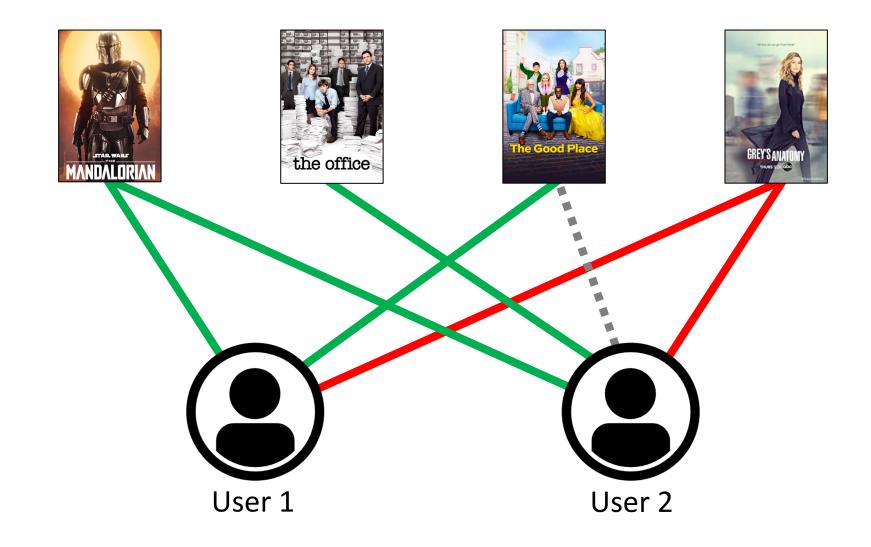
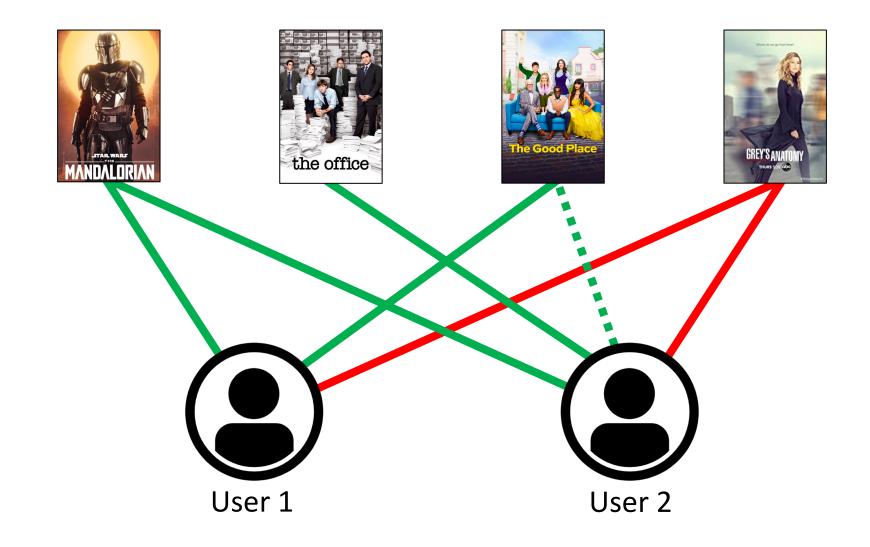
Announcements

- Quiz 11 is due Thursday, December 1 at 8pm
- HW 6 due Friday, December 2 at 8pm
 - 2 day extension

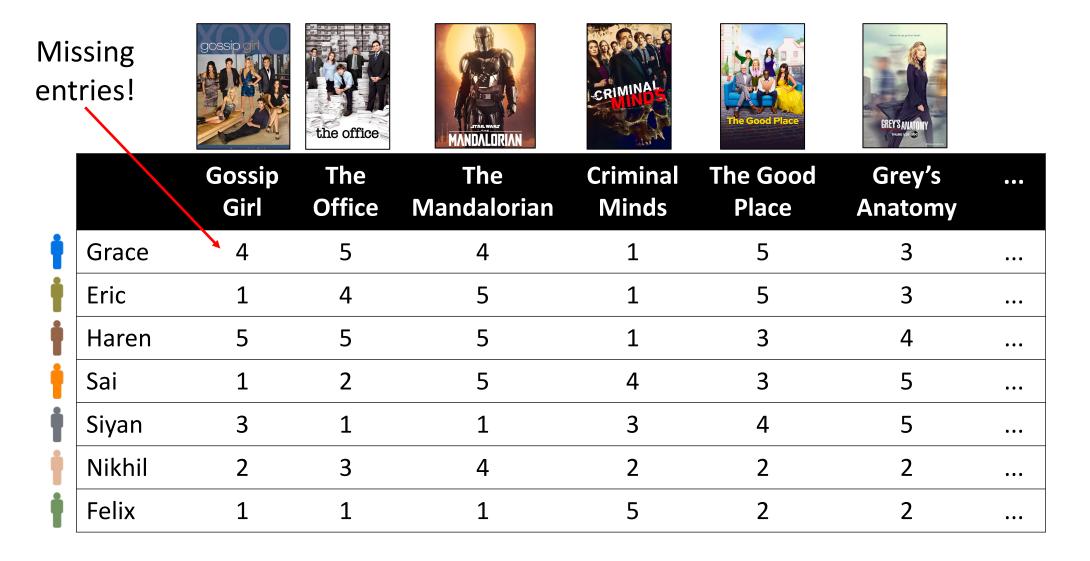
Recommender Systems

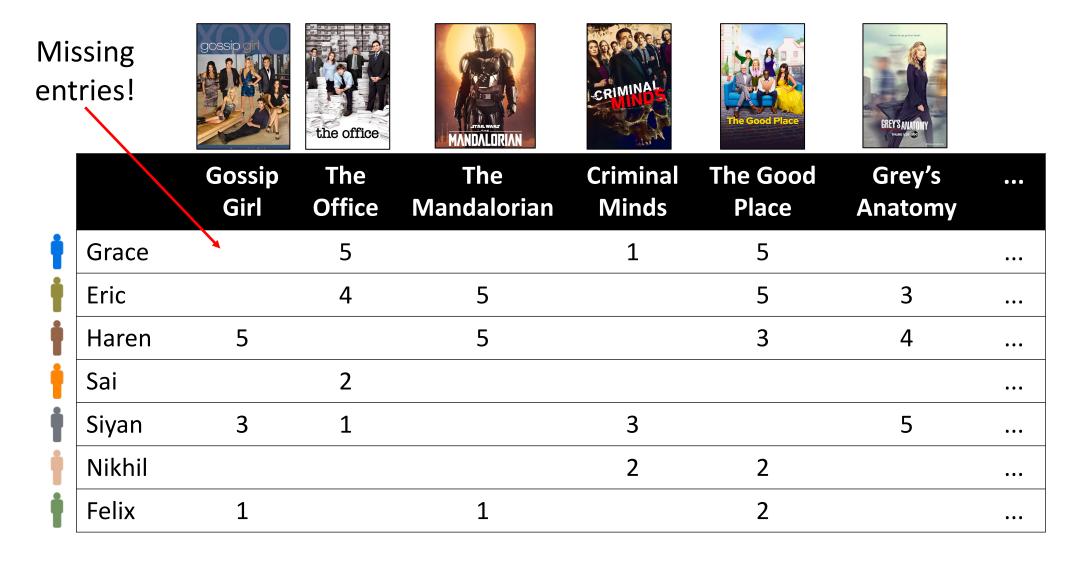
- Media recommendations: Netflix, Youtube, etc.
- News feed: Google News, Facebook, Twitter, Reddit, etc.
- Search ads: Google, Bing, etc.
- **Products:** Amazon, ebay, Walmart, etc.
- **Dating:** okcupid, eharmony, coffee-meets-bagel, etc.





- Given:
 - Matrix $X_{i,k} = \begin{cases} \text{rating}_{i,k} & \text{if user}_i \text{ rated product}_k \\ N/A & \text{otherwise} \end{cases}$
 - Assume fixed set of n users and m products
 - Not given any information about the products!
- **Problem:** Predict what $X_{i,k}$ would be if it is observed
 - Not quite supervised or unsupervised learning!





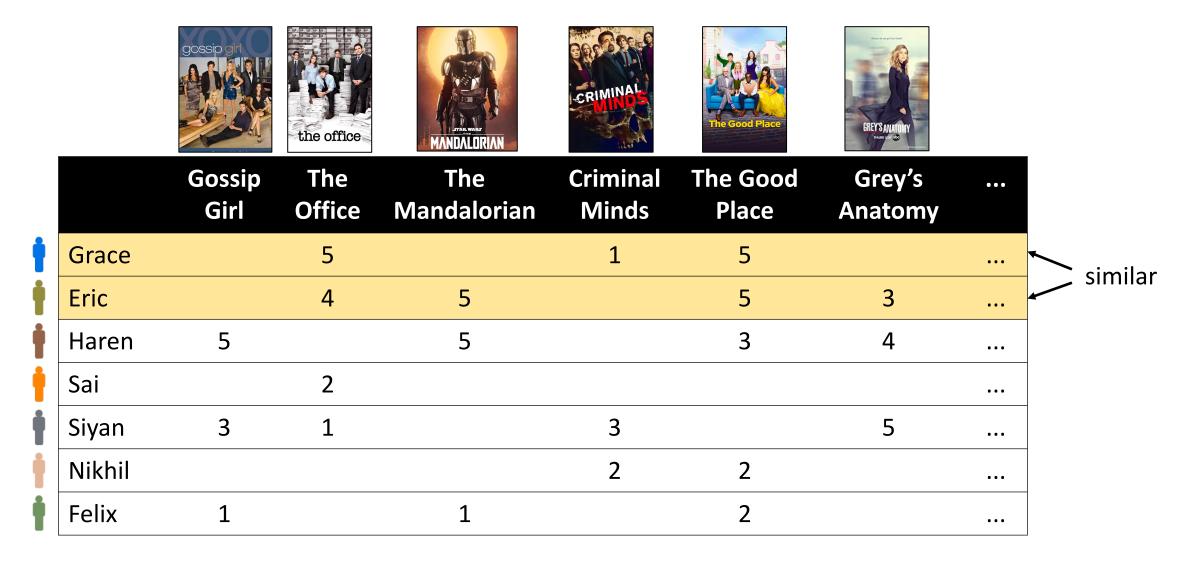
General Strategy

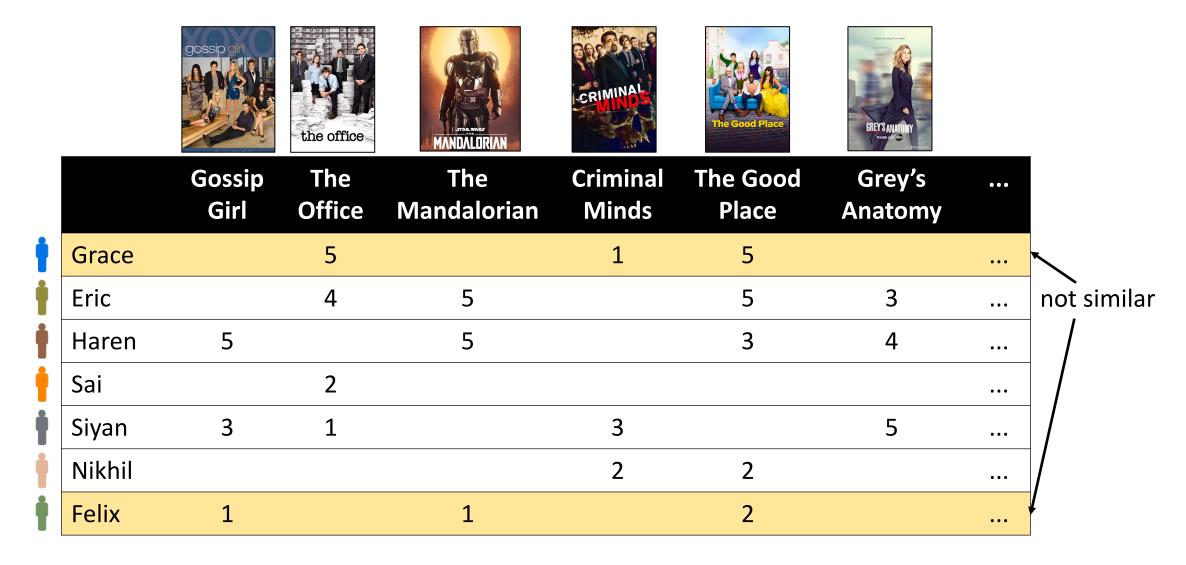
- Step 1: Construct user-item ratings
- Step 2: Identify similar users
- Step 3: Predict unknown ratings

Step 1: Constructing User-Item Ratings

- Can use explicit ratings (e.g., Netflix)
- Can be implicitly inferred from user activity
 - User stops watching after 15 minutes
 - User repeatedly clicks on a video
- Feedback can vary in strength
 - Weak: User views a video
 - **Strong:** User writes a positive comment

			the office	ANDALORIAN	CRIMINAL	The Good Place	BREY SALATORY TO BE SOLUTION	
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	
İ	Grace		5		1	5		
İ	Eric		4	5		5	3	
İ	Haren	5		5		3	4	
İ	Sai		2					
İ	Siyan	3	1		3		5	
İ	Nikhil				2	2		
İ	Felix	1		1		2		•••



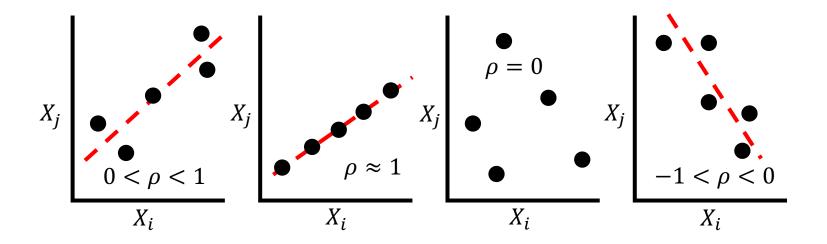


- How to measure similarity?
 - Distance $d(X_i, X_j)$, where X_i is vector of ratings for user *i*
- Strategy 1: Euclidean distance $d(X_i, X_j) = ||X_i X_j||_2$
 - Ignore entries where either X_i or X_j is N/A
 - **Shortcoming:** Some users might give higher ratings everywhere!
- Similar issues with other distance metrics such as cosine similarity

• Strategy 2: Pearson correlation: $\rho = \frac{\sum_{k=1}^{m} (X_{i,k} - \bar{X}_i) (X_{j,k} - \bar{X}_j)}{\sqrt{\sum_{k=1}^{m} (X_{i,k} - \bar{X}_i)^2 \sum_{k=1}^{m} (X_{j,k} - \bar{X}_j)^2}}$

• Here,
$$\overline{X}_i = \frac{1}{m} \sum_{k=1}^m X_{i,k}$$

• Normalization by variance deals with differences in individual rating scales



Step 3: Predict Unknown Ratings

- Weighted averaging strategy
 - Compute weights $w_{i,j} = g\left(d(X_i, X_j)\right)$ based on the distances
 - Normalize the weights to obtain $\overline{w}_{i,j} = \frac{w_{i,j}}{\sum_{i=1}^{n} w_{i,j}}$
 - For user *i* rating item *k*, predict

$$X_{i,k} = \overline{X}_i + \sum_{j=1}^n \overline{w}_{i,j} \cdot \left(X_{j,k} - \overline{X}_j\right)$$

Step 3: Predict Unknown Ratings

Variations

- Instead of weights, choose a neighborhood (e.g., threshold based on similarity, top-k based on similarity, or use k-means clustering)
- Instead of subtracting the mean, normalize by standard deviation

Matrix Factorization

• Model family: Consider parameterization

 $X_{i,k} \approx U_i^\top V_k$

- Both $U_i \in \mathbb{R}^d$ and $V_k \in \mathbb{R}^d$ are parameters
- U_i represents "features" for user i
- V_k represents "features" for product k

Matrix Factorization

• Loss function:

$$L(\boldsymbol{U},\boldsymbol{V};\boldsymbol{X}) = \sum_{i=1}^{n} \sum_{k=1}^{m} 1(\boldsymbol{X}_{i,k} \neq N/A) \cdot (\boldsymbol{X}_{i,k} - \boldsymbol{U}_{i}^{\mathsf{T}}\boldsymbol{V}_{k})^{2}$$

- Optimizer:
 - Can be minimized using gradient descent
 - "Alternating" least squares: Hold U fixed, then optimizing V is linear regression (and vice versa), so alternate between the two

Koren, et al. (2009) Matrix factorization techniques for recommender systems. *Computer* 42 (8), ACM. <u>https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf</u>

• Pros

- No domain knowledge needed, only user behavior
- Captures that users may have diverse preferences

• Cons

- Suffers when data is sparse
- Does not consider item content, so cannot generalize to new items
- Does not consider user features, so cannot generalize to new users

Content-Based Approaches

- Step 1: Manually construct feature vector U_i for item
- Step 2: Manually construct feature vector V_k for user
- Step 3: Train a model using supervised learning to predict the user's rating for the given item:

 $X_{i,j} \approx f_\beta(U_i, V_k)$

Content-Based Approaches

• Pros

- Incorporates external sources of knowledge on items/users to generalize
- More explainable since recommendations are based on handcrafted features

• Cons

- Requires domain knowledge and feature engineering
- Narrow recommendations

Hybrid Approaches

Combine collaborative filtering with content-based approaches

- Ensemble different predictions
- Concatenate collaborative filtering features with handcrafted features

Deep-learning based approaches

- Can be used with both approaches (or a combination)
- Active area of research

Other Considerations

Challenges measuring utility

- Ratings can be misleading
- Fake reviews/ratings are commonplace

• Time-varying preferences

- User preferences change, item popularities change
- Can upweight recent data (e.g., exponentially weighted moving average)

• Evaluation

- Offline: Split users into train/test, and evaluate model on test users
- Online: Split users into train/test, and run separate algorithms for each

What About New Users?

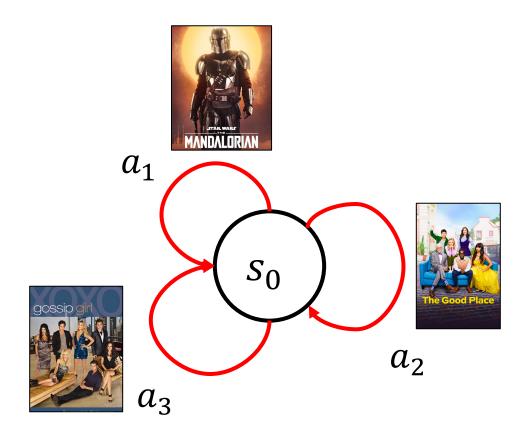
- Called the "cold start" problem
- Feature-based approach
 - Just featurize the user!

- Need to collect ratings from the user!
- A special kind of reinforcement learning problem called a **multi-armed bandit**

Lecture 23: Multi-Armed Bandits Part 1

CIS 4190/5190 Fall 2022

- State: None! (To be precise, a single state $S = \{s_0\}$)
- Action: Item to recommend (often called arms)
- Transitions: Just stay in the same state
- Rewards: Rating assigned by the user
 - Goal is to recommend items that the user likes
 - Denote $R(a) = R(s_0, a)$, where a is the chosen action



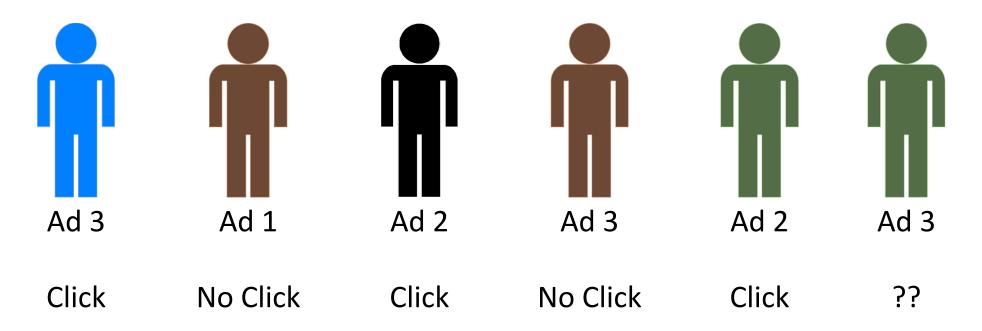
Note: In practice, we don't want to repeatedly recommend the same item, but we will ignore this point

Many applications

- Cold-start for news/ad/movie recommendations
- A/B testing
- Flagging potentially harmful content on a social media platform
- Prioritizing medical tests
- Learning dynamically
- Many practical RL problems are multi-armed bandits

Simpler setting

- Google wants to show the most popular ad for a search term (e.g., "lawyer")
- There are a fixed number of ads to choose from



• For $t \in \{1, 2, ..., T\}$

• Compute reward estimates
$$r_{t,a} = \frac{\sum_{i=1}^{t-1} r_i \cdot 1(a_i = a)}{\sum_{i=1}^{t-1} 1(a_i = a)}$$

- Choose action a_t based on reward estimates
- Add (a_t, r_t) to replay buffer
- Question: How to choose actions?
 - Exploration: Try actions to better estimate their rewards
 - Exploitation: Use action with the best estimated reward to maximize payoff

Multi-Armed Bandit Algorithms

- Naïve strategy: *ε*-Greedy
 - Choose action $a_t \sim \text{Uniform}(A)$ with probability ϵ
 - Choose action $a_t = \underset{a \in A}{\arg \max r_{t,a}}$ with probability 1ϵ
- Can we do better?

Multi-Armed Bandit Algorithms

- Upper confidence bound (UCB)
 - Choose action $a_t = \arg \max_{a \in A} \left\{ r_{t,a} + \frac{\text{const}}{\sqrt{N_t(a)}} \right\}$
 - $N_t(a) = \sum_{i=1}^{t-1} 1(a_i = a)$ is the number of times action a has been played

Thompson sampling

• Choose action
$$a_t = \arg \max_{a \in A} \{r_{t,a} + \epsilon_{t,a}\}$$
, where $\epsilon_{t,a} \sim N\left(0, \frac{\text{const}}{\sqrt{N_t(a)}}\right)$

Two Real-World Applications

• Application 1: Testing travelers for COVID-19 at the Greek border

Efficient and targeted COVID-19 border testing via reinforcement learning

Hamsa Bastani, Kimon Drakopoulos , Vishal Gupta, Ioannis Vlachogiannis, Christos Hadjichristodoulou, Pagona Lagiou, Gkikas Magiorkinis, Dimitrios Paraskevis & Sotirios Tsiodras

<u>Nature</u> **599**, 108–113 (2021) Cite this article

• Application 2: Prioritize content for review on the Meta platform

Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms

Vashist Avadhanula^{0,1}, Omar Abdul Baki⁰, Hamsa Bastani^{0,†,2}, Osbert Bastani^{0,†,3}, Caner Gocmen⁰, Daniel Haimovich⁰, Darren Hwang⁰, Dima Karamshuk⁰, Thomas Leeper⁰, Jiayuan Ma⁰, Gregory Macnamara⁰, Jake Mullett⁰, Christopher Palow⁰, Sung Park⁰, Varun S Rajagopal⁰, Kevin Schaeffer⁰, Parikshit Shah⁰, Deeksha Sinha⁰, Nicolas Stier-Moses⁰, Peng Xu⁰

[°]Meta, [†]University of Pennsylvania