝑃 𝑥", … , 𝑥# = ∏!$"

𝑃 𝑋! = 𝑥! parents 𝑋! = 𝑥!! , … , 𝑥!"

• Graph structure establishes conditional independencies
• Based on d-separation algorithm
• Also encodes conditional independence given neighbors; see

https://en.wikipedia.org/wiki/Moral_graph for details

https://en.wikipedia.org/wiki/Moral_graph

𝑃 𝐿, 𝐵, 𝑅, 𝑇, 𝐷,𝑀 =
𝑃 𝐿
𝑃 𝐵
𝑃 𝑅 𝐿
𝑃 𝑇 𝑅, 𝐵
𝑃 𝐷 𝑅, 𝑇
𝑃 𝑀 𝐵,𝐷

Example

𝐿

𝑅

𝑇𝐵 𝐷

𝑀

𝑃 𝐿, 𝐵, 𝑅, 𝑇, 𝐷,𝑀 =
𝑃 𝐿
𝑃 𝐵
𝑃 𝑅 𝐿
𝑃 𝑇 𝑅, 𝐵
𝑃 𝐷 𝑅, 𝑇
𝑃 𝑀 𝐵,𝐷

Example

𝐿

𝑅

𝑇𝐵 𝐷

𝑀

D-Separation

• Query: 𝑋⫫𝑌 ∣ 𝑍", … , 𝑍#

D-Separation

• Causal chain
• 𝐴 → 𝐵 → 𝐶
• Active iff 𝐵 ∉ 𝑍!

• Common cause
• 𝐴 ← 𝐵 → 𝐶
• Active iff 𝐵 ∉ 𝑍!

• Common effect
• 𝐴 → 𝐵 ← 𝐶
• Active iff 𝐵 ∈ 𝑍! (or descendant ∈ 𝑍!)

Active Triples Inactive Triples

D-Separation

• Query: 𝑋⫫𝑌 ∣ 𝑍", … , 𝑍#

• for each (acyclic) path 𝑋 = 𝐴$ − 𝐴" −⋯− 𝐴# − 𝐴#%" = 𝑌:
• active ← 𝐭𝐫𝐮𝐞
• for each triple 𝐴!%" − 𝐴! − 𝐴!&":

• if triple is causal chain and 𝐴! ∈ 𝑍" : active ← 𝐟𝐚𝐥𝐬𝐞
• if triple is common cause and 𝐴! ∈ 𝑍" : active ← 𝐟𝐚𝐥𝐬𝐞
• if triple is causal effect and descendants 𝐴! ∩ 𝑍" = ∅: active ← 𝐟𝐚𝐥𝐬𝐞

• if active: return false
• return true

• Intuition: Return false if there is a path where all triples are active

Marginal Inference

• Input:
• Evidentiary variables: 𝐸" = 𝑒", … , 𝐸' = 𝑒' (features)
• Query variable: 𝑄 (label)
• Hidden variables: 𝐻", … , 𝐻((all remaining, “latent” variables)

• Goal: For each 𝑞, compute

𝑃 𝑄 = 𝑞 ∣ 𝐸" = 𝑒", … , 𝐸! = 𝑒!

• Equivalently: Likelihood 𝑝 𝑦 𝑥

Variable Elimination

• Step 0: Initial factors are 𝑃 𝑋; parents 𝑋; for each node 𝑋;
• Immediately drop rows conditioned on evidentiary variables

• Step 1: For each 𝐻;:
• Step 1a: Join all factors containing 𝐻!
• Step 1b: Eliminate 𝐻!

• Output: Join all remaining factors and normalize

Maximum Likelihood Learning

• Minimize the NLL:

H𝜃 = arg min
)

L
!$"

#

L
*$"

+

log 𝑃) 𝑋* = 𝑥!,* parents 𝑋* = 𝑥!,'! , … , 𝑥!,'#

• Can use gradient descent to optimize
• There is a nice formula for the gradient

Simplest Example: Naïve Bayes

• Model:

𝑃 𝑌, 𝑋"… ,𝑋# = 𝑃 𝑌 B
;<"

#

𝑃 𝑋; 𝑌

𝑋" ⋯ 𝑋#

𝑌

Inference in Naïve Bayes

• Step 1: For each 𝑦 ∈ 𝐷=, compute joint probability distribution

𝑃 𝑦, 𝑥", … , 𝑥# = 𝑃 𝑦 B
;<"

#

𝑃 𝑥; 𝑦

• Step 2: Normalize distribution:

𝑃 𝑦 ∣ 𝑥", … , 𝑥# =
𝑃 𝑦 ∏;<"

𝑃 𝑥; 𝑦
𝑍

• Here, 𝑍 = ∑-$∈/% 𝑃 𝑦0 ∏!$"
𝑃 𝑥! 𝑦0

Naïve Bayes for Spam Detection

• Bag of words model

• Parameter sharing via “tied” distribution: For all 𝑖, 𝑗, constrain

𝑃 𝑋; = 𝑥 𝑌 = 𝑃 𝑋> = 𝑥 𝑌

• Encodes invariant structure in bag of words models

Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

G𝜃 = arg min
?

L
;<"

#

log 𝑃? 𝑦; + logL
><"

@!

𝑃? 𝑥;,> 𝑦;

• Can show that parameters are counts:

𝑃? 𝑥 𝑦 =
∑;<"# ∑><"

@! 1 𝑦; = 𝑦 ∧ 𝑥;,> = 𝑥

∑;<"# ∑><"
@! 1 𝑦; = 𝑦

number of words in example 𝑖

Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

G𝜃 = arg min
?

L
;<"

#

log 𝑃? 𝑦; + logL
><"

@!

𝑃? 𝑥;,> 𝑦;

• Can show that parameters are counts:

𝑃? 𝑥 𝑦 =
∑;<"# ∑><"

@! 1 𝑦; = 𝑦 ∧ 𝑥;,> = 𝑥

∑;<"# ∑><"
@! 1 𝑦; = 𝑦

number of times the word 𝑥
occurs in examples labeled 𝑦

number of words in example 𝑖

Maximum Likelihood Learning

• Minimize the NLL for Naïve Bayes for text:

G𝜃 = arg min
?

L
;<"

#

log 𝑃? 𝑦; + logL
><"

@!

𝑃? 𝑥;,> 𝑦;

• Can show that parameters are counts:

𝑃? 𝑥 𝑦 =
∑;<"# ∑><"

@! 1 𝑦; = 𝑦 ∧ 𝑥;,> = 𝑥

∑;<"# ∑><"
@! 1 𝑦; = 𝑦

number of times the word 𝑥
occurs in examples labeled 𝑦

number of words in
examples labeled 𝑦

number of words in example 𝑖

Naïve Bayes for Spam Detection

the : 0.0156
to : 0.0153
and : 0.0115
of : 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075
...

the : 0.0210
to : 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a : 0.0100
...

not spam: 0.66
spam: 0.33

𝑃 𝑦 𝑃 𝑥 ∣ spam 𝑃 𝑥 ∣ not spam

Reinforcement Learning

• Sequential decision-making

• Planning: Known transitions/rewards
• Optimization

• Reinforcement learning: Unknown transitions/rewards
• Learning + optimization

Q Iteration

• Initialize 𝑄" 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎
• For 𝑖 ∈ 1,2, … until convergence:

𝑄;%" 𝑠, 𝑎 ← L
B"∈C

𝑃 𝑠D 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠D + 𝛾 ⋅ max
E"∈F

𝑄; 𝑠D, 𝑎D

Q Learning

• Initialize 𝑄" 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎
• For 𝑖 ∈ 1,2, … until convergence:

𝑄;%" 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄; 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠D + 𝛾 ⋅ max
E"∈F

𝑄; 𝑠D, 𝑎D

Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells
• Pacman: State is player, ghost", … , ghost' ,

so there are 𝑛' states!

• Problem: Learning in one state does not
tell us anything about the other states!

• Many states à learn very slowly

State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ+

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄) 𝑠, 𝑎 = 𝑓) 𝜙 𝑠, 𝑎
• Enables generalization to similar states

• Examples: Distance to closest ghost, distance to closest dot, etc.

Neural Network 𝑄 Function

• Can also use neural networks to learn features (e.g., represent
Pacman game state as an image and feed to CNN)!

𝑄!,# 𝑠, 𝑎$
𝑄!,# 𝑠, 𝑎%

:
:

𝑠

Deep Q Learning

• For 𝑖 ∈ 1,2, … until convergence:

𝑄;%" 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄; 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠D + 𝛾 ⋅ max
E"∈F

𝑄; 𝑠D, 𝑎D

Based on slide by Sergey Levine

Deep Q Learning

• For 𝑖 ∈ 1,2, … until convergence:

𝑄!&" 𝑠, 𝑎 ← 𝑄! 𝑠, 𝑎 − 𝛼 ⋅ 𝑄! 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$∈7

𝑄! 𝑠0, 𝑎0

Based on slide by Sergey Levine

Deep Q Learning

• For 𝑖 ∈ 1,2, … until convergence:

𝑄!&" 𝑠, 𝑎 ← 𝑄! 𝑠, 𝑎 − 𝛼 ⋅ 𝑄! 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$∈7

𝑄! 𝑠0, 𝑎0

• Learning: Gradient descent with the squared Bellman error loss:

𝑄) 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$

𝑄) 𝑠0, 𝑎0
8

Based on slide by Sergey Levine

“Label” 𝑦“Predicted Label” \𝑦

Deep Q Learning

• For 𝑖 ∈ 1,2, … until convergence:

𝑄!&" 𝑠, 𝑎 ← 𝑄! 𝑠, 𝑎 − 𝛼 ⋅ 𝑄! 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$∈7

𝑄! 𝑠0, 𝑎0

• Learning: Gradient descent with the squared Bellman error loss:

𝜃!&" ← 𝜃! − 𝛼 ⋅ 𝑄)& 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$

𝑄)& 𝑠
0, 𝑎0 𝛻)𝑄)& 𝑠, 𝑎

Based on slide by Sergey Levine

assume constant when
computing gradient

Deep Q Learning

• For 𝑖 ∈ 1,2, … until convergence:

𝑄!&" 𝑠, 𝑎 ← 𝑄! 𝑠, 𝑎 − 𝛼 ⋅ 𝑄! 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$∈7

𝑄! 𝑠0, 𝑎0

• Learning: Gradient descent with the squared Bellman error loss:

𝜃!&" ← 𝜃! − 𝛼 ⋅ 𝑄)& 𝑠, 𝑎 − 𝑅 𝑠, 𝑎, 𝑠0 + 𝛾 ⋅ max
6$

𝑄)& 𝑠
0, 𝑎0 𝛻)𝑄)& 𝑠, 𝑎

Based on slide by Sergey Levine

assume constant when
computing gradient

Deep Q Learning

• Iteratively perform the following:
• Take an action 𝑎! and observe 𝑠!, 𝑎!, 𝑠!&", 𝑟!
• 𝑦! ← 𝑟! + 𝛾 ⋅ max6$∈7

𝑄) 𝑠!&", 𝑎0

• 𝜃 ← 𝜃 − 𝛼 ⋅ ++) 𝑄) 𝑠!, 𝑎! − 𝑦! 8

• Note: Pretend like 𝑦; is constant when taking the gradient

• For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

• Problem
• Sequences of states are highly correlated
• Tend to overfit to current states and forget older states

• Solution
• Keep a replay buffer of observations (as a priority queue)
• Gradient updates on samples from replay buffer instead

of current state

• Advantages
• Breaks correlations between consecutive samples
• Can take multiple gradient steps on each observation Based on slide by Sergey Levine

Replay Buffer

Priority Queue

𝑠#, 𝑎#, 𝑟#, 𝑠$

𝑠$, 𝑎$, 𝑟$, 𝑠%

𝑠", 𝑎", 𝑟", 𝑠"&#

⋯

Deep Q Learning with Replay Buffer

• Iteratively perform the following:
• Take an action 𝑎! and add observation 𝑠!, 𝑎!, 𝑠!&", 𝑟! to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,(, 𝑎!,(, 𝑠!&#,(, 𝑟!,(from 𝐷
• 𝑦!,(← 𝑟!,(+ 𝛾 ⋅ max)!∈+

𝑄, 𝑠!&#,(, 𝑎-

• 𝜙 ← 𝜙 − 𝛼 ⋅ .
.,

𝑄, 𝑠!,(, 𝑎!,(− 𝑦!,(
$

Based on slide by Sergey Levine

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠&, 𝑟

𝜋 𝑠

Target Q Network

• Problem
• Q network occurs in the label 𝑦!!

• 𝜃 ← 𝜃 − 𝛼 ⋅ +
+)

𝑄) 𝑠!, 𝑎! − 𝑟! + 𝛾 ⋅ max6$∈7
𝑄) 𝑠!&", 𝑎0

8

• Thus, labels change as Q network changes

• Solution
• Use a separate target Q network for the occurrence in 𝑦!
• Only update target network occasionally

• 𝜃 ← 𝜃 − 𝛼 ⋅ +
+)

𝑄) 𝑠!, 𝑎! − 𝑟! + 𝛾 ⋅ max6$∈7
𝑄)$ 𝑠!&", 𝑎0

8

Based on slide by Sergey Levine
Original Q Network Target Q Network

Deep Q Learning with Target Q Network

• Iteratively perform the following:
• Take an action 𝑎! and add observation 𝑠!, 𝑎!, 𝑠!&", 𝑟! to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,(, 𝑎!,(, 𝑠!&#,(, 𝑟!,(from 𝐷
• 𝑦!,(← 𝑟!,(+ 𝛾 ⋅ max)!∈+

𝑄,! 𝑠!&#,(, 𝑎-

• 𝜃 ← 𝜃 − 𝛼 ⋅ .
.,

𝑄, 𝑠!,(, 𝑎!,(− 𝑦!,(
$

• Every 𝑁 steps, 𝜃0 ← 𝜃

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Lecture 22: Recommender Systems

CIS 4190/5190
Fall 2022

Recommender Systems

• Media recommendations: Netflix, Youtube, etc.

• News feed: Google News, Facebook, Twitter, Reddit, etc.

• Search ads: Google, Bing, etc.

• Products: Amazon, ebay, Walmart, etc.

• Dating: okcupid, eharmony, coffee-meets-bagel, etc.

Recommender Systems

• Account for:
• 75% of movies watched on Netflix [1]
• 60% of YouTube video clicks [2]
• 35% of Amazon sales [3]

[1] McKinsey & Company (Oct 2013): https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers [Note: non-authoritative
source; estimates only]

[2] J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on Recommender systems (RecSys).
doi.org/10.1145/1864708.1864770

[3] M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States displaces other ways of meeting.
Proc. National Academy of Sciences 116(36).

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Popularity-Based Recommendation

• Just recommend whatever is currently popular

• Simple and effective, always try as a baseline

• Can be combined with more sophisticated techniques

Collaborative Filtering

User 1 User 2

Collaborative Filtering

User 1 User 2

Collaborative Filtering

• Given:

• Matrix 𝑋!,' = g
rating!,'
N/A

if user! rated product'
otherwise

• Assume fixed set of 𝑛 users and 𝑚 products
• Not given any information about the products!

• Problem: Predict what 𝑋;,! would be if it is observed
• Not quite supervised or unsupervised learning!

Collaborative Filtering

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 4 5 4 1 5 3 ...

Eric 1 4 5 1 5 3 ...

Haren 5 5 5 1 3 4 ...

Sai 1 2 5 4 3 5 ...

Siyan 3 1 1 3 4 5 ...

Nikhil 2 3 4 2 2 2 ...

Felix 1 1 1 5 2 2 ...

Missing
entries!

Collaborative Filtering

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

Missing
entries!

General Strategy

• Step 1: Construct user-item ratings

• Step 2: Identify similar users

• Step 3: Predict unknown ratings

Step 1: Constructing User-Item Ratings

• Can use explicit ratings (e.g., Netflix)

• Can be implicitly inferred from user activity
• User stops watching after 15 minutes
• User repeatedly clicks on a video

• Feedback can vary in strength
• Weak: User views a video
• Strong: User writes a positive comment

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

similar

Step 2: Identifying Similar Users

Gossip
Girl

The
Office

The
Mandalorian

Criminal
Minds

The Good
Place

Grey’s
Anatomy

...

Grace 5 1 5 ...

Eric 4 5 5 3 ...

Haren 5 5 3 4 ...

Sai 2 ...

Siyan 3 1 3 5 ...

Nikhil 2 2 ...

Felix 1 1 2 ...

not similar

Step 2: Identifying Similar Users

• How to measure similarity?
• Distance 𝑑 𝑋!, 𝑋* , where 𝑋! is vector of ratings for user 𝑖

• Strategy 1: Euclidean distance 𝑑 𝑋; , 𝑋> = 𝑋; − 𝑋> W
• Ignore entries where either 𝑋! or 𝑋* is N/A
• Shortcoming: Some users might give higher ratings everywhere!

• Similar issues with other distance metrics such as cosine similarity

Step 2: Identifying Similar Users

• Strategy 2: Pearson correlation: 𝜌 =
∑#$%
& Y!,#Z [Y! Y(,#Z [Y(

∑#$%
& Y!,#Z [Y!

) ∑#$%
& Y(,#Z [Y(

)

• Here, q𝑋! =
"
(
∑'$"(𝑋!,'

• Normalization by variance deals with differences in individual rating scales

𝜌 ≈ 1

𝜌 = 0

𝑋'

0 < 𝜌 < 1 −1 < 𝜌 < 0

𝑋' 𝑋' 𝑋'

𝑋(𝑋(𝑋(𝑋(

Step 3: Predict Unknown Ratings

• Weighted averaging strategy
• Compute weights 𝑤!,* = 𝑔 𝑑 𝑋!, 𝑋* based on the distances

• Normalize the weights to obtain t𝑤!,* =
C&,#

∑#(!
) C&,#

• For user 𝑖 rating item 𝑘, predict

𝑋;,! = _𝑋; +L
><"

#

�̀�;,> ⋅ 𝑋>,! − _𝑋>

Step 3: Predict Unknown Ratings

• Variations
• Instead of weights, choose a neighborhood (e.g., threshold based on

similarity, top-k based on similarity, or use k-means clustering)
• Instead of subtracting the mean, normalize by standard deviation

